首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that activation of the ATP-gated ion channel subtype P2X(4) receptors (P2X(4)Rs) in the spinal cord, the expression of which is upregulated in microglia after nerve injury, is necessary for producing neuropathic pain. The upregulation of P2X(4)Rs in microglia is, therefore, a key process in neuropathic pain, but the mechanism remains unknown. Here, we find a fibronectin/integrin-dependent mechanism in the upregulation of P2X(4)Rs. Microglia cultured on dishes coated with fibronectin, an extracellular matrix molecule, expressed a higher level of P2X(4)R protein when compared with those cultured on control dishes. The increase was suppressed by echistatin, a peptide that selectively blocks beta(1) and beta(3)-containing integrins, and with a function-blocking antibody of beta(1) integrin. In in vivo studies, the upregulation of P2X(4)Rs in the spinal cord after spinal nerve injury was significantly suppressed by intrathecal administration of