首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
We have shown that the proteasome inhibitor bortezomib (formerly known as PS-341) triggers significant antitumor activity in multiple myeloma (MM) in both preclinical models and patients with relapsed refractory disease. Recent studies have shown that unfolded and misfolded ubiquitinated proteins are degraded not only by proteasomes, but also by aggresomes, dependent on histone deacetylase 6 (HDAC6) activity. We therefore hypothesized that inhibition of both mechanisms of protein catabolism could induce accumulation of ubiquitinated proteins followed by significant cell stress and cytotoxicity in MM cells. To prove this hypothesis, we used bortezomib and tubacin to inhibit the proteasome and HDAC6, respectively. Tubacin specifically triggers acetylation of alpha-tubulin as a result of HDAC6 inhibition in a dose- and time-dependent fashion. It induces cytotoxicity in MM cells at 72 h with an IC50 of 5-20 microM, which is mediated by caspase-dependent apoptosis; no toxicity is observed in normal peripheral blood mononuclear cells. Tubacin inhibits the interaction of HDAC6 with dynein and induces marked accumulation of ubiquitinated proteins. It synergistically augments bortezomib-induced cytotoxicity by c-Jun NH2-terminal kinase/caspase activation. Importantly, this combination also induces significant cytotoxicity in plasma cells isolated from MM patient bone marrow. Finally, adherence of MM cells to bone marrow stromal cells confers growth and resistance to conventional treatments; in contrast, the combination of tubacin and bortezomib triggers toxicity even in adherent MM cells. Our studies therefore demonstrate that tubacin combined with bortezomib mediates significant anti-MM activity, providing the framework for clinical evaluation of combined therapy to improve patient outcome in MM.  相似文献   

2.
Protein acetylation, especially histone acetylation, is the subject of both research and clinical investigation. At least four small-molecule histone deacetylase inhibitors are currently in clinical trials for the treatment of cancer. These and other inhibitors also affect microtubule acetylation. A multidimensional, chemical genetic screen of 7,392 small molecules was used to discover "tubacin," which inhibits alpha-tubulin deacetylation in mammalian cells. Tubacin does not affect the level of histone acetylation, gene-expression patterns, or cell-cycle progression. We provide evidence that class II histone deacetylase 6 (HDAC6) is the intracellular target of tubacin. Only one of the two catalytic domains of HDAC6 possesses tubulin deacetylase activity, and only this domain is bound by tubacin. Tubacin treatment did not affect the stability of microtubules but did decrease cell motility. HDAC6 overexpression disrupted the localization of p58, a protein that mediates binding of Golgi elements to microtubules. Our results highlight the role of alpha-tubulin acetylation in mediating the localization of microtubule-associated proteins. They also suggest that small molecules that selectively inhibit HDAC6-mediated alpha-tubulin deacetylation, a first example of which is tubacin, might have therapeutic applications as antimetastatic and antiangiogenic agents.  相似文献   

