首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Origins of the specificity of tissue-type plasminogen activator.   总被引:4,自引:0,他引:4       下载免费PDF全文
The role of subsite interactions in defining the stringent substrate specificity of tissue-type plasminogen activator (t-PA) has been examined by using an fd phage library that displayed random hexapeptide sequences and contained 2 x 10(8) independent recombinants. Forty-four individual hexapeptides were isolated and identified as improved substrates for t-PA. A peptide containing one of the selected amino acid sequences was cleaved by t-PA 5300 times more efficiently than a peptide that contained the primary sequence of the actual cleavage site in plasminogen. These results suggest that small peptides can mimic determinants that mediate specific proteolysis, emphasize the importance of subsite interactions in determining protease specificity, and have important implications for the evolution of protease cascades.  相似文献   

2.
The cDNAs of two new human membrane-associated aspartic proteases, memapsin 1 and memapsin 2, have been cloned and sequenced. The deduced amino acid sequences show that each contains the typical pre, pro, and aspartic protease regions, but each also has a C-terminal extension of over 80 residues, which includes a single transmembrane domain and a C-terminal cytosolic domain. Memapsin 2 mRNA is abundant in human brain. The protease domain of memapsin 2 cDNA was expressed in Escherichia coli and was purified. Recombinant memapsin 2 specifically hydrolyzed peptides derived from the beta-secretase site of both the wild-type and Swedish mutant beta-amyloid precursor protein (APP) with over 60-fold increase of catalytic efficiency for the latter. Expression of APP and memapsin 2 in HeLa cells showed that memapsin 2 cleaved the beta-secretase site of APP intracellularly. These and other results suggest that memapsin 2 fits all of the criteria of beta-secretase, which catalyzes the rate-limiting step of the in vivo production of the beta-amyloid (Abeta) peptide leading to the progression of Alzheimer's disease. Recombinant memapsin 2 also cleaved a peptide derived from the processing site of presenilin 1, albeit with poor kinetic efficiency. Alignment of cleavage site sequences of peptides indicates that the specificity of memapsin 2 resides mainly at the S(1)' subsite, which prefers small side chains such as Ala, Ser, and Asp.  相似文献   

3.
We have compiled sequences of precursor proteins for 50 mitochondrial proteins for which the mature amino terminus has been determined by amino acid sequence analysis. Included in this set are 8 precursors that have leader peptides that are cleaved in two places by mitochondrial matrix proteases. When these eight leader peptides are aligned and compared, a highly conserved three-amino acid motif is identified as being common to this class of leader peptides. This motif includes an arginine at position -10, a hydrophobic residue at position -8, and serine, threonine, or glycine at position -5 relative to the mature amino terminus. The initial cleavage of these peptides by matrix processing protease occurs within the motif, between residues at -9 and -8, such that arginine at position -10 is at position -2 relative to the cleaved bond. The rest of the motif is within the octapeptide removed by subsequent cleavage catalyzed by intermediate-specific protease. An additional 14 leader peptides in this collection (all of those that contain an arginine at -10) conform to this motif. Assuming that these 14 precursors are matured in two steps, we compared the internal cleavage sites at position -8 with the ends of the other 30 leader peptides in the collection. We find that 74% of matrix processing protease cleavage sites follow an arginine at position -2 relative to cleavage.  相似文献   

4.
We report a general combinatorial approach to identify optimal substrates of a given protease by using quantitative kinetic screening of cellular libraries of peptide substrates (CLiPS). A whole-cell protease activity assay was developed by displaying fluorescent reporter substrates on the surface of Escherichia coli as N-terminal fusions. This approach enabled generation of substrate libraries of arbitrary amino acid composition and length that are self-renewing. Substrate hydrolysis by a target protease was measured quantitatively via changes in whole-cell fluorescence by using FACS. FACS enabled efficient screening to identify optimal substrates for a given protease and characterize their cleavage kinetics. The utility of CLiPS was demonstrated by determining the substrate specificity of two unrelated proteases, caspase-3 and enteropeptidase (or enterokinase). CLiPS unambiguously identified the caspase-3 consensus cleavage sequence DXVDG. Enteropeptidase was unexpectedly promiscuous, but exhibited a preference for substrates with the motif (D/E)RM, which were cleaved substantially faster than the canonical DDDDK recognition sequence, widely used for protein purification. CLiPS provides a straightforward and versatile approach to determine protease specificity and discover optimal substrates on the basis of cleavage kinetics.  相似文献   

