首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Cardiac nerves were identified physiologically and injected with horseradish peroxidase in 38 dogs. Retrogradely labeled neurons were present in the greatest number in the middle cervical ganglion, whereas fewer labeled neurons were present in the stellate ganglion. Only occasional neurons in the superior cervical ganglion were labeled, and no labelphysiologically and injected with horseradish peroxidase in 38 dogs. Retrogradely labeled neurons were present in the greatest number in the middle cervical ganglion, whereas fewer labeled neurons were present in the stellate ganglion. Only occasional neurons in the superior cervical ganglion were labeled, and no labelphysiologically and injected with horseradish peroxidase in 38 dogs. Retrogradely labeled neurons were present in the greatest number in the middle cervical ganglion, whereas fewer labeled neurons were present in the stellate ganglion. Only occasional neurons in the superior cervical ganglion were labeled, and no labeled cells were found in the T3 to T6 paravertebral ganglia or in the ganglia contralateral to the nerve injected. following injections into specific cardiac nerves, retrograde labeling was widespread within the middle cervical ganglion, and the distributions of labeled neurons from different nerves overlapped considerably. In the middle cervical ganglion there was little or no regional grouping of cells projecting to specific cardiac nerves. within the stellate ganglion, however, te cardiac-sympathetic cells were clustered primarily at the cranial pole near toe origin of the ventral and dorsal ansae. Mediastinal ganglia and ganglia located in cardiac nerves were frequently as heavily labeled as the ipsilateral stellate ganglion. The occurrence of heavy labeling in mediastinal and cardiac nerve ganglia indicates that these hitherto unreported ganglia play a significant role in cardiac neural regulation. These data imply that the organization of sympathetic neurons controlling the heart is much more complex than has previously been considered.  相似文献   

2.
It is known that the vagus nerve contains catecholaminergic fibers. However, the origin of these fibers has not been systematically examined. In this study, we addressed this issue using retrograde tracing from the subdiaphragmatic vagus nerve combined with immunocytochemistry. The cervical and thoracic sympathetic trunk ganglia, the nodose ganglia and the dorsal motor nucleus of the vagus nerve were examined following injection of Fluoro-Gold or cholera toxin horseradish peroxidase conjugate into the trunks of the subdiaphragmatic vagus nerve of rats. Numerous retrogradely labeled neurons were seen in the nodose ganglion and the dorsal motor nucleus of the vagus nerve. Very few labeled neurons were found in the sympathetic ganglia (less than 0.06% of the neurons in either superior cervical ganglion or cervicothoracic ganglion were retrogradely labeled). Double labeling with immunofluoresence for catecholamine synthesizing enzymes revealed that: (1) 92% of all Fluoro-Gold retrogradely labeled tyrosine hydroxylase immunoreactive neurons were found in parasympathetic sources (75% in the dorsal motor nucleus of the vagus nerve and 17% in the nodose ganglia), and only 8% in the cervicothoracic sympathetic ganglia; (2) 12% of the retrogradely labeled catecholaminergic neurons in the dorsal motor nucleus of the vagus nerve were also dopamine-beta-hydroxylase immunopositive neurons; (3) 70% of the retrogradely labeled neurons in the sympathetic ganglia were tyrosine hydroxylase immunopositive and 54% of these catecholaminergic neurons contained dopamine-beta-hydroxylase, while 30% of the retrogradely labeled neurons were non-catecholaminergic neurons. These results indicate that catecholaminergic fibers in the abdominal vagus nerve are primarily dopaminergic and of parasympathetic origin, and that only an extremely small number of these fibers, mostly noradrenergic in nature, arise from postganglionic sympathetic neurons.  相似文献   