3.
Development of isoform-selective histone deacetylase (HDAC) inhibitors is important in elucidating the function of individual HDAC enzymes and their potential as therapeutic agents. Among the eleven zinc-dependent HDACs in humans, HDAC6 is structurally and functionally unique. Here, we show that a hydroxamic acid-based small-molecule N-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide (HPOB) selectively inhibits HDAC6 catalytic activity in vivo and in vitro. HPOB causes growth inhibition of normal and transformed cells but does not induce cell death. HPOB enhances the effectiveness of DNA-damaging anticancer drugs in transformed cells but not normal cells. HPOB does not block the ubiquitin-binding activity of HDAC6. The HDAC6-selective inhibitor HPOB has therapeutic potential in combination therapy to enhance the potency of anticancer drugs.Histone deacetylase 6 (HDAC6) is unique among the eleven zinc-dependent HDACs in humans. HDAC6 is located in the cytoplasm, and it has two catalytic domains and an ubiquitin-binding domain at the C-terminal region (13). This study focused on the development of a HDAC6-selective inhibitor and its biological effects. The substrates of HDAC6 include nonhistone proteins such as α-tubulin, peroxiredoxin (PRX), cortactin, and heat shock protein 90 (Hsp90) but not histones (47). HDAC6 plays a key role in the regulation of microtubule dynamics including cell migration and cell–cell interactions. The reversible acetylation of Hsp90, a substrate of HDAC6, modulates its chaperone activity and, accordingly, the stability of survival and antiapoptotic factors, including epidermal growth factor receptor (EGFR), protein kinase AKT, proto-oncogene C-RAF, survivin, and other factors. HDAC6, through its ubiquitin-binding activity and interaction with other partner proteins, plays a role in the degradation of misfolded proteins by binding polyubiquitinated proteins and delivering them to the dynein and motor proteins for transport into aggresomes which are degraded by lysosomes (810). Thus, HDAC6 has multiple biological functions through deacetylase-dependent and -independent mechanisms modulating many cellular pathways relevant to normal and tumor cell growth, migration, and death. HDAC6 is an attractive target for potential cancer treatment.There are several previous reports on the development of HDAC6-selective inhibitors (1115). The most extensively studied is tubacin (16, 17). Tubacin has non–drug-like qualities, high lipophilicity, and difficult synthesis and has proved to be more useful as a research tool rather than as a potential drug (18). We and others (1215, 19) have developed HDAC6-selective inhibitors whose pharmacokinetics, toxicity, and efficacy make them potentially more useful than tubacin as therapeutic agents. ACY-1215, 2-(Diphenylamino)-N-(7-(hydroxyamino)-7-oxoheptyl)pyrimidine-5-carboxamide, a HDAC6-selective inhibitor, is currently being evaluated in clinical trials (http://clinicaltrials.gov).HDAC inhibitors, such as suberoylanilide hydroxamic acid (SAHA), consist of three structural domains: a metal-binding domain, a linker domain, and a surface domain (20). The catalytic pocket of HDAC1 is deeper and narrower than the catalytic pocket of HDAC6 (14). To develop HDAC6-selective inhibitors, we synthesized small molecules with bulkier and shorter linker domains than the pan-HDAC inhibitor SAHA (20, 21). A hydroxamic acid-based small-molecule N-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide (HPOB) was synthesized that selectively inhibits HDAC6. We report the effects of this HDAC6-selective inhibitor on normal and transformed cells. Further, we found that selective inhibition of HDAC6 increases the effectiveness of anticancer agents, etoposide, doxorubicin, and SAHA in inducing cell death of transformed cells but not normal cells.  相似文献   

4.
5.
Histone deacetylase inhibitors (HDACi) developed as anti-cancer agents have a high degree of selectivity for killing cancer cells. HDACi induce acetylation of histones and nonhistone proteins, which affect gene expression, cell cycle progression, cell migration, and cell death. The mechanism of the tumor selective action of HDACi is unclear. Here, we show that the HDACi, vorinostat (Suberoylanilide hydroxamic acid, SAHA), induces DNA double-strand breaks (DSBs) in normal (HFS) and cancer (LNCaP, A549) cells. Normal cells in contrast to cancer cells repair the DSBs despite continued culture with vorinostat. In transformed cells, phosphorylated H2AX (γH2AX), a marker of DNA DSBs, levels increased with continued culture with vorinostat, whereas in normal cells, this marker decreased with time. Vorinostat induced the accumulation of acetylated histones within 30 min, which could alter chromatin structure-exposing DNA to damage. After a 24-h culture of cells with vorinostat, and reculture without the HDACi, γH2AX was undetectable by 2 h in normal cells, while persisting in transformed cells for the duration of culture. Further, we found that vorinostat suppressed DNA DSB repair proteins, e.g., RAD50, MRE11, in cancer but not normal cells. Thus, the HDACi, vorinostat, induces DNA damage which normal but not cancer cells can repair. This DNA damage is associated with cancer cell death. These findings can explain, in part, the selectivity of vorinostat in causing cancer cell death at concentrations that cause little or no normal cell death.  相似文献   