5.
Replication of positive-strand RNA viruses involves translation of polyproteins which are proteolytically processed into functional peptides. These maturation steps often involve virus-encoded autoproteases specialized in generating their own N or C termini. Nonstructural protein 2 (NS2) of the pestivirus bovine viral diarrhea virus represents such an enzyme. Bovine viral diarrhea virus NS2 creates in cis its own C terminus and thereby releases an essential viral replication factor. As a unique feature, this enzyme requires for proteolytic activity stoichiometric amounts of a cellular chaperone termed Jiv (J-domain protein interacting with viral protein) or its fragment Jiv90. To obtain insight into the structural organization of the NS2 autoprotease, the basis for its restriction to cis cleavage, as well as its activation by Jiv, we dissected NS2 into functional domains. Interestingly, an N-terminal NS2 fragment covering the active center of the protease, cleaved in trans an artificial substrate composed of a C-terminal NS2 fragment and two downstream amino acids. In the authentic NS2, the 4 C-terminal amino acids interfered with binding and cleavage of substrates offered in trans. These findings strongly suggest an intramolecular product inhibition for the NS2 autoprotease. Remarkably, the chaperone fragment Jiv90 independently interacted with protease and substrate domain and turned out to be essential for the formation of a protease/substrate complex that is required for cleavage. Thus, the function of the cell-derived protease cofactor Jiv in proteolysis is regulation of protease/substrate interaction, which ultimately results in positioning of active site and substrate peptide into a cleavage-competent conformation.  相似文献   

6.
Four classes of compounds have been demonstrated to be renin inhibitors of high potency: specific antibody, general peptide inhibitors of acid proteases, analogs of angiotensinogen and peptides that are related to the amino-terminal sequence of renin's precursor (Prorenin). With the purification of renin, specific polyclonal or monoclonal antibodies have become available. The former have already been used extensively in physiologic studies in intact animals. Pepstatin is an inhibitor of many acid proteases. Its in vivo application has been retarded by its relative insolubility, but recent chemical modifications, particularly the addition of charged amino acids at the carboxy-terminus have rendered it more useful. The minimal substrate for renin is an octapeptide segment of the protein substrate: His-Pro-Phe-His-Leu-Leu-Val-Tyr. Variants of this sequence have resulted in competitive inhibitors that are useful in vivo. Recently, remarkably active inhibitors have been synthesized by reducing the peptide bond that is cleaved by renin, producing what may be a transition state inhibitor. Several of these peptides have been shown to be effective as in vivo inhibitors of the hypertensive effect of the enzyme. The development of inhibitors based on Pro-renin sequences are awaited with interest.  相似文献   

7.
Standardized, comprehensive platforms for the discovery of protease substrates have been extremely difficult to create. Screens for protease specificity are now frequently based on the cleavage patterns of peptide substrates, which contain small recognition motifs that are required for the cleavage of the scissile bond within an active site. However, these studies do not identify in vivo substrates, nor can they lead to the definition of the macromolecular features that account for the biological specificity of proteases. To use properly folded proteins in a proteomic screen for protease substrates, we used 2D difference gel electrophoresis and tandem MS to identify substrates of an apoptosis-inducing protease, granzyme B. We confirmed the cleavage of procaspase-3, one of the key substrates of this enzyme, and identified several substrates that were previously unknown, as well as the cleavage site for one of these substrates. We were also able to observe the kinetics of substrate cleavage and cleavage product accumulation by using the 2D difference gel electrophoresis methodology. "Protease proteomics" may therefore represent an important tool for the discovery of the native substrates of a variety of proteases.  相似文献   

8.
9.
Most peptide hormones and growth factors are matured from larger inactive precursor proteins by proteolytic processing and further posttranslational modification. Whether or how posttranslational modifications contribute to peptide bioactivity is still largely unknown. We address this question here for TWS1 (Twisted Seed 1), a peptide regulator of embryonic cuticle formation in Arabidopsis thaliana. Using synthetic peptides encompassing the N- and C-terminal processing sites and the recombinant TWS1 precursor as substrates, we show that the precursor is cleaved by the subtilase SBT1.8 at both the N and the C termini of TWS1. Recognition and correct processing at the N-terminal site depended on sulfation of an adjacent tyrosine residue. Arginine 302 of SBT1.8 was found to be required for sulfotyrosine binding and for accurate processing of the TWS1 precursor. The data reveal a critical role for posttranslational modification, here tyrosine sulfation of a plant peptide hormone precursor, in mediating processing specificity and peptide maturation.  相似文献   

