首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abundant vasculature with increased permeability is a prominent histological feature of Kaposi's sarcoma (KS), a multifocal, cytokine-regulated tumor. Here we report on the role of vascular endothelial growth factor (VEGF) in AIDS-KS angiogenesis and vascular permeability. We demonstrate that different cytokines, which were previously shown to be active in KS development, modulate VEGF expression in KS spindle cells and cooperate with VEGF on the functional level. Northern blot analysis as well as studies on single cells using in situ hybridization revealed that VEGF expression in cultivated AIDS-KS spindle cells is up-regulated by platelet-derived growth factor-B and interleukin-1 beta. Western blot and enzyme-linked immunosorbent assay analysis of cell culture supernatants demonstrated that the VEGF protein is secreted by stimulated AIDS-KS spindle cells in sufficiently high amounts to activate proliferation of human dermal microvascular endothelial cells. Basic fibroblast growth factor did not increase VEGF expression but acted synergistically with VEGF in the induction of angiogenic KS-like lesions in a mouse model in vivo. Angiogenesis and cellularity of KS-like lesions were clearly increased when both factors were injected simultaneously into the flanks of mice, compared with separate injection of each factor. A comparable angiogenic reaction as obtained by simultaneous injection of basic fibroblast growth factor and VEGF was observed when cell culture supernatants of AIDS-KS spindle cells were used for these experiments. Finally, analysis of primary human AIDS-KS lesions revealed that high amounts of VEGF mRNA and protein were present in KS spindle cells in vivo. These data provide evidence that VEGF, in concert with platelet-derived growth factor-B, interleukin-1 beta, and basic fibroblast growth factor, is a key mediator of angiogenesis and vascular permeability in KS lesions in vivo.  相似文献   

2.
Vascular endothelial growth factor and endometriotic angiogenesis   总被引:55,自引:0,他引:55  
Peritoneal endometriosis is a significant debilitating gynaecological problem of widespread prevalence. It is now generally accepted that the pathogenesis of peritoneal endometriosis involves the implantation of exfoliated endometrium. Essential for its survival is the generation and maintenance of an extensive blood supply both within and surrounding the ectopic tissue. The vascular endothelial growth factor (VEGF) family of angiogenic molecules is involved in both physiological angiogenesis, and a number of pathological conditions that are characterized by excessive angiogenesis. Increasing evidence suggests that the VEGF family may also be involved with both the aetiology and maintenance of peritoneal endometriosis. Sources of this factor include the eutopic endometrium, ectopic endometriotic tissue and peritoneal fluid macrophages. Important to its aetiology is the correct peritoneal environment in which the exfoliated endometrium is seeded and implants. Established ectopic tissue is then dependent on the peritoneal environment for its survival, an environment that supports angiogenesis. Our increasing knowledge of the involvement of the VEGF family in endometriotic angiogenesis raises the possibility of novel approaches to its medical management, with particular focus on the anti-angiogenic control of the action of VEGF.  相似文献   

3.
Glomeruloid bodies are a defining histological feature of glioblastoma multiforme and some other tumors and vascular malformations. Little is known about their pathogenesis. We injected a nonreplicating adenoviral vector engineered to express vascular permeability factor/vascular endothelial growth factor-164 (VPF/VEGF(164)) into the ears of athymic mice. This vector infected local cells that strongly expressed VPF/VEGF(164) mRNA for 10 to 14 days, after which expression gradually declined. Locally expressed VPF/VEGF(164) induced an early increase in microvascular permeability, leading within 24 hours to edema and deposition of extravascular fibrin; in addition, many pre-existing microvessels enlarged to form thin-walled, pericyte-poor, "mother" vessels. Glomeruloid body precursors were first detected at 3 days as focal accumulations of rapidly proliferating cells in the endothelial lining of mother vessels, immediately adjacent to cells expressing VPF/VEGF(164). Initially, glomeruloid bodies were comprised of endothelial cells but subsequently pericytes and macrophages also participated. As they enlarged by endothelial cell and pericyte proliferation, glomeruloid bodies severely compromised mother vessel lumens and blood flow. Subsequently, as VPF/VEGF(164) expression declined, glomeruloid bodies devolved throughout a period of weeks by apoptosis and reorganization into normal-appearing microvessels. These results provide the first animal model for inducing glomeruloid bodies and indicate that VPF/VEGF(164) is sufficient for their induction and necessary for their maintenance.  相似文献   