6.
Histone acetylation modulates gene expression, cellular differentiation, and survival and is regulated by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDAC inhibition results in accumulation of acetylated nucleosomal histones and induces differentiation and/or apoptosis in transformed cells. In this study, we characterized the effect of suberoylanilide hydroxamic acid (SAHA), the prototype of a series of hydroxamic acid-based HDAC inhibitors, in cell lines and patient cells from B-cell malignancies, including multiple myeloma (MM) and related disorders. SAHA induced apoptosis in all tumor cells tested, with increased p21 and p53 protein levels and dephosphorylation of Rb. We also detected cleavage of Bid, suggesting a role for Bcl-2 family members in regulation of SAHA-induced cell death. Transfection of Bcl-2 cDNA into MM.1S cells completely abrogated SAHA-induced apoptosis, confirming its protective role. SAHA did not induce cleavage of caspase-8, -9, or -3 in MM.1S cells during the early phase of apoptosis, and the pan-caspase inhibitor ZVAD-FMK did not protect against SAHA. Conversely, poly(ADP)ribose polymerase (PARP) was cleaved in a pattern indicative of calpain activation, and the calpain inhibitor calpeptin abrogated SAHA-induced cell death. Importantly, SAHA sensitized MM.1S cells to death receptor-mediated apoptosis and inhibited the secretion of interleukin 6 (IL-6) induced in bone marrow stromal cells (BMSCs) by binding of MM cells, suggesting that it can overcome cell adhesion-mediated drug resistance. Our studies delineate the mechanisms whereby HDAC inhibitors mediate anti-MM activity and overcome drug resistance in the BM milieu and provide the framework for clinical evaluation of SAHA, which is bioavailable, well tolerated, and bioactive after oral administration, to improve patient outcome.  相似文献   

7.
8.
Rao R  Fiskus W  Yang Y  Lee P  Joshi R  Fernandez P  Mandawat A  Atadja P  Bradner JE  Bhalla K 《Blood》2008,112(5):1886-1893
Histone deacetylase 6 (HDAC6) is a heat shock protein 90 (hsp90) deacetylase. Treatment with pan-HDAC inhibitors or depletion of HDAC6 by siRNA induces hyperacetylation and inhibits ATP binding and chaperone function of hsp90. Treatment with 17-allylamino-demothoxy geldanamycin (17-AAG) also inhibits ATP binding and chaperone function of hsp90, resulting in polyubiquitylation and proteasomal degradation of hsp90 client proteins. In this study, we determined the effect of hsp90 hyperacetylation on the anti-hsp90 and antileukemia activity of 17-AAG. Hyperacetylation of hsp90 increased its binding to 17-AAG, as well as enhanced 17-AAG-mediated attenuation of ATP and the cochaperone p23 binding to hsp90. Notably, treatment with 17-AAG alone also reduced HDAC6 binding to hsp90 and induced hyperacetylation of hsp90. This promoted the proteasomal degradation of HDAC6. Cotreatment with 17-AAG and siRNA to HDAC6 induced more inhibition of hsp90 chaperone function and depletion of BCR-ABL and c-Raf than treatment with either agent alone. In addition, cotreatment with 17-AAG and tubacin augmented the loss of survival of K562 cells and viability of primary acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) samples. These findings demonstrate that HDAC6 is an hsp90 client protein and hyperacetylation of hsp90 augments the anti-hsp90 and antileukemia effects of 17-AAG.  相似文献   