10.
Proteasomes are involved in the proteolytic generation of major histocompatibility complex (MHC) class I epitopes but their exact role has not been elucidated. We used highly purified murine 20S proteasomes for digestion of synthetic 22-mer and 41/44-mer ovalbumin partial sequences encompassing either an immunodominant or a marginally immunogenic epitope. At various times, digests were analyzed by pool sequencing and by semiquantitative electrospray ionization mass spectrometry. Most dual cleavage fragments derived from 22-mer peptides were 7-10 amino acids long, with octa- and nonamers predominating. Digestion of 41/44-mer peptides initially revealed major cleavage sites spaced by two size ranges, 8 or 9 amino acids and 14 or 15 amino acids, followed by further degradation of the latter as well as of larger single cleavage fragments. The final size distribution was slightly broader than that of fragments derived from 22-mer peptides. The majority of peptide bonds were cleaved, albeit with vastly different efficiencies. This resulted in multiple overlapping proteolytic fragments including a limited number of abundant peptides. The immunodominant epitope was generated abundantly whereas only small amounts of the marginally immunogenic epitope were detected. The frequency distributions of amino acids flanking proteasomal cleavage sites are correlated to that reported for corresponding positions of MHC class I binding peptides. The results suggest that proteasomal degradation products may include fragments with structural properties similar to MHC class I binding peptides. Proteasomes may thus be involved in the final stages of proteolytic epitope generation, often without the need for downstream proteolytic events.  相似文献   

11.
We recently reported that HIV-1 Vif (virion infectivity factor) inhibits HIV-1 protease in vitro and in bacteria, suggesting that it may serve as the basis for the design of new protease inhibitors and treatment for HIV-1 infection. To evaluate this possibility, we synthesized peptide derivatives from the region of Vif, which inhibits protease, and tested their activity on protease. In an assay of cleavage of virion-like particles composed of HIV-1 Gag precursor polyprotein, full-length recombinant Vif, and a peptide consisting of residues 21–65 of Vif, but not a control peptide or BSA, inhibited protease activity. Vif21–65 blocked protease at a molar ratio of two to one. We then tested this peptide and a smaller peptide, Vif41–65, for their effects on HIV-1 infection of peripheral blood lymphocytes. Both Vif peptides inhibited virus expression below the limit of detection, but control peptides had no effect. To investigate its site of action, Vif21–65 was tested for its effect on Gag cleavage by protease during HIV-1 infection. We found that commensurate with its reduction of virus expression, Vif21–65 inhibited the cleavage of the polyprotein p55 to mature p24. These results are similar to those obtained by using Ro 31–8959, a protease inhibitor in clinical use. We conclude that Vif-derived peptides inhibit protease during HIV-1 infection and may be useful for the development of new protease inhibitors.  相似文献   

12.
Posttranslational processing of progrowth hormone-releasing hormone   总被引:1,自引:0,他引:1  
The prepro-GH-releasing hormone (prepro-GHRH; 12.3 kDa) precursor, like other neuropeptide precursors, undergoes proteolytic cleavage to give rise to mature GHRH, which is the primary stimulatory regulator of pituitary GH secretion. In this study we present the first model of in vitro pro-GHRH processing. Using pulse-chase analysis, we demonstrate that at least five peptide forms in addition to GHRH are produced. The pro-GHRH (after removal of its signal peptide, 10.5 kDa) is first processed to an 8.8-kDa intermediate form that is cleaved to yield two products: the 5.2-kDa GHRH and GHRH-related peptide (GHRH-RP; 3.6 kDa). GHRH-RP is a recently described peptide derived from proteolytic processing of pro-GHRH that activates stem cell factor, a factor known to be essential for hemopoiesis, spermatogenesis, and melanocyte function. Further cleavage results in a 3.5-kDa GHRH and a 2.2-kDa product of GHRH-RP. Like GHRH, there is GHRH-RP immunostaining in hypothalamic neurons in the median eminence as detected by immunohistochemistry and immunoelectron microscopy. Based on deduced amino acid sequences of the pro-GHRH processing products, several peptides were synthesized and tested for their ability to stimulate the cAMP second messenger system. GHRH, GHRH-RP, and one of these peptides [prepro-GHRH-(75-92)-NH2] all significantly stimulated the PKA pathway. This work delineates a new model of pro-GHRH processing and demonstrates that novel peptides derived from this processing may have biological action.  相似文献   