4.
We hypothesized that respiratory syncytial virus (RSV)-induced pathologies could be mediated, in part, by vascular active cytokines elaborated during virus infection. To address this hypothesis, we determined whether RSV stimulated vascular endothelial cell growth factor (VEGF)/vascular permeability factor (VPF) elaboration in vitro. Supernatants from unstimulated A549 cells and normal human bronchial epithelial cells contained modest levels of VEGF. In contrast, supernatants from RSV-infected cells contained elevated levels of VEGF/VPF. This stimulation was seen after as little as 2 h, was still prominent after 48 h, and, by immunoblot, was specific for the 165- and 121-amino acid isoforms of VEGF/VPF. It was not associated with significant cell cytotoxicity or alterations in VEGF messenger RNA. It did, however, require new protein biosynthesis. In accordance with these findings, the 165- and 121-amino acid isoforms of VEGF/VPF were also found in the nasal washings from patients with RSV infections. These studies demonstrate that RSV is a potent stimulator of VEGF/VPF elaboration and that, in vitro, this stimulation is mediated via a noncytotoxic translational and/or post-translational biosynthetic mechanism. VEGF/VPF may play an important role in the pathogenesis of RSV-induced disorders.  相似文献   

5.
Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) is an endothelial-cell-specific mitogen; as such, its role in angiogenesis has been studied extensively. VEGF/VPF may also serve as a local, endogenous regulator of large-vessel endothelial cell integrity. Surprisingly, however, VEGF/VPF expression in normal and/or atherosclerotic vessels has not been previously characterized. Accordingly, we studied normal human arteries and veins as well as atherosclerotic and restenotic human coronary arteries for evidence of VEGF/VPF expression. VEGF/VPF was detected immunohistochemically in sections of normal human aorta, mammary artery, and saphenous vein. Moreover, VEGF/ VPF expression was identified in 32 (97%) of 33 pathological coronary arterial specimens; the extent of VEGF/VPF staining was graded as moderate to strong in 21 of the 32 (66%) positive specimens. VEGF/VPF double immunostaining and in situ hybridization demonstrated that smooth muscle cells constitute the principal cellular source of VEGF/VPF. VEGF/VPF immunostaining among primary atherosclerotic lesions localized predominantly to the extracellular matrix. In restenotic specimens, VEGF/VPF immunostaining was more prominently cellular, particularly among proliferating smooth muscle cells. Although VEGF/VPF expression was observed in areas of macrophage infiltration, double immunostaining failed to localize VEGF/VPF to macrophages in these foci; instead, double immunostaining clearly identified CD45RO-positive cells as responsible for VEGF/VPF expression in such areas. No correlation could be demonstrated between VEGF/VPF immunostaining and extent of vasa vasorum. These findings thus establish that postnatal VEGF/VPF expression is a feature of normal human arteries and veins and is often extensively expressed in arteries narrowed by atherosclerotic plaque. VEGF/VPF expression in the wall and/or plaque of medium to large vessels suggests a role for VEGF/VPF other than promoting angiogenesis. This role may involve maintenance and repair of luminal endothelium.  相似文献   