9.
Suberoylanilide hydroxamic acid (SAHA) is a potent inhibitor of histone deacetylases (HDACs) that causes growth arrest, differentiation, and/or apoptosis of many tumor types in vitro and in vivo. SAHA is in clinical trials for the treatment of cancer. HDAC inhibitors induce the expression of less than 2% of genes in cultured cells. In this study we show that SAHA induces the expression of vitamin D-up-regulated protein 1/thioredoxin-binding protein-2 (TBP-2) in transformed cells. As the expression of TBP-2 mRNA is increased, the expression of a second gene, thioredoxin, is decreased. In transient transfection assays, HDAC inhibitors induce TBP-2 promoter constructs, and this induction requires an NF-Y binding site. We report here that TBP-2 expression is reduced in human primary breast and colon tumors compared with adjacent tissue. These results support a model in which the expression of a subset of genes (i.e., including TBP-2) is repressed in transformed cells, leading to a block in differentiation, and culture of transformed cells with SAHA causes re-expression of these genes, leading to induction of growth arrest, differentiation, and/or apoptosis.  相似文献   

10.
In view of the fact that histone deacetylases (HDACs) are promising targets for myeloma therapy, we investigated the effects of the HDAC inhibitor CR2408 on multiple myeloma (MM) cells in vitro. CR2408 is a direct pan-HDAC inhibitor and inhibits all known 11 HDACs with a 50% inhibitory concentration (IC(50) ) of 12 nmol/l (HDAC 6) to 520 nmol/l (HDAC 8). Correspondingly, CR2408 induces hyperacetylation of histone H4, inhibits cell growth and strongly induces apoptosis (IC(50) =0.1-0.5 μmol/l) in MM cell lines and primary MM cells. CR2408 leads to fragmentation of cells and induces an accumulation in the subG1 phase accompanied with moderately decreased levels of cyclin D1 and cdk4 and strongly decreased levels of cdc25a, pRb and p53. Interruption of the cell cycle is reflected by inhibition of cell proliferation and is accompanied by decreased phosphorylation of 4E-BP1 and p70S6k. Treatment with CR2408 results in increased protein levels of Bim and pJNK and downregulation of Bad and Bcl-xL and activation of Caspases 3, 8 and 9. Furthermore, as HDAC inhibitors have shown synergism with other drugs, these effects were investigated and synergism was observed for combinations of CR2408 with doxorubicin and bortezomib. In conclusion, we have identified potent anti-myeloma activity for this novel HDAC inhibitor that gives further insights into the biological sequelae of HDAC inhibition in MM.  相似文献   

11.
目的研究组蛋白去乙酰化酶1(HDAC1)对乳腺癌细胞株MDA—MB-435s增殖周期的影响。方法培养雌激素受体阴性乳腺癌细胞株MDA—MB-435s,转染HDAC1作为正向干预,加入组蛋白去乙酰化酶抑制剂SAHA负向干预,倒置相差显微镜观察细胞形态改变,MTT比色法观察细胞生长情况,流式细胞术检测细胞周期变化。结果转染HDAC1质粒后,乳腺癌细胞株S期细胞比例显著增加,而加入SAHA后细胞增殖受到抑制,细胞阻滞在G0/G1期。结论HDAC1可促进乳腺癌细胞的增殖,组蛋白去乙酰化酶抑制剂能阻止其增殖。  相似文献   

12.
Autophagy is a cellular catabolic pathway by which long-lived proteins and damaged organelles are targeted for degradation. Activation of autophagy enhances cellular tolerance to various stresses. Recent studies indicate that a class of anticancer agents, histone deacetylase (HDAC) inhibitors, can induce autophagy. One of the HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA), is currently being used for treating cutaneous T-cell lymphoma and under clinical trials for multiple other cancer types, including glioblastoma. Here, we show that SAHA increases the expression of the autophagic factor LC3, and inhibits the nutrient-sensing kinase mammalian target of rapamycin (mTOR). The inactivation of mTOR results in the dephosphorylation, and thus activation, of the autophagic protein kinase ULK1, which is essential for autophagy activation during SAHA treatment. Furthermore, we show that the inhibition of autophagy by RNAi in glioblastoma cells results in an increase in SAHA-induced apoptosis. Importantly, when apoptosis is pharmacologically blocked, SAHA-induced nonapoptotic cell death can also be potentiated by autophagy inhibition. Overall, our findings indicate that SAHA activates autophagy via inhibiting mTOR and up-regulating LC3 expression; autophagy functions as a prosurvival mechanism to mitigate SAHA-induced apoptotic and nonapoptotic cell death, suggesting that targeting autophagy might improve the therapeutic effects of SAHA.  相似文献   