13.
When isolated rat pars intermedia cells were incubated for 10 min with radioactive amino acids, one major labeled protein with a molecular weight of 30,000 +/- 1500 was extracted. This protein was shown to contain in its sequence the antigenic determinants for corticotropin and beta-melanotropin by immunoprecipitation. When the radioactivity incorporated into this large molecular weight protein during the first 10 min was chased by a further incubation in presence of an excess of unlabeled amino acid, the initial protein was degraded into several smaller peptides including beta-endorphin and beta-lipotropin. Another 18,000-dalton peptide was also observed and was tentatively identified as a large molecular form of corticotropin. From the kinetics of the maturation of the initial precursor, it is concluded that the initial cleavage of the 30,000-dalton peptide gives rise to beta-lipotropin and the 18,000-dalton form of corticotropin. beta-Lipotropin is subsequently cleaved to form beta-endorphin.  相似文献   

14.
Myristoyl CoA:protein N-myristoyltransferase (NMT) catalyzes the addition of myristic acid to the amino-terminal glycine residues of a number of eukaryotic proteins. Recently, we developed a cell-free system for analyzing NMT activity and have begun to characterize the substrate specificity of this enzyme by using a series of synthetic peptides. We have now purified NMT from Saccharomyces cerevisiae to apparent homogeneity. The native enzyme is a 55-kDa protein, exhibits no requirement for divalent cation, and appears to contain a histidine residue critical for enzyme activity. A total of 42 synthetic peptides have been used to define structure/activity relationships in NMT substrates. An amino-terminal glycine is required for acylation; substitution with glycine analogues produces peptides that are inactive as substrates or inhibitors of NMT. A broad spectrum of amino acids is permitted at positions 3 and 4, while strict amino acid requirements are exhibited at position 5. Replacement of Ala5 in the peptide Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg with Asp ablates the peptide's myristoyl-accepting activity. A serine at this position results in a decrease by a factor of approximately equal to 500 in the apparent Km in the context of three different sequences. Penta- and hexa-peptides are substrates, but with decreased affinity. These studies establish that structural information important for NMT-ligand interaction exists beyond the first two amino acids in peptide substrates and that the side chains of residue 5 play a critical role in the binding of substrates to this enzyme.  相似文献   

15.
A signal peptide (SP) is cleaved off from presecretory proteins by signal peptidase during or immediately after insertion into the membrane. In metazoan cells, the cleaved SP then receives proteolysis by signal peptide peptidase, an intramembrane-cleaving protease (I-CLiP). However, bacteria lack any signal peptide peptidase member I-CLiP, and little is known about the metabolic fate of bacterial SPs. Here we show that Escherichia coli RseP, an site-2 protease (S2P) family I-CLiP, introduces a cleavage into SPs after their signal peptidase-mediated liberation from preproteins. A Bacillus subtilis S2P protease, RasP, is also shown to be involved in SP cleavage. These results uncover a physiological role of bacterial S2P proteases and update the basic knowledge about the fate of signal peptides in bacterial cells.  相似文献   

16.
Numerous eukaryotic proteins containing a carboxyl-terminal CAAX motif (C, cysteine; A, aliphatic amino acid; X, any amino acid) require a three-step posttranslational processing for localization and function. The a mating factor of Saccharomyces cerevisiae is one such protein, requiring cysteine farnesylation, proteolysis of the terminal three amino acids, and carboxyl methylation for biological activity. We have used farnesylated a-factor peptides to examine the proteolytic step in the maturation of CAAX-containing proteins. Three distinct carboxyl-terminal protease activities were found in yeast cell extracts that could remove the terminal three residues of a-factor. Two of the proteolytic activities were in cytosolic fractions. One of these activities was a PEP4-dependent carboxypeptidase that was sensitive to phenylmethylsulfonyl fluoride. The other cytosolic activity was PEP4-independent, sensitive to 1,10-phenanthroline, and effectively inhibited by an unfarnesylated a-factor peptide. In contrast, a protease activity in membrane fractions was unaffected by phenylmethylsulfonyl fluoride, 1,10-phenanthroline, or unfarnesylated a-factor peptide. Incubation of membrane preparations from either yeast or rat liver with a radiolabeled farnesylated a-factor peptide released the terminal three amino acids intact as a tripeptide, indicating that this reaction occurred by an endoproteolytic mechanism and that the enzyme most likely possesses a broad substrate specificity. The yeast endoprotease was not significantly affected by a panel of protease inhibitors, suggesting that the enzyme is novel. Zinc ion was shown to inhibit the endoprotease (Ki less than 100 microM). The specific activities of the a-factor carboxyl-terminal membrane endoprotease and methyltransferase clearly indicated that the proteolytic reaction was not rate-limiting in these processing reactions in vitro.  相似文献   