6.
Generation of new blood vessels from pre-existing vasculature (angiogenesis) is accompanied in almost all states by increased vascular permeability. This is true in physiological as well as pathological angiogenesis, but is more marked during disease states. Physiological angiogenesis occurs during tissue growth and repair in adult tissues, as well as during development. Pathological angiogenesis is seen in a wide variety of diseases, which include all the major causes of mortality in the west: heart disease, cancer, stroke, vascular disease and diabetes. Angiogenesis is regulated by vascular growth factors, particularly the vascular endothelial growth factor family of proteins (VEGF). These act on two specific receptors in the vascular system (VEGF-R1 and 2) to stimulate new vessel growth. VEGFs also directly stimulate increased vascular permeability to water and large-molecular-weight proteins. We have shown that VEGFs increase vascular permeability in mesenteric microvessels by stimulation of tyrosine auto-phosphorylation of VEGF-R2 on endothelial cells, and subsequent activation of phospholipase C (PLC). This in turn causes increased production of diacylglycerol (DAG) that results in influx of calcium across the plasma membrane through store-independent cation channels. We have proposed that this influx is through DAG-mediated TRP channels. It is not known how this results in increased vascular permeability in endothelial cells in vivo. It has been shown, however, that VEGF can stimulate formation of a variety of pathways through the endothelial cell, including transcellular gaps, vesiculovacuolar organelle formation, and fenestrations. A hypothesis is outlined that suggests that these all may be part of the same process.  相似文献   

7.
8.
9.
The purpose of this study was to evaluate the vasoformative response of isolated vascular explants to a variety of growth factors that have been shown to stimulate angiogenesis. Rings of rat aorta were cultured in collagen gels under serum-free conditions in the presence or absence of vascular endothelial growth factor (VEGF), natural platelet-derived growth factor (PDGF), PDGF-AA, PDGF-BB, insulin-like growth factor-1 (IGF-1), transforming growth factor-alpha (TGF-alpha), transforming growth factor-beta 1 (TGF-beta 1), epidermal growth factor (EGF), interleukin-1 alpha (IL-1 alpha), or hepatocyte growth factor (HGF). The angiogenic response of the rat aorta was stimulated by VEGF, PDGF, PDGF-AA, PDGF-BB, and IGF-1. Maximum stimulatory effects were obtained with VEGF and PDGF-BB. By contrast, TGF-beta 1 and IL-1 alpha had inhibitory activity. No significant effects were observed with TGF-alpha, EGF, or HGF. The vascular outgrowth of VEGF-stimulated cultures was primarily composed of microvessels, whereas that of PDGF- and IGF-1-stimulated cultures contained an increased number of fibroblast-like cells. The inability of TGF-alpha, TGF-beta 1, IL-1 alpha, EGF, and HGF to stimulate rat aortic angiogenesis in serum-free culture suggests that either these factors require the mediatory activity of accessory cells that are not present in the rat aorta model or that blood vessels are heterogeneous in their capacity to respond to different angiogenic factors.  相似文献   

10.
肿瘤的无限制侵袭性生长及转移依赖于血管的生成。肿瘤血管生成是一个复杂的多步骤过程,且有众多生长因子的参与,其中血管内皮生长因子(Vascular endothelial growth factor,VEGF)是最重要的促血管生长因子,与肿瘤的生长、转移及预后有关,也是抗肿瘤血管生成治疗的重要靶点之一。本文旨在对VEGF与肿瘤血管生成的研究进展作一综述。  相似文献   

11.
Rapidly growing tumors often develop necrosis. In the present study the expression of vascular endothelial growth factor (VEGF) was investigated and compared to microvessel density and necrosis of renal cell carcinomas. In the tumor-host interface the microvessel density was significantly increased compared to central tumor areas. Tumor necrosis was associated with a decrease of microvessel density and an increase of the VEGF protein expression within the perinecrotic rim. VEGF protein was focally upregulated in vital tumor tissue. An increase of the apoptotic rate of endothelia and vital tumor tissue in tumors with necrosis could not be detected. VEGF(121,165) mRNA was decreased in proliferatively active carcinomas compared to less proliferative tumors. Multicellular renal cell cancer spheroids as a model of chronic hypoxia developed central apoptosis but no necrosis. VEGF was upregulated in the spheroid. Tumor microvessels expressed matrix metalloproteinase -2 and -9 and an incomplete pericyte covering in comparison to tumor-free tissue indicating immature active angiogenesis. We conclude that highly proliferative renal cell carcinomas outgrow their vascular supply and develop chronic hypoxia inducing a decrease of proliferation and an increase of VEGF expression. However, chronic hypoxia does not cause significant necrosis or apoptosis. Tumor necrosis is more likely induced by acute hypoxia due to immature microvessels. Furthermore, VEGF expression associated with concomitant tumor necrosis may help identify renal cell carcinomas susceptible to antiangiogenic therapy.  相似文献   