3.
Horseradish peroxidase (HRP, Sigma Type VI) crystals were encased in a parafilm envelope and applied to the transected central ends of the left and right cervical vagus nerves and the anterior and posterior esophageal vagus nerves of adult male hooded rats. Injections of 30% HRP were made into the muscle wall of the fundus and antrum regions of the stomach. After 48 hr survival time, animals were perfused intracardially with a phosphate buffer plus sucrose wash followed by glutaraldehyde and paraformaldehyde fixative. The brain stem, spinal cord and corresponding dorsal root ganglia, superior cervical sympathetic ganglion, and the nodose ganglion were removed and cut into 50 micron sections. All tissue was processed with tetramethylbenzidine (TMB) for the blue reaction according to Mesulum and counterstained with neutral red. Sequential sections were examined under a microscope. Labeled neurons and nerve terminals were identified using bright and dark field condensers and polarized light. In tissue from animals that had HRP applied to the cervical vagus nerves, retrogradely labeled neurons were identified ipsilaterally in the medulla located in the dorsal motor nucleus of the vagus (DMN) and the nucleus ambiguus (NA). Labeled cells extended from the DMN into the spinal cord in ventral-medial and laminae X regions C1 and C2 of cervical segments. Many neurons were labeled in the nodose ganglion. Anterogradely labeled terminals were observed throughout and adjacent to the solitary nucleus (NTS) dorsal to the DMN and intermixed among labeled neurons located in the DMN. In tissue from animals that had HRP applied to the esophageal vagus nerves, similar labeling was observed. However, fewer neurons were identified in the NA, the nodose ganglion, and only in laminae X of the cervical spinal cord segments C1 and C2. Also, very little terminal labeling was observed in and adjacent to the NTS. Labeled neurons in tissue from animals that had HRP injected into the stomach wall were observed bilaterally in the DMN, nodose ganglion, and only in laminae X at the C1 and C2 levels of the spinal cord. Labeled neurons also were observed in the dorsal root ganglia of the thoracic cord. These data indicate that cervical cord and NA neurons are important in the supradiaphragmatic motor innervation by the vagus. Also, many afferents to the NTS originate above the diaphragm. In addition, some afferents from the stomach enter the central nervous system via the thoracic spinal cord.  相似文献   

4.
The retrograde transport of horseradish peroxidase (HRP) was used to examine the location of sympathetic ganglion cells with axons in facial motor branches of the cat. Large numbers of HRP-labeled neurons were observed in the rostro-anterior part of the superior cervical ganglion. In addition, some labeled neurons were found in the cervical sympathetic trunk, the accessory cervical, middle cervical and stellate ganglia.  相似文献   

5.
A retrograde neuronal tracer (Fast Blue) was injected in the cervical end of the uterine horn of virgin rats. The majority of the retrogradely labeled post-ganglionic sympathetic neurons were found in the sympathetic chain (74%). The superior mesenteric ganglia, inferior mesenteric ganglia and suprarenal ganglia accounted for 22, 3 and <1%, respectively. The distribution of neurons in the sympathetic chain labeled from the uterus resembles that described for other pelvic organs.  相似文献   

6.
Sympathetic (stellate and superior cervical ganglion) and sensory vagal (nodose and jugular ganglion) neurons innervating the guinea-pig trachea were labelled using a retrograde neuronal tracer (Fast Blue) and tested for immunoreactivity to nitric oxide synthase (NOS) and either tyrosine hydroxylase (TH; sympathetic ganglia) or substance P (SP; vagal afferent neurons). Approx. 3% of the sympathetic neurons innervating the trachea were NOS-positive. These neurons belonged to the non-catecholaminergic phenotype. Amongst the retrogradely labelled neurons in the vagal sensory ganglia, 5–10% of retrogradely labelled neurons in the nodose (inferior vagal) ganglion, and 10–20% of those in the jugular (superior vagal) ganglion were NOS-immunoreactive. All NOS-positive vagal afferent neurons labelled with retrograde tracer were negative for substance P. Accordingly, the results of these studies provide evidence that portions of the sympathetic and sensory innervation of the guinea-pig trachea is provided by NOS-immunoreactive neurons.  相似文献   