17.
Cathelicidins are a family of antimicrobial proteins found in the peroxidase-negative granules of neutrophils. The known biologic functions reside in the C-terminus, which must be cleaved from the holoprotein to become active. Bovine and porcine cathelicidins are cleaved by elastase from the azurophil granules to yield the active antimicrobial peptides. The aim of this study was to identify the physiological setting for cleavage of the only human cathelicidin, hCAP-18, to liberate the antibacterial and cytotoxic peptide LL-37 and to identify the protease responsible for this cleavage. Immunoelectron microscopy demonstrated that both hCAP-18 and azurophil granule proteins were present in the phagolysosome. Immunoblotting revealed no detectable cleavage of hCAP-18 in cells after phagocytosis. In contrast, hCAP-18 was cleaved to generate LL-37 in exocytosed material. Of the 3 known serine proteases from azurophil granules, proteinase 3 was solely responsible for cleavage of hCAP-18 after exocytosis. This is the first detailed study describing the generation of a human antimicrobial peptide from a promicrobicidal protein, and it demonstrates that the generation of active antimicrobial peptides from common proproteins occurs differently in related species. (Blood. 2001;97:3951-3959)  相似文献   

18.
The biochemical flexibility of the cellular translation apparatus offers, in principle, a simple route to the synthesis of drug-like modified peptides and novel biopolymers. However, only approximately 75 unnatural building blocks are known to be fully compatible with enzymatic tRNA acylation and subsequent ribosomal synthesis of modified peptides. Although the translation system can reject substrate analogs at several steps along the pathway to peptide synthesis, much of the specificity resides at the level of the aminoacyl-tRNA synthetase (AARS) enzymes that are responsible for charging tRNAs with amino acids. We have developed an AARS assay based on mass spectrometry that can be used to rapidly identify unnatural monomers that can be enzymatically charged onto tRNA. By using this assay, we have found 59 previously unknown AARS substrates. These include numerous side-chain analogs with useful functional properties. Remarkably, many beta-amino acids, N-methyl amino acids, and alpha,alpha-disubstituted amino acids are also AARS substrates. These previously unidentified AARS substrates will be useful in studies of the specificity of subsequent steps in translation and may significantly expand the number of analogs that can be used for the ribosomal synthesis of modified peptides.  相似文献   

19.
Objective:To find potential peptide inhibitors against the NS2B/NS3 protease of DENV which in turn,can inhibit the viral replication inside host cell.Methods:Cyclic peptides were designed having combination of positively charged amino acids using ChemSketch software and were converted to 3D structures.DENV NS3 protein structure was retrieved from Protein Data Bank(PDB)using PDB Id:2FOM.DENV NS3 and cylic peptides were docked using MOE software after structural optimization.Results:Through molecular docking it was revealed that most of the peptides bound deeply in the binding pocket of DENV NS2B/NS3 protease an had interactions with catalytic triad.Peptide 2 successfully blocked the catalytic triad of NS2B/NS3 protease.Peptide 1,,4 and 6 also had potential interactions with active residues of the NS2B/NS3 protease while all other peptides were in close contact with the active sites of NS2B/NS3 protease thus,these peptides can serve as a potential drug candidate to stop viral replication.Conclusions:Thus.it can be concluded from the study that these peptides could serve as important inhibitors to inhibit the viral replication and need further in-vitro investigations to confirm their efficacy.  相似文献   

20.
The principal component of amyloid plaques in Alzheimer disease is beta-amyloid protein, an approximately 4-kDa peptide derived from amyloid precursor proteins. Previous studies have established that amyloid precursor proteins are secreted after proteolytic cleavage within the beta-amyloid peptide. The present investigation documents that, in cultured cells, amyloid precursor protein is cleaved on the plasma membrane by a membrane-bound endoprotease and that the specificity of peptide bond hydrolysis is largely independent of the primary sequence of the precursor. The principal determinants of cleavage appear to be an alpha-helical conformation and the distance (12-13 residues) of the hydrolyzed bond from membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号