首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
We investigated the intrinsic transport activity of mouse and monkey Mrp2 and compared it with that of rat and dog Mrp2 reported previously. Mrp2 cDNAs were isolated from BALB/c and Macaca fascicularis liver, respectively, and vesicle transport studies were performed using recombinant Mrp2s expressed in insect Sf9 cells. ATP-dependent transport of [3H]leukotriene C4 (LTC4), [3H]17beta-estradiol 17-(beta-D-glucuronide) (E217betaG), [3H]bromosulfophthalein (BSP), and [3H]cholecystokinin octapeptide (CCK-8) were readily detected for all Mrp2s. A species difference in the intrinsic transport activity was apparent for LTC4 (monkey > mouse, dog > rat) and BSP (rat, dog, monkey > mouse). In addition to the difference in the transport activity, complex kinetic profiles were also evident in CCK-8, where a cooperative transport site was observed. Moreover, the transport of [3H]E217betaG by mouse and monkey Mrp2 was quite different from that of rat and dog Mrp2 in that 1) there was practically only nonsaturable uptake for [3H]E217betaG and 2) 4-methylumbelliferon glucuronide (Mrp2 modulator) showed a concentration-dependent stimulatory effect on the transport of [3H]E217betaG in mouse and monkey Mrp2, whereas rat and dog transport activity was inhibited by the modulator. In conclusion, although the substrate specificity is similar, the intrinsic transport activity differs from one species to another. This is due not only to the difference in the Km and Vmax values, but also the qualitatively different mode of substrate and modulator recognition exhibited by different species.  相似文献   

2.
Multidrug resistance-associated protein 2 (MRP2) transports glutathione conjugates, glucuronide conjugates, and sulfated conjugates of bile acids. In the present study, we examined the role of charged amino acids in the transmembrane domains of rat Mrp2, conserved among MRP families, using the isolated membrane vesicles from Sf9 cells infected with the recombinant baculoviruses. By normalizing the transport activity for compounds by that for estradiol 17beta-D-glucuronide (E(2)17betaG), it was indicated that the site-directed mutagenesis from Lys to Met at 325 (K325M) and from Arg to Leu at 586 (R586L) results in a marked reduction in the transport for glutathione conjugates [2,4-dinitrophenyl-S-glutathione (DNP-SG) and leukotriene (LT) C(4)] without affecting that for 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridymethyl) benzothiazole glucuronide and taurolithocholate sulfate. In contrast to the reduced affinity for DNP-SG, the affinity for E(2)17betaG was increased severalfold in these mutant Mrp2s, suggesting the amino acids at 325 and 586 play an important role in distinguishing between glutathione and glucuronide conjugates. The comparable affinity for LTD(4), LTE(4), and LTF(4) in these mutant Mrp2s with that in wild-type Mrp2 indicates that recognition of LTC(4) metabolites by Mrp2 is different from that of LTC(4). The transport activity for glutathione conjugate was retained on R586K, whereas no such complementary cationic amino acid effect was observed in K325R. In addition, R1206M and E1208Q exhibited the loss of transport activity for the tested compounds. The results of the present study demonstrate that the charged amino acids in the transmembrane domain of rat Mrp2 may play an important role in the recognition and/or transport of its substrates.  相似文献   