7.
The ganglionic distribution of the perikarya of afferent axons in cardiopulmonary nerves or the heart was studied in 64 dogs by injecting horseradish peroxidase into physiologically identified cardiopulmonary nerves or different regions of the heart. In 6 additional dogs, horseradish peroxidase was injected into the aortic arch, pericardial sac, left ventricular cavity or the skin. After injections into cardiopulmonary nerves, retrogradely labeled perikarya were found in the ipsilateral nodose ganglion and the ipsilateral C7-T7 dorsal root ganglia. After injections into different regions of the heart, retrogradely labeled neurons were found in the nodose ganglia bilaterally and in the C6-T6 dorsal root ganglia bilaterally. Many more retrogradely labeled neurons were found in the nodose ganglia in comparison to the dorsal root ganglia. The largest numbers of retrogradely labeled perikarya in the dorsal root ganglia occurred in the T 2-4 ganglia following nerve or heart injections. Following injections into specific regions of the heart or individual physiologically identified cardiopulmonary nerves, regional distributions of labeled neurons could not be identified within or among ganglia with respect to the structures injected. Perikarya in dorsal root ganglia which were labeled after heart injections ranged in area from 436-3280 microns 2 (X = 1279 +/- 51 S.E.M.) while after skin injections labeled perikarya ranged in area from 224-5701 microns 2 (X = 1631 +/- 104 S.E.M.). The results show that the afferent innervation of the canine heart is provided by neurons located throughout the nodose ganglia and to a lesser degree in the C6-T6 dorsal root ganglia bilaterally. The bilateral distribution of cardiac afferent neurons raises questions regarding mechanisms underlying unilateral symptoms frequently associated with heart disease.  相似文献   

8.
Distribution of secretoneurin-like immunoreactivity (SN-LI) was studied in the rat sympathetic ganglia/adrenal gland, enteric and sensory ganglia by immunohistochemical methods. SN-LI nerve fibers formed basket-like terminals surrounding many of the postganglionic neurons of the superior cervical, stellate, paravertebral chain ganglia, coeliac/superior mesenteric and inferior mesenteric ganglia. Postganglionic neurons of the superior cervical and other sympathetic ganglia exhibited low-to-moderate levels of SN-LI. In all these sympathetic ganglia, clusters of small diameter (<10 μm) cells, which may correspond to the small intensely fluorescent (SIF) cells, were found to be intensely labeled. Surgical sectioning or ligation of the cervical sympathetic trunk for 7–10 days resulted in a nearly total loss of SN-LI fibers in the superior cervical ganglia, whereas immunoreactivity in the postganglionic neurons and small diameter cells remained essentially unchanged. In the thoracolumbar and sacral segments of the spinal cord, SN-LI nerve fibers were detected in the superficial layers of the dorsal horn as well as in the intermediolateral cell column (ILp). Occasionally, SN-LI somata were noted in the ILp. SN-LI nerve fibers formed a delicate plexus underneath the capsule of the adrenal gland, some of which traversed the adrenal cortex and reached the adrenal medulla. While heavily invested with SN-LI nerve terminals, chromaffin cells seemed to express a low level of SN-LI. In the enteric plexus, varicose SN-LI nerve fibers and terminals formed a pericellular network around many myenteric and submucous ganglion cells; the ganglionic neurons were lightly to moderately labeled. A population of ganglion cells in the dorsal root, nodose and trigeminal ganglia exhibited moderate-to-strong SN-LI. The detection of SN-LI in nerve fibers and somata of various sympathetic ganglia, enteric plexus and adrenal medulla and in somata of the sensory ganglia implies an extensive involvement of this peptide in sympathetic, enteric and sensory signal processing.  相似文献   

9.
Previous electrophysiological studies have revealed a peripheral sensory input to the stellate ganglion which does not originate from the dorsal root ganglia. The present retrograde tracing study aimed at evaluating whether the parent cell bodies are located in the periphery, i.e. in mediastinal ganglia. Following injection of Fast blue or wheat germ agglutinin-horseradish peroxidase into the right stellate ganglion of the guinea pig, retrogradely labelled cell bodies were observed in the intermediolateral and intercalated nuclei of the spinal cord as well as in dorsal root ganglia at segmental levels C8 to T6. In another case, the stellate ganglion was resected and replaced by a sponge soaked with 10 μl of Fast blue. Labelling of preganglionic and sensory neurons parallelled that obtained by tracer injections. In neither case, however, were retrogradely labelled neurons found within or around the thoracic viscera (thymus, trachea, bronchi, esophagus, heart, great vessels of upper mediastinum) when these were cut serially en bloc. Controls performed by injection of Fast blue into the inferior mesenteric ganglion and investigation of the distal colon showed that our experimental protocol was able to visualize a peripheral projection towards a sympathetic ganglion — in this case from myenteric ganglia to the inferior mesenteric ganglion. We conclude that, in contrast to the circuitry connecting prevertebral sympathetic ganglia with the gut, the neuronal cell bodies providing peripheral sensory input from thoracic viscera to the right stellate ganglion most likely are not located within the mediastinal ganglia. Instead, they may reside within the stellate ganglion itself.  相似文献   