13.
Proteasome inhibition induces the accumulation of aggregated misfolded/ubiquitinated proteins in the aggresome; conversely, histone deacetylase 6 (HDAC6) inhibition blocks aggresome formation. Although this rationale has been the basis of proteasome inhibitor (PI) and HDAC6 inhibitor combination studies, the role of disruption of aggresome formation by HDAC6 inhibition has not yet been studied in multiple myeloma (MM). The present study aimed to evaluate the impact of carfilzomib (CFZ) in combination with a selective HDAC6 inhibitor (ricolinostat) in MM cells with respect to the aggresome‐proteolysis pathway. We observed that combination treatment of CFZ with ricolinostat triggered synergistic anti‐MM effects, even in bortezomib‐resistant cells. Immunofluorescent staining showed that CFZ increased the accumulation of ubiquitinated proteins and protein aggregates in the cytoplasm, as well as the engulfment of aggregated ubiquitinated proteins by autophagosomes, which was blocked by ricolinostat. Electron microscopy imaging showed increased autophagy triggered by CFZ, which was inhibited by the addition of ACY‐1215. Finally, an in vivo mouse xenograft study confirmed a decrease in tumour volume, associated with apoptosis, following treatment with CFZ in combination with ricolinostat. Our results suggest that ricolinostat inhibits aggresome formation, caused by CFZ‐induced inhibition of the proteasome pathway, resulting in enhanced apoptosis in MM cells.  相似文献   

14.
Proteasome inhibitors and histone deacetylase (HDAC) inhibitors are novel targeted therapies being evaluated in clinical trials for cutaneous T-cell lymphoma (CTCL). However, data in regard to tumor biology are limited with these agents. In the present study we analyzed the effects of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) and the proteasome inhibitor bortezomib on human CTCL cells. Four CTCL cell lines (SeAx, Hut-78, MyLa, and HH) were exposed to bortezomib and/ or SAHA at different concentrations. Cell viability was quantified using the MTT assay. In addition, apoptosis and generation of reactive oxygen species were analyzed. Both agents potently inhibited cell viability and induced apoptosis. After 48 h of incubation, IC50 of bortezomib was noted at 8.3 nm , 7.9 nm , 6.3 nm , and 22.5 nm in SeAx, Hut-78, HH, and MyLa cells, respectively. For SAHA, the IC50 values were at 0.6 μm in SeAx cells, 0.75 μm in Hut-78 cells, 0.9 μm in HH cells, and 4.4 μm in MyLa cells. Importantly, combined treatment resulted in synergistic cytotoxic effects, as indicated by Combination indices values <1 using the median effect method of Chou and Talalay. We furthermore found that combined treatment with both agents lead to a decreased proteasome activity, an upregulation of the cell regulators p21 and p27 and increased expression of phosphorylated p38. In addition, we showed that SAHA reduced the vascular endothelial growth factor production of CTCL cells. Our results demonstrate that bortezomib and SAHA synergistically induce apoptosis in CTCL cells and thus provide a rationale for clinical trials of combined proteasome and histone deacetylase inhibition in the treatment of CTCL.  相似文献   