3.
Moxifloxacin is a novel antibacterial agent that undergoes extensive metabolism in the liver to the glucuronide M1 and the sulfate M2, which are eliminated via the bile. To investigate the role of the multidrug resistance-associated protein (Mrp2) as the hepatic transport system for moxifloxacin and its conjugates, livers of Wistar and Mrp2-deficient TR- rats were perfused with moxifloxacin (10 microM) in a single-pass system. Values for the hepatic extraction ratio (E) and clearance (Cl) were insignificantly higher in TR- rats than Wistar rats (0.193+/-0.050 vs 0.245+/-0.050 for E; 6.85+/-1.96 vs 8.73+/-1.82 mL min(-1) for Cl), whereas biliary excretion and efflux into perfusate over 60 min were significantly lower in the mutant rat strain. Cumulative biliary excretion of M1, M2 and moxifloxacin was significantly reduced to 0.027%, 19.1%, and 29.6% in the TR- rats compared with Wistar rats, indicating that the biliary elimination of M1 is mediated exclusively by Mrp2, whereas that of M2 and moxifloxacin seems to depend mostly on Mrp2 and, to a smaller extent, a further unidentified canalicular transporter. Moxifloxacin stimulates bile flow by up to 11% in Wistar rats, but not in TR- rats, further supporting an efficient transport of this drug and its glucuronidated and sulfated metabolites by Mrp2. Moxifloxacin (10 microM) also reversibly inhibited the Mrp2-mediated biliary elimination of bromsulphthalein in Wistar rats by 34%, indicating competition with the elimination of Mrp2-specific substrates. In conclusion, we found that Mrp2 mediates the biliary elimination of moxifloxacin and its glucuronidated and sulfated metabolites in rats. MRP2 may therefore play a key role in the transport of moxifloxacin and its conjugates into bile in humans.  相似文献   

4.
Canalicular multidrug resistance-associated protein 2 (Mrp2) and basolateral Mrp3 mediate the excretion of organic anions, including conjugated and unconjugated xenobiotics and bile acids, from the liver. The utility of RNA interference to specifically knock down the expression and function of transport proteins was demonstrated in sandwich-cultured rat hepatocytes, which exhibit functional and properly localized Mrp2 and Mrp3 over time in culture. Specific knockdown of Mrp2 (approximately 50% decrease in expression) resulted in an approximately 45% decrease in the biliary excretion index of carboxydichlorofluorescein (CDF) (9.3% versus 16.5%), but did not affect Mrp3 or radixin expression. Specific Mrp3 knockdown (approximately 50% decrease in expression) resulted in significantly higher accumulation of CDF in cells + bile canaliculi (32.3 +/- 2.5 versus 24.4 +/- 4.3 pmol/mg of protein/10 min), but no change in cellular accumulation (13.7 +/- 2.2 versus 15.6 +/- 4.0 pmol/mg of protein/10 min), consistent with an approximately 60% increase in the biliary excretion index of carboxydichlorofluorescein. The extent of protein knockdown was in good agreement with changes in carboxydichlorofluorescein disposition. In conclusion, modulation of drug transporters in sandwich-cultured rat hepatocytes by small interfering RNA treatment is a feasible in vitro approach to study the expression and function of drug transport proteins.  相似文献   

5.
Phenolsulfonphthalein (PSP) has been selected as a model drug that is eliminated from both the kidney and liver in rats. Although the renal PSP transport system has been studied, few details of the biliary excretion of PSP have been reported. We investigated the biliary excretion system for PSP in rats. It has been reported that the biliary excretion of many organic anions from hepatocytes into bile is mediated by a primary active transporter, referred to as multidrug resistance-associated protein 2 (Mrp2/abcc2). The biliary excretion of PSP in SD rats was significantly decreased in the presence of Mrp2 inhibitors. The biliary excretion of PSP in Eisai hyperbilirubinemic rats (EHBR), hereditarily Mrp2-defective rats, was significantly lower than that in SD rats. Moreover, an efflux experiment using Caco-2 cells was carried out to confirm Mrp2-mediated PSP transport. Mrp2 inhibitors significantly decreased PSP efflux from Caco-2 cells. These results suggest that Mrp2 contributes to the biliary excretion of PSP in SD rats.  相似文献   