10.
The location of the extrinsic efferent and afferent nerve cell bodies to the mucosa, submucosa, and tunica muscularis of the cardiac, gastric, and pyloric gland regions of the ventral stomach and to the mucosa-submucosa alone of these 3 glandular gastric regions was determined using the horseradish peroxidase technique. All animals of the study demonstrated labeling bilaterally in the rostrocaudal extent of the dorsal motor nucleus of the vagus nerve (DMV) although mucosa-submucosa injections resulted in fewer labeled cells in the DMV. There was no evidence of viscerotopic organization within the DMV for the different gastric regions. However, the left nucleus generally contained a greater number of labeled cells than the right nucleus. Injection of the mucosa, submucosa, and tunica muscularis of the cardiac gland region also resulted in labeling in the nucleus ambiguus in 4 of 5 animals. The vast majority of labeled postganglionic sympathetic neurons were found in the celiacomesenteric ganglion. Labeled cells were also located variously in the stellate ganglion, middle cervical ganglion, and sympathetic trunk ganglia for the different groups. There was no discernible pattern of localization of labeled cells within a sympathetic ganglion. For the stomach, afferent labeled cells were located in the range of the first thoracic to fourth lumbar spinal ganglia and the nodose ganglia, bilaterally. As with sympathetic neurons, there was no discernible pattern of localization of labeled cells within a sensory ganglion.  相似文献   

11.
The sympathetic trunks in Myotis lucifugus are each characterized by three unusually prominent ganglia: the superior cervical, the stellate and a “large lumbar” ganglion. The superior cervical appears to distribute only to the head region. The cervical sympathetic trunk connects with the vagus nerve but not to the cervical spinal nerves. The stellate is the largest of the trunk ganglia. A prominent nerve arising from it follows the vertebral artery. This vertebral nerve connects with the second to the seventh, and sometimes the eighth, cervical spinal nerves. Another prominent branch from this ganglion follows the cervical artery to ramify in the interscapular brown fat pad. The stellate ganglion supplies the brachial plexus directly and via the vertebral nerve. Its branches also supply thoracic viscera important for arousal from hibernation as well as for flight. The large lumbar ganglion contributes very few fibers to abdominal or pelvic viscera but, via the lumbosacral plexus, may affect vasoconstriction in the pelvic wall and posterior extremities. The prominent prevertebral ganglia in the abdomen and pelvis, which include an adrenal-;renal complex, are probably supplied by the tenth thoracic to second lumbar spinal nerves.  相似文献   

12.
The middle cervical ganglion (MCG) was decentralized in 30 dogs by cutting the thoracic vagus and rami on one side. Two or more cardiopulmonary nerves were then dissected free and placed on bipolar stimulating and recording electrodes in mineral-oil baths. Stimulation of one cardiopulmonary nerve generated a compound action potential (CAP) in one or two others. The CAP was altered by changing the frequency of stimulation and by stimulating preganglionic fibers in the rami. These alterations displayed latency changes and temporal summation or inhibition. The ansae were sectioned to neurally isolate the MCG from the stellate ganglion. A CAP generated after blockade by hexamethonium, atropine, propranolol and phentolamine was abolished transiently by chymotrypsin, and for longer periods by manganese, injected locally into the MCG. These results suggest that a CAP that is generated by stimulating one cardiopulmonary nerve in a decentralized MCG and recorded from another may result from synaptic activity in the MCG and that complex neuronal interactions occur within the MCG.  相似文献   