15.
Histone deacetylase (HDAC) inhibitors can induce programmed cell death in cancer cells, although the underlying mechanism is obscure. In this study, we show that two distinct HDAC inhibitors, butyrate and suberoylanilide hydroxamic acid (SAHA), induced caspase-3 activation and cell death in multiple human cancer cell lines. The activation of caspase-3 was via the mitochondria/cytochrome c-mediated apoptotic pathway because it was abrogated in mouse embryonic fibroblasts with knockout of Apaf-1, the essential mediator of the pathway. Overexpression of Bcl-XL in HeLa cells also blocked caspase activation by the HDAC inhibitors. Nevertheless, Apaf-1 knockout, overexpression of Bcl-XL, and pharmacological inhibition of caspase activity did not prevent SAHA and butyrate-induced cell death. The cells undergoing such caspase-independent death had unambiguous morphological features of autophagic cell death. Therefore, HDAC inhibitors can induce both mitochondria-mediated apoptosis and caspase-independent autophagic cell death. Induction of autophagic cell death by HDAC inhibitors has clear clinical implications in treating cancers with apoptotic defects.  相似文献   

16.
We report the development of a potent, selective histone deacetylase 6 (HDAC6) inhibitor. This HDAC6 inhibitor blocks growth of normal and transformed cells but does not induce death of normal cells. The HDAC6 inhibitor alone is as effective as paclitaxel in anticancer activity in tumor-bearing mice.There are 11 zinc-dependent histone deacetylases (HDACs) in humans (1). All HDACs are nuclear proteins except for HDAC6. HDAC6 is unique among HDACs in being a cytoplasmic protein with two catalytic sites and a ubiquitin binding site (2). HDAC6 is a deacetylase whose substrates include tubulin, peroxidases, and certain DNA repair proteins, but not histones (2). HDAC6 has a role in the cellular response to accumulation of misfolded and aggregated proteins that are catalysts of certain neurological disorders such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.We have previously reported the development of an HDAC6 selective inhibitor (3), as have others (46). This paper describes the development of a new potent, selective HDAC6 inhibitor, N-hydroxy-4-[(N(2-hydroxyethyl)-2-phenylacetamido)methyl) benzamide)] (HPB). HPB inhibits growth of normal and transformed cells but does not induce death of these cells. HPB alone induces tumor shrinkage in tumor-bearing mice without apparent significant side effects.  相似文献   

17.
The histone deacetylase inhibitor SAHA enhances cell death stimulated by the proteasome inhibitor bortezomib (BZ) by disrupting BZ-induced aggresome formation. Here we report that Myc regulates the sensitivity of multiple myeloma (MM) cells to BZ + SAHA-induced cell death. In MM cells, Myc expression directly correlated with intracellular ER content, protein synthesis rates, the percentage of aggresome-positive cells, and the sensitivity to BZ + SAHA-induced cell death. Accordingly, Myc knockdown markedly reduced the sensitivity of MM cells to BZ + SAHA-mediated apoptosis. Furthermore, activation of Myc was sufficient to provoke aggresome formation and thus sensitivity to BZ + SAHA, and these responses required de novo protein synthesis. BZ + SAHA-mediated stimulation of apoptosis includes the induction of the proapoptotic BH3-only protein Noxa as well as endoplasmic reticular stress, a disruption of calcium homeostasis, and activation of capase-4. Finally, knockdown studies demonstrated that both caspase-4 and Noxa play significant roles in Myc-driven sensitivity to BZ + SAHA-induced apoptosis. Collectively, our results establish a mechanistic link between Myc activity, regulation of protein synthesis, increases in HDAC6 expression and aggresome formation, induction of Noxa, and sensitivity to BZ + SAHA-induced apoptosis. These data suggest that MM patients with elevated Myc activity may be particularly sensitive to the BZ + SAHA combination.  相似文献   