6.
Emerging evidence suggests that feeding a high-fat diet (HFD) to rodents affects the expression of genes involved in drug transport. However, gender-specific effects of HFD on drug transport are not known. The multidrug resistance-associated protein 2 (Mrp2, Abcc2) is a transporter highly expressed in the hepatocyte canalicular membrane and is important for biliary excretion of glutathione-conjugated chemicals. The current study showed that hepatic Mrp2 expression was reduced by HFD feeding only in female, but not male, C57BL/6J mice. In order to determine whether down-regulation of Mrp2 in female mice altered chemical disposition and toxicity, the biliary excretion and hepatotoxicity of the Mrp2 substrate, α-naphthylisothiocyanate (ANIT), were assessed in male and female mice fed control diet or HFD for 4 weeks. ANIT-induced biliary injury is a commonly used model of experimental cholestasis and has been shown to be dependent upon Mrp2-mediated efflux of an ANIT glutathione conjugate that selectively injures biliary epithelial cells. Interestingly, HFD feeding significantly reduced early-phase biliary ANIT excretion in female mice and largely protected against ANIT-induced liver injury. In summary, the current study showed that, at least in mice, HFD feeding can differentially regulate Mrp2 expression and function and depending upon the chemical exposure may enhance or reduce susceptibility to toxicity. Taken together, these data provide a novel interaction between diet and gender in regulating hepatobiliary excretion and susceptibility to injury.  相似文献   

7.
8.
The purpose of this study was to examine the role of multidrug resistance-associated protein-1 and -2 (Mrp1 and Mrp2) in the efflux transport of organic anions across the blood-cerebrospinal fluid (CSF) barrier. The CSF concentration of estradiol-17beta-glucuronide (E(2)17betaG) and 2,4-dinitrophenyl-S-glutathione (DNP-SG) in the CSF after intracerebroventricular and intravenous injection were compared between wild-type and Mrp1 gene knockout mice. There was no significant difference in the apparent CSF elimination rate constants of E(2)17betaG (0.158 and 0.145 min(-1)) and DNP-SG (0.116 and 0.0779 min(-1)) between wild-type and Mrp1 knockout mice, respectively. After intravenous administration of E(2)17betaG, its brain-to-serum and CSF-to-serum concentration ratios in Mrp1 knockout mice were not significantly different from those in the wild-type. Results from in vivo and in vitro studies using Eisai hyperbilirubinemic rats, in which Mrp2 is hereditarily deficient, were similar to those using normal rats. Quantitative polymerase chain reaction (PCR) showed that the expression level of Mrp4 and Mrp5 was several times higher than that of Mrp1, whereas the expression levels of Mrp2, Mrp3, and Mrp6 were negligible or low. Therefore, Mrp4 and Mrp5 may contribute to the efflux transport of E(2)17betaG and DNP-SG from the CSF.  相似文献   

9.
Phenobarbital (PB) treatment impairs the biliary excretion of some organic anions. One mechanism may involve direct competition for biliary excretion by PB and/or a PB metabolite. Alternatively, PB may alter the expression and/or function of hepatic organic anion transport proteins. The role of multidrug resistance-associated protein 2 (Mrp2) in the biliary excretion of PB and metabolites was studied using isolated perfused livers (IPLs) from Wistar and Mrp2-deficient TR- rats. In normal livers, 4.19 +/- 0.53% of the PB dose was recovered in bile as PB metabolites [2.21 +/- 0.69% as 5-ethyl-5-(4-OH phenyl) barbituric acid (PBOH)-glucuronide; 1.98 +/- 0.09% as PBOH-sulfate]. In TR- livers, only PBOH-sulfate was recovered in bile (0.35 +/- 0.16% of dose) during the 2-h perfusion. Mrp2 message was increased (2.3-fold) by PB pretreatment (80 mg/kg i.p. x 4 days) but decreased to control values after a 48-h washout. Mrp2 protein was increased slightly in PB-treated livers and remained slightly elevated after a 24-h washout, but it was decreased significantly to 62 +/-7% of control values after a 48-h washout. The 120-min cumulative biliary excretion of the Mrp2 substrate 5-(and-6)-carboxy-2', 7'-dichlorofluorescein in IPLs from PB-treated rats after a 48-h washout was significantly lower than in vehicle-treated livers (66.3 +/- 9.2% versus 83.4 +/- 2.4% of the dose, respectively). These data support two mechanisms for impaired biliary excretion of some organic anions by PB treatment: 1) PBOH-glucuronide is a substrate for Mrp2 and may compete with other organic anions for biliary excretion and 2) Mrp2 protein expression and functional capacity is decreased 48 h after PB treatment.  相似文献   

10.
Human multidrug resistance protein 7 (MRP7, ABCC10) is a recently described member of the C family of ATP binding cassette proteins (Cancer Lett 162:181-191, 2001). However, neither its biochemical activity nor physiological functions have been determined. Here we report the results of investigations of the in vitro transport properties of MRP7 using membrane vesicles prepared from human embryonic kidney 293 cells transfected with MRP7 expression vector. It is shown that expression of MRP7 is specifically associated with the MgATP-dependent transport of 17beta-estradiol-(17-beta-D-glucuronide) (E(2)17betaG). E(2)17betaG transport was saturable, with K(m) and V(max) values of 57.8 +/- 15 microM and 53.1 +/- 20 pmol/mg/min. By contrast, with E(2)17betaG, only modest enhancement of LTC(4) transport was observed and transport of several other established substrates of MRP family transporters was not detectable to any extent. In accord with the notion that MRP7 has a bipartite substrate binding pocket composed of sites for anionic and lipophilic moieties, transport of E(2)17betaG was susceptible to competitive inhibition by both amphiphiles, such as leukotriene C(4) (K(i(app)), 1.5 microM), glycolithocholate 3-sulfate (K(i(app)), 34.2 microM) and MK571 (K(i(app)), 28.5 microM), and lipophilic agents such as cyclosporine A (K(i(app)), 14.4 microM). Of the inhibitors tested, LTC(4) was the most potent, in agreement with the possibility that it is a substrate of the pump. The determination that MRP7 has the facility for mediating the transport of conjugates such as E(2)17betaG indicates that it is a lipophilic anion transporter involved in phase III (cellular extrusion) of detoxification.  相似文献   

11.
Hyperbilirubinemia is a frequent side effect induced by long-term therapy with the antibiotic fusidate. The aim of this study was to elucidate the molecular mechanisms of fusidate-induced hyperbilirubinemia by investigating its influence on hepatic transport systems in the canalicular membrane. Using canalicular membrane vesicles from rat liver, we determined the effect of fusidate on the adenosine 5'-triphosphate (ATP)-dependent transport of substrates of the apical conjugate export pump, multi-drug resistance protein 2 (Mrp2, symbol Abcc2) and the bile salt export pump (Bsep, symbol Abcb11). Fusidate inhibited the ATP-dependent transport of the Mrp2 substrates 17beta-glucuronosyl estradiol and leukotriene C4, and the transport of cholyltaurine by Bsep with Ki values of 2.2+/-0.3, 7.6+/-1.3, and 5.5+/-0.8 microM, respectively. To elucidate the in vivo implication of these findings, the effect of fusidate treatment on the elimination of intravenously administered tracer doses of 17beta-glucuronosyl estradiol and cholyltaurine into bile was studied in rats. Treatment with fusidate (100 micromol/kg body weight) reduced the biliary excretion rate of 17beta-glucuronosyl [3H]estradiol and [3H]cholyltaurine by 75 and 80%, respectively. Extended treatment of rats with fusidate (100 micromol/kg body weight, three times daily i.p. for 3 days) reduced hepatic Mrp2 protein levels by 61% (P<0.001). Our data suggest that there are at least two different mechanisms involved in the impairment of transport processes and hepatobiliary elimination by fusidate, direct inhibition of transport of Mrp2 and Bsep substrates by competitive interaction and impairment by a decreased level of hepatic Mrp2.  相似文献   

12.
Multidrug resistance-associated proteins (Mrps) are a group of ATP-dependent efflux transporters for organic anions. Mrp2 and Mrp4 are co-localized to the apical (brush-border) membrane domain of renal proximal tubules, where they may function together in the urinary excretion of organic anions. Previous reports showed that urinary excretion of some organic anions is not impaired in transport-deficient (TR-) rats, which lack Mrp2, suggesting that up-regulation of other transporter(s) may compensate for the loss of Mrp2 function. The purpose of this study was to determine whether Mrp4 expression in kidney is altered in TR- rats. Mrp4 mRNA expression was quantified using the high-throughput branched DNA signal amplification assay. Mrp4 protein expression was determined by Western blot and immunohistochemical analysis. Mrp4 mRNA in kidney of TR- rats was 100% higher than normal Wistar rats. Western blot analysis showed a 200% increase in Mrp4 protein expression in kidney of the mutant rats compared to normal rats. Immunohistochemical analysis of Mrp4 protein demonstrated apical localization of Mrp4 on renal proximal tubules, and that the immunoreactivity was more intense in kidney sections from TR- rats than those from normal rats. In summary, the results of the present study demonstrate that renal Mrp4 expression is up-regulated in TR- rats, which may explain why urinary excretion of some organic anions remains normal in the mutant rats.  相似文献   

13.
The ability of the liver and small intestine for secretion of dinitrophenyl-S-glutathione (DNP-SG), a substrate for multidrug resistance-associated protein 2 (Mrp2), into bile and lumen, respectively, as well as expression of Mrp2 in both tissues, were assessed in 70-75% hepatectomized rats. An in vivo perfused intestinal model was used. A single i.v. dose of 30 micromol/kg b.w. of 1-chloro-2,4-dinitrobenzene (CDNB) was administered and its glutathione conjugate, DNP-SG, was determined by HPLC in bile and intestinal perfusate. One and seven days after hepatectomy, biliary excretion of DNP-SG was decreased by 90 and 50% with respect to shams, respectively, when expressed per mass unit. In contrast, intestinal excretion was increased by 63% or unchanged one and seven days post-hepatectomy, respectively. Tissue content of DNP-SG 5 min after CDNB administration was substantially decreased in liver and significantly increased in intestine, one day post-hepatectomy. Western and immunofluorescence studies revealed preserved levels and localization of Mrp2 in both tissues from hepatectomized animals, irrespective of the time analyzed. In spite of preserved expression of Mrp2, the higher availability of DNP-SG in intestinal cells, likely as a consequence of increased glutathione-S-transferase-mediated conjugation of CDNB, may explain the in vivo findings. Further experiments in isolated hepatocytes suggested that decreased synthesis of DNP-SG rather than altered canalicular transport is responsible for the substantial impairment in excretion of this compound into bile. Taken together, these results indicate that the intestine may partially compensate for liver DNP-SG disposition, particularly shortly after surgery, while liver capability is recovering.  相似文献   

14.
Previous reports have demonstrated that sulfate metabolites may be excreted into bile by the multidrug resistance-associated protein 2 (Mrp2, Abcc2). Although recombinant human breast cancer resistance protein (BCRP, ABCG2) has affinity for sulfated xenobiotics and endobiotics, its relative importance in biliary excretion of sulfate metabolites in the intact liver is unknown. In the present studies, the potential contribution of Bcrp1 to the biliary excretion of acetaminophen sulfate (AS) was examined following acetaminophen administration (66 micromol, bolus) to isolated perfused livers (IPLs) from wild-type Wistar and Mrp2-deficient (TR(-)) Wistar rats in the presence or absence of the Bcrp1 and P-glycoprotein inhibitor, GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide]. Recovery of AS in bile of TR(-) rat livers was approximately 5-fold lower relative to wild-type controls (0.3 +/- 0.1 versus 1.5 +/- 0.3 micromol). In the presence of GF120918, biliary excretion of AS was decreased approximately 2-fold in both TR(-) (0.16 +/- 0.09 micromol) and wild-type (0.8 +/- 0.3 micromol) rat IPLs. These changes were primarily due to alterations in the rate constant governing biliary excretion of AS, which was decreased approximately 90% in TR(-) relative to wild-type rat IPLs (0.02 +/- 0.01 versus 0.2 +/- 0.1 h(-1)) and was further decreased in the presence of GF120918 (0.010 +/- 0.003 and 0.12 +/- 0.05 h(-1); TR(-) and wild-type, respectively). In vitro assays indicated that impaired AS biliary excretion in the presence of GF120918 was due to inhibition of Bcrp1, and not P-glycoprotein. In conclusion, Mrp2 and, to a lesser extent, Bcrp1 mediate biliary excretion of AS in the intact liver.  相似文献   

15.
We evaluated the effect of acetaminophen (APAP), given as a single, 1g/kg body weight dose, on expression and activity of rat liver multidrug resistance-associated protein 2 (Mrp2) and P-glycoprotein (P-gp), two major canalicular drug transporters. The studies were performed 24h after administration of the drug. APAP induced an increase in plasma membrane content of Mrp2 detected by western blotting, consistent with increased detection of the protein at the canalicular level by immunoflourescence microscopy. In vivo biliary excretion of dinitrophenyl-S-glutathione, a well known Mrp2 substrate, was slightly but significantly increased by APAP, agreeing well with upregulation of the transporter. Basal biliary excretion of oxidized glutathione, an endogenous Mrp2 substrate, was also increased by APAP, likely indicating increased hepatic synthesis as a result of APAP-induced oxidative stress followed by accelerated canalicular secretion mediated by Mrp2. APAP also increased the expression of P-gp detected by western blotting and immunofluorescence microscopy as well as the in vivo biliary secretory rate of digoxin, a model P-gp substrate. Because specific APAP-conjugated metabolites are Mrp2 substrates, we postulate that induction of Mrp2 by APAP may represent an adaptive mechanism to accelerate liver disposition of the drug. In addition, increased Mrp2-mediated elimination of oxidized glutathione may be essential in maintaining the redox equilibrium in the hepatocyte under conditions of APAP-induced oxidative stress.  相似文献   

16.
Abstract

1.?Raloxifene-6-glucuronide (R6G) is a substrate of rat multidrug resistance-associated protein 2 (Mrp2), a transporter responsible for biliary excretion of organic anions.

2.?Pharmacokinetic modeling of R6G in Eisai hyperbilirubinemic rats (EHBRs), hereditary Mrp2-deficient rats, and wild-type Sprague–Dawley rats (SDRs) indicated that reduction in not only biliary excretion but also hepatic uptake of R6G influenced low clearance in EHBRs.

3.?An integration plot study demonstrated that the hepatic uptake of R6G was 66% lower in EHBRs than that in SDRs. A reduction was observed for the other Mrp2 substrate Valsartan (95% lower) but not for estradiol-17β-glucuronide (E217βG). This variation may be associated with the difference in substrate specificity of transporters and/or inhibition of hepatic uptake of organic anions by endogenous substances such as bilirubin glucuronides.

4.?In conclusion, incidental alteration of the hepatic uptake of organic anions should be considered as an explanation of their enhanced systemic exposure in EHBRs.  相似文献   

17.
The influence of CCl(4)-induced experimental hepatic injury (CCl(4)-EHI) on the expression and transport activities of primary active transporters on the canalicular membrane, including P-glycoprotein (P-gp), a bile salt export pump (Bsep) and a multidrug resistance associated protein2 (Mrp2), was assessed. CCl(4)-EHI was induced by an intraperitoneal injection of CCl(4) to rats at a dose of 1 ml/kg 24 h prior to the preparation of canalicular liver plasma membrane (cLPM) vesicles and pharmacokinetic studies. The expression of each transporter was measured for the vesicles via Western blot analysis at 6, 12, 24, 36, and 48 h after the injection of CCl(4). The in vivo canalicular excretion clearance (CL(exc)) of [(3)H]daunomycin, [(3)H]taurocholate and [(3)H]17beta-estradiol-17beta-D-glucuronide (E(2)17betaG), representative substrates of P-gp, Bsep, and Mrp2, respectively, was determined following an i.v. infusion to rats. The uptake of each substrate into cLPM vesicles in the presence of ATP was also measured by a rapid filtration technique. As the result of the CCl(4)-EHI, the protein level of transporters was altered as a function of time in multiple manners; it was increased by 3.6-fold for P-gp, unchanged for Bsep, and decreased by 73% for Mrp2 at 24 h. The in vivo CL(exc) and the intrinsic uptake clearance into cLPM vesicles (CL(int)) at 24 h after the CCl(4) injection (CCl(4)-EHI(24 h)) were also influenced by the EHI in a similar manner; they were increased by 1.8- and 1.9-fold for daunomycin, unchanged for taurocholate, and decreased by 41 and 39% for E(2)17betaG, respectively, consistent with multiple alterations in the expression of the relevant transporters.  相似文献   

18.
The multidrug resistance-associated protein (MRP) family plays a major role in the hepatic excretion of organic anions. The expression, localization, and function of Mrp2 (Abcc2), a canalicular multispecific organic anion transport protein, were studied in sandwich-cultured rat hepatocytes. The amount of Mrp2 protein remained constant in sandwich-cultured rat hepatocytes over 4 days in culture, but the molecular mass increased approximately 10 kDa from 190 to 200 kDa. Mrp2 was internalized initially after hepatocyte isolation and was gradually sorted to the canalicular membrane. Disposition of 5-(6)-carboxy-2',7'-dichlorofluorescein (CDF), an Mrp2 substrate, confirmed the changes in Mrp2 localization. CDF was localized predominantly inside hepatocytes at day 0 and gradually localized to the canalicular domain over time in culture. By day 4 in culture, CDF was localized exclusively in the canalicular networks. Tunicamycin, an inhibitor of glycosylation, decreased the molecular mass and simultaneously impaired the trafficking of Mrp2 to the canalicular membrane. Treatment of lysates from both day 0 (Mrp2, 190 kDa) and day 4 (Mrp2, 200 kDa) sandwich-cultured rat hepatocytes with peptide N-glycosidase F, a deglycosylation agent, resulted in a band of 180 kDa, suggesting that Mrp2 from both day 0 and day 4 was glycosylated, but Mrp2 on day 4 was more glycosylated than on day 0. In conclusion, these data support the hypothesis that glycosylation of Mrp2 is responsible for the increase in molecular mass and may be involved in directing the canalicular localization of Mrp2 in sandwich-cultured rat hepatocytes over days in culture.  相似文献   

19.
20.
Mrp2-related efflux of scutellarin in the intestinal absorption in rats   总被引:2,自引:0,他引:2  
Cao F  Zhang H  Guo J  Ping Q 《Die Pharmazie》2008,63(1):75-80
This study was conducted to investigate the role of P-glycoprotein (P-gp) and Multidrug resistance-associated protein 2(Mrp2) in the rat intestinal absorption of scutellarin and explore the possible reasons for its low oral bioavailability. Verapamil had little effect on the transport amount of scutellarin shown by in vitro everted sac experiments and the apparent permeability of the drug demonstrated by in situ single-pass intestinal perfusion experiments (SPIP). Leukotriene C4 (LTC4) added to the mucosal side significantly enhanced the transport of scutellarin to the serosal side. The Papp value of scutellarin increased gradually on raising the L-Buthionine-[S,R]-sulfoximine (BSO) concentration to 0.5 mM in the perfusion solution (P < 0.05). When probenecid (1 mM) was coperfused, a 1.34-fold increase in the Papp was observed (P < 0.05). Coperfusion of 0.5 mM BSO and 1 mM probenecid with 4.33 microM scutellarin, the Papp is 2.24 times than that of the control rats (p < 0.01). As shown by in silico experiments the spatial structure of scutellarin was in good agreement with the pharmacophore of Mrp2. The efflux of Mrp2, not P-gp, in the intestinal of the rats may be one of the reasons that lead to the low oral bioavailability of scutellarin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号