13.
Neuropeptide-like immunoreactivity to antisera raised against Leu- and Met-enkephalin, vasoactive intestinal peptide (VIP), neuropeptide Y (NPY) and substance P (SP) have been studied immunohistochemically in middle cervical and stellate ganglia of dogs. To investigate the relationship of the peptides to one another as well as to preganglionic and postganglionic neurons, intact and chronically decentralized middle cervical and stellate ganglia were studied. Ganglia were processed for immunohistochemistry in unoperated dogs and in dogs two weeks after unilateral ganglionic decentralization. The immunoreactivity for each peptide had a characteristic distribution in the ganglia. These distributions differed from one another and from the distribution of cardiac postganglionic sympathetic neurons. Camera lucida drawings of peptide distributions were made to compare different peptides and counts were made to determine the percentages of cells immunoreactive for a given peptide. The results demonstrated that enkephalin-like immunoreactivity in axons was present in both the stellate and middle cervical ganglia, but was heaviest in the caudal 2/3 of the stellate ganglia. Enkephalin-like immunoreactive fibers formed pericellular baskets around stellate ganglion neurons. VIP-like immunoreactive cell bodies and processes were distributed sparsely, but widely, in the stellate ganglia and to a lesser extent in the middle cervical ganglia. One of two commercial antisera to SP resulted in immunoreactive staining of cell bodies and processes in the stellate ganglia. SP-like immunoreactivity in neurons represented about 10% or less of the cells in the stellate ganglia. At least 80-85% of the neurons in the stellate and middle cervical ganglia were immunoreactive for NPY antisera. Decentralization eliminated enkephalin-like immunoreactive staining in the middle cervical and stellate ganglia, but not the VIP-, NPY- and SP-like immunoreactive staining of neurons in these ganglia. In summary, the enkephalin-like immunoreactive axons in the thoracic autonomic ganglia appear to be derived from extrinsic neurons, most likely from preganglionic spinal neurons. VIP-, SP- and NPY-like immunoreactivity were not significantly affected by decentralization. The results provide anatomical evidence for substrates related to neuropeptidergic synaptic mechanisms in thoracic autonomic ganglia.  相似文献   

14.
Gamma-aminobutyric acid (GABA)-containing fibers have been observed in the rat superior cervical ganglion (SCG) and, to a lesser extent, in the stellate ganglion (STG). The aim of present study is to clarify the source of these fibers. No cell body showed mRNAs for glutamic acid decarboxylases (GADs) or immunoreactivity for GAD of 67 kDa (GAD67) in the cervical sympathetic chain. Thus, GABA-containing fibers in the ganglia are suggested to be of extraganglionic origin. GAD67-immunoreactive fibers were found not in the dorsal roots or ganglia, but in the ventral roots, so GABA-containing fibers in the sympathetic ganglia were considered to originate from the spinal cord. Furthermore, almost all GAD67-immunoreactive fibers in the sympathetic ganglia showed immunoreactivity for vesicular acetylcholine transporter, suggesting that GABA was utilized by some cholinergic preganglionic neurons. This was confirmed by the following results. 1) After injection of Sindbis/palGFP virus into the intermediolateral nucleus, some anterogradely labeled fibers in the SCG were immunopositive for GAD67. 2) After injection of fluorogold into the SCG, some retrogradely labeled neurons in the thoracic spinal cord were positive for GAD67 mRNA. 3) When the ventral roots of the eighth cervical to the fourth thoracic segments were cut, almost all GAD67- and GABA-immunoreactive fibers disappeared from the ipsilateral SCG and STG, suggesting that the vast majority of GABA-containing fibers in those ganglia were of spinal origin. Thus, the present findings strongly indicate that some sympathetic preganglionic neurons are not only cholinergic but also GABAegic.  相似文献   

15.
16.
The superior cervical ganglion of rats contains a considerable number of nerve fibers with GABA-like immunoreactivity which show a nonuniform distribution within the ganglion. The topography of these fibers has been analyzed by using antibodies raised against GABA-BSA-glutaraldehyde complexes. GABA-positive axons and axon varicosities accumulated around a subpopulation of principal ganglion cells forming basketlike patterns. These neurons richly innervated by GABA-positive axons (RIG-neurons) in turn were aggregated in patches with strong immunoreactivity. The size and packing density of the patches containing RIG-neurons and GABA-positive axons approaching them had rostral-to-caudal and medial-to-lateral gradients. Similar patterns were found in right and left ganglia. In five ganglia, a quantitative analysis revealed on average 1,344 RIG-neurons per ganglion representing about 5% of the total neuron population, with small variations (standard deviation 122) despite the highly variable shape of the ganglia. The distribution of RIG-neurons resembles that of neurons sending their axons into the internal carotid nerve. To check this possible correlation, HRP was injected into the eye and applied to the transected external carotid nerve. Double staining for the retrogradely transported peroxidase and GABA immunohistochemistry revealed that RIG-neurons formed a small subpopulation of retrogradely labelled neurons in both experiments. This suggests that RIG-neurons innervate various target organs. This conclusion is in agreement with the observation that RIG-neurons also exist in other sympathetic ganglia. Data presented suggest that sympathetic ganglion cells can be classified on the basis of non-uniform innervation patterns formed by axons that use different neurotransmitters.  相似文献   