18.
Heat shock protein 90 (HSP90) is a promising target for tumor therapy. The novel HSP90 inhibitor NVP‐AUY922 has preclinical activity in multiple myeloma, however, little is known about effective combination partners to design clinical studies. Multiple myeloma cell lines, OPM‐2, RPMI‐8226, U‐266, LP‐1, MM1.S, and primary myeloma cells were exposed to NVP‐AUY922 and one of the combination partners histone deacetylase inhibitor NVP‐LBH589, suberoylanilide hydroxamic acid (SAHA), melphalan, or doxorubicin, either simultaneously or in sequential patterns. Effects on cell proliferation and apoptosis were determined. Synergistic effects were evaluated using the method of Chou and Talalay. Combined sequential incubation with NVP‐AUY922 and SAHA showed that best synergistic effects were achieved with 24 h preincubation with SAHA followed by another 48 h of combination treatment. Combination of NVP‐AUY922 with SAHA, NVP‐LBH589, melphalan, or doxorubicin resulted in synergistic inhibition of viability, with strong synergy (combination index < 0.3) in the case of melphalan. Importantly, resistance of the RPMI‐8226 cell line and relative resistance of some primary myeloma cells against NVP‐AUY922 could be overcome by combination treatment. These data show impressive synergistic action of the novel HSP90 inhibitor NVP‐AUY922 with melphalan, doxorubicin, NVP‐LBH589, and SAHA in multiple myeloma and build the frame work for clinical trials.  相似文献   

19.
Natural killer (NK) large granular lymphocyte (LGL) leukaemia features a clonal proliferation of CD3? NK cells that can be classified into either aggressive or chronic categories. The NKL cell line, derived from an aggressive Asian NK cell leukaemia, and patient samples from chronic NK‐LGL leukaemia were used in our study to probe for synergistic efficacy of the epigenetic drugs vorinostat (SAHA) and cladribine in this disease. We demonstrate that histone deacetylases (HDACs) are over‐expressed in both aggressive and chronic NK leukaemia. Administration of the HDAC inhibitor SAHA reduces class I and II HDAC expression and enhances histone acetylation in leukaemic NK cells. In vitro combination treatment with SAHA and cladribine dose‐dependently exerts synergistic cytotoxic and apoptotic effects on leukaemic NK cells. Expression profiling of apoptotic regulatory genes suggests that both compounds led to caspase‐dependent apoptosis through activation of intrinsic mitochondrial and extrinsic death receptor pathways. Collectively, these data show that combined epigenetic therapy, using HDAC and DNA methyltransferase inhibitors, may be a promising therapeutic approach for NK‐LGL leukaemia.  相似文献   

20.
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, yet effective therapeutic options for advanced HCC are limited. This study was aimed at assessing the antitumor effect of a novel phenylbutyrate-derived histone deacetylase (HDAC) inhibitor, OSU-HDAC42, vis-à-vis suberoylanilide hydroxamic acid (SAHA), in in vitro and in vivo models of human HCC. OSU-HDAC42 was several times more potent than SAHA in suppressing the viability of PLC5, Huh7, and Hep3B cells with submicromolar median inhibitory concentration (IC(50)) values. With respect to SAHA, OSU-HDAC42 exhibited greater apoptogenic potency, which was associated with reduced levels of the apoptotic regulators phosphorylated Akt B-cell lymphoma-xL, survivin, cellular inhibitor of apoptosis protein 1, and cellular inhibitor of apoptosis protein 2. The in vivo efficacy of OSU-HDAC42 versus SAHA was assessed in orthotopic and subcutaneous xenograft tumor models in athymic nude mice. Daily oral treatments with OSU-HDAC42 and SAHA, both at 25 mg/kg, suppressed the growth of orthotopic PLC5 tumor xenografts by 91% and 66%, respectively, and of established subcutaneous PLC5 tumor xenografts by 85% and 56%, respectively. This differential tumor suppression correlated with the modulation of intratumoral biomarkers associated with HDAC inhibition and apoptosis regulation. Moreover, the oral administration of OSU-HDAC42 at 50 mg/kg every other day markedly suppressed ectopic tumor growth in mice bearing large tumor burdens (500 mm(3)) at the start of treatment. CONCLUSION: OSU-HDAC42 is a potent, orally bioavailable inhibitor of HDAC with a broad spectrum of antitumor activity that includes targets regulating multiple aspects of cancer cell survival. These results suggest that OSU-HDAC42 has clinical value in therapeutic strategies for HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号