12.
Focal adhesion kinase (FAK) is known to mediate endothelial cell adhesion and migration in response to vascular endothelial growth factor (VEGF). The aim of this study was to explore a potential role for FAK in VEGF regulation of microvascular endothelial barrier function. The apparent permeability coefficient of albumin ( P a) was measured in intact isolated porcine coronary venules. Treating the vessels with VEGF induced a time- and concentration-dependent increase in P a. Inhibition of FAK through direct delivery of FAK-related non-kinase (FRNK) into venular endothelium did not alter basal barrier function but significantly attenuated VEGF-elicited hyperpermeability. Furthermore, cultured human umbilical vein endothelial monolayers displayed a similar hyperpermeability response to VEGF which was greatly attenuated by FRNK. Western blot analysis showed that VEGF promoted FAK phosphorylation in a time course correlating with that of venular hyperpermeability. The phosphorylation response was blocked by FRNK treatment. In addition, VEGF stimulation caused a significant morphological change of FAK from a punctate pattern to an elongated, dash-like staining that aligned with the longitudinal axis of the cells. Taken together, the results suggest that FAK contributes to VEGF-elicited vascular hyperpermeability. Phosphorylation of FAK may play an important role in the signal transduction of vascular barrier response to VEGF.  相似文献   

13.
We have identified several mechanisms by which the angiogenic cytokine vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) likely regulates endothelial cells (EC) migration. VPF/VEGF induced dermal microvascular EC expression of mRNAs encoding the alphav and beta3 integrin subunits resulting in increased levels of the alphavbeta3 heterodimer at the cell surface, and VPF/VEGF also induced mRNA encoding osteopontin (OPN), an alphavbeta3 ligand. OPN promoted EC migration in vitro; and VPF/VEGF induction of alphavbeta3 was accompanied by increased EC migration toward OPN. Because thrombin cleavage of OPN results in substantial enhancement of OPN's adhesive properties, and because VPF/VEGF promotes increased microvascular permeability leading to activation of the extrinsic coagulation pathway, we also investigated whether VPF/VEGF facilitates thrombin cleavage of OPN in vivo. Consistent with this hypothesis, co-injection of VPF/VEGF together with OPN resulted in rapid cleavage of OPN by endogenous thrombin. Furthermore, in comparison with native OPN, thrombin-cleaved OPN stimulated a greater rate of EC migration in vitro, which was additive to the increased migration associated with induction of alpha v beta 3. Thus, these data demonstrate cooperative mechanisms for VPF/VEGF regulation of EC migration involving the alphavbeta3 integrin, the alphavbeta3 ligand OPN, and thrombin cleavage of OPN. These findings also illustrate an operational link between VPF/VEGF induction of EC gene expression and VPF/VEGF enhancement of microvascular permeability, suggesting that these distinct biological activities may act accordingly to stimulate EC migration during angiogenesis.  相似文献   

14.
A prerequisite for the development of novel angiogenic and anti-angiogenic agents is the availability of routine in vivo assays that permit 1) repeated, long-term quantitation of angiogenesis and 2) physiological characterization of angiogenic vessels. We report here the development of such an assay in mice. Using this assay, we tested the hypothesis that the physiological properties of angiogenic vessels governed by the microenvironment and vessel origin rather than the initial angiogenic stimulus. Gels containing basic fibroblast growth factor (bFGF) or vascular endothelial growth (VEGF) were implanted in transparent windows in the dorsal skin or cranium of mice. Vessels could be continuously and non-invasively monitored and easily quantified for more than 5 weeks after gel implantation. Newly formed vessels were first visible on day 4 in the cranial window and day 10 in the dorsal skinfold chamber, respectively. The number of vessels was dependent on the dose of bFGF and VEGF. At 3000 ng/ml, bFGF- and VEGF-induced blood vessels had similar diameters, red blood cell velocities, and microvascular permeability to albumin. However, red blood cell velocities and microvascular permeability to albumin were higher in the cranial window than in the dorsal skinfold chamber. Leukocyte-endothelial interaction was nearly zero in both sites. Thus, newly grown microvessels resembled vessels of granulation and neoplastic tissue in many aspects. Their physiological properties were mainly determined by the microenvironment, whereas the initial angiogenic response was stimulated by growth factors.  相似文献   

15.
The early effects of intracerebrally infused vascular endothelial growth factor (VEGF) on the blood–brain barrier (BBB) to endogenous albumin were studied using a quantitative immunocytochemical procedure. In addition, transmission electron microscopy was used to observe morphological changes induced in brain vasculature. A solution of VEGF in saline (40 ng/10 l) was infused into the parieto-occipital cortex of mice, which were killed 10 min, 30 min, and 24 h afterwards. Untreated mice and mice that received infusion of saline only were used as controls. For immunocytochemical evaluation, ultrathin sections of immersion-fixed brain samples embedded in Lowicryl K4M were exposed to anti-albumin antiserum followed by protein A-gold. Simultaneously, other brain samples embedded in Spurr resin were used for ultrastructural examination. Morphometric and statistical analysis indicated that as soon as 10 min after infusion of VEGF, 33% of vascular profiles were leaking albumin, and this value increased at 30 min to 92%. This effect of VEGF appears to be of rather short duration because after 24 h, only 27% of vascular profiles showed signs of leakage. The results of ultrastructural observations indicate that VEGF (30 min post-infusion) induces several changes in microvascular segments located in the area of intracerebral infusion of VEGF. These changes consist of the appearance of interendothelial gaps; fragmentation of the endothelium with formation of segmental, fenestrae-like narrowings; degenerative changes of the vascular basement membrane; and the appearance of fibrin gel in the vessel lumen. At 24 h post-infusion, solitary diaphragmed fenestrae appeared in attenuated segments of the endothelium in a few microvascular profiles. These changes, which are interpreted to be preparatory steps for angiogenesis, affect the structural integrity of the vascular segments, leading to extravasation of blood plasma proteins, including albumin. © 1998 Chapman and Hall  相似文献   

16.
17.
Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) promotes the repair of injured vessels by stimulating angiogenesis. VEGF/VPF reportedly has cytoprotective activity but no study has shown the protective effect of VEGF/VPF on glomerular endothelial cells. We examined whether recombinant VEGF/VPF121 and VEGF/VPF165 isoforms could prevent injury of glomerular endothelial cells. Mild glomerular injury was induced in rats by an intravenous-injection of a limited dose of anti-Thy-1.1 antibody to obtain lesions similar to those found in the human disease. Recombinant VEGF/VPF165, VEGF/VPF121 or BSA was administered 4 h before the injection of the antibody, and once daily for 3 days. In the BSA-injected rats, mesangial cell lysis and endothelial cell injury in dilated capillary tufts were evident without endothelial cell apoptosis on days 1-4. Thereafter, cell proliferation and repair began and remodeling of the glomeruli was completed by day 28. Macrophages but not polymorphonuclear leukocytes accumulated significantly in the glomeruli on days 1-4. Treatment with VEGF/VPF isoform protected endothelial cells but not mesangial cells from destruction on day 1, and accelerated the repair of both types of cells, which was completed by day 18, 10 days earlier than that of the control animals. The results indicate that VEGF/VPF121 or VEGF/VPF165 can protect glomerular endothelial cells against injury, independent of apoptosis-inhibition activity, thereby promoting reconstruction of glomeruli. The protective effect of VEGF/VPF on endothelial cells suggests that it could provide therapeutic benefit for certain kidney diseases.  相似文献   

18.
Oxidative stress plays critical roles in initiation and/or worsening of respiratory disease process. Although reactive oxygen species (ROS) are shown to cause vascular leakage, the mechanisms by which ROS induce an increase in vascular permeability are not clearly understood. In this study, we have used a murine model to evaluate the effect of hydrogen peroxide (H(2)O(2)) to examine roles of ROS and the molecular mechanism in vascular permeability. The results have revealed that ROS levels, vascular endothelial growth factor (VEGF) expression, hypoxia-inducible factor-1alpha protein level, airway hyperresponsiveness, and vascular permeability are increased after inhalation of H(2)O(2). Administration of antioxidants markedly reduced plasma extravasation and VEGF levels in lungs treated with H(2)O(2). These results indicate that ROS may modulate vascular permeability via upregulation of VEGF expression.  相似文献   

19.
A series of 130 eyes with ocular melanomas, 19 normal eyes, and 18 eyes affected with other disorders leading to blood-ocular barrier (BOB) breakdown were immunohistochemically stained for albumin to localize sites of BOB failure within the retina, ciliary body, and iris. Thirty-nine of the eyes containing melanomas and all of the other eyes were also immunohistochemically stained for vascular endothelial growth factor (VEGF), to investigate its potential role as a mediator for BOB failure. Eyes with melanomas showed widespread leakage through the retinal pigment epithelium, and 58% demonstrated leakage from retinal vessels in the proximity of the tumor. BOB failure remote from the tumor also occurred in retina (50%), optic nerve head (77%), ciliary body (51%), and iris (51%), suggesting that a soluble mediator may be involved. VEGF was demonstrated intraretinally in the proximity of (46%) and remote from (24%) melanomas and in eyes affected by other disease processes, particularly those involving neoplasia or retinal detachments, usually within particular cell populations (ie, retinal vessel walls, ganglion cells, inner or outer nuclear layers, retinal pigment epithelium). VEGF localization in retina, ciliary body, and iris often coincided with sites of extravasated albumin. Preincubation of albumin or VEGF antibodies with normal serum or VEGF peptide, respectively, eliminated or markedly reduced all immunoreactivity. Only 1 of 14 normal postmortem eyes and 0 of 5 normal surgically removed eyes showed VEGF positivity in the retina, 5 of 19 normal eyes had weak positivity in the ciliary body, and VEGF was not demonstrated in the iris of normal eyes. VEGF cannot account for all of the BOB failure associated with ocular melanomas, but appears likely to play a contributing role in many cases.  相似文献   

20.
Angiogenesis and vascular remodeling occurs in many inflammatory diseases, including asthma. In this study, we determined the time course and reversibility of the angiogenesis and vascular remodeling produced by vascular endothelial growth factor (VEGF) in a tet-on inducible transgenic system driven by the CC10 promoter in airway epithelium. One day after switching on VEGF expression, endothelial sprouts arose from venules, grew toward the epithelium, and were abundant by 3 to 5 days. Vessel density reached twice baseline by 7 days. Many new vessels were significantly larger than normal, were fenestrated, and penetrated the epithelium. Despite their mature appearance at 7 days suggested by their pericyte coat and basement membrane, the new vessels started to regress within 3 days when VEGF was switched off, showing stasis and luminal occlusion, influx of inflammatory cells, and retraction and apoptosis of endothelial cells and pericytes. Vessel density returned to normal within 28 days after VEGF withdrawal. Our study showed the dynamic nature of airway angiogenesis and regression. Blood vessels can respond to VEGF by sprouting angiogenesis within a few days, but regress more slowly after VEGF withdrawal, and leave a historical record of their previous extent in the form of empty basement membrane sleeves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号