17.
The localization of the sympathetic postganglionic neurons innervating the cat heart has been investigated by using retrograde axonal transport of horseradish peroxidase (HRP). HRP was injected into the subepicardial layers of 4 different cardiac regions. The animals were sacrificed 72-96 h later and fixed by perfusion via the left ventricle. The paravertebral sympathetic ganglia from the superior cervical, middle cervical and stellate ganglia to T10 ganglia were removed and processed for HRP identification. Following injections of HRP into the apex of the heart, the sinoatrial (SA) nodal region and the ventral wall of the right ventricle, we observed that HRP-labeled sympathetic neurons were localized predominantly in the right stellate ganglia, and to a lesser extent, in the right superior and middle cervical ganglia, and left stellate ganglia. Fewer labeled cells were found in the right T4-T6. T8 and T9. After HRP injection into the dorsal wall of the left ventricle, HRP-labeled cells were present mainly in the left stellate ganglia.  相似文献   

18.
The distribution of sensory cells whose axons traverse the stellate ganglion and project via sympathetic cardiac nerves to the heart of the cat has been examined quantitatively. Horseradish peroxidase (HRP) injected at multiple sites in the right stellate ganglion, or applied to the middle cardiac nerve, labelled small numbers of cells in the thoracic dorsal root ganglia (DRG) from T1 to T8. These cells were most numerous between T2 and T5 and were consistently small (< 40 μm) relative to other cells in the DRG. When HRP was applied to middle cardiac nerves, the numbers of labelled sensory cells always exceeded the numbers of myelinated axons counted in the same nerves from other cats. It is concluded that the distribution of the cells of cardiac sensory fibres is more extensive within thoracic DRG than has been previously reported, and it is suggested that such fibres travelling in the sympathetic cardiac nerves may be either myelinated or unmyelinated.  相似文献   

19.
Location of superior cervical ganglion (SCG) neurons, sending axons into the facial and hypoglossal nerves, was investigated in the cat by means of retrograde axonal transport of horseradish peroxidase (HRP). After wheat germ agglutinin conjugated HRP (WGA-HRP) was injected into these nerves, many retrogradely labeled neurons were found widely in the ipsilateral SCG, particularly around the caudal half of the SCG. These neurons were round or oval in shape and 70-80% of these were medium in size. In fluorescent experiments, fast blue (FB) was used in combination with diamidino yellow (DY). After injections of FB into the facial nerve and DY into the hypoglossal nerve, a few FB-DY double-labeled neurons occurred in the SCG ipsilaterally.  相似文献   

20.
Afferent fibers mediating pain from myocardial ischemia classically are believed to travel in sympathetic nerves to enter the thoracic spinal cord. After sympathectomies, angina pectoris still may radiate to the neck and inferior jaw. Sensory fibers from those regions are thought to enter the central nervous system through upper spinal cord segments. We postulated that axons from nodose ganglion cells might project to cervical cord segments. The purpose of this study was to determine the density and pathway of vagal afferent innervation to the upper cervical spinal cord. Following an injection of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the upper cervical spinal cord, approximately 5.8% of cells in the nodose ganglion contained reaction product. Cervical vagotomy did not diminish the density of WGA-HRP labeled cells in the nodose ganglion. However, a spinal cord hemisection cranial to the injection site eliminated labeling of nodose cells. These data indicate that a portion of vagal afferent neurons project from the nodose ganglion to the upper cervical spinal cord. In addition, vagal afferent fibers reach the spinal cord via a central route rather than through dorsal root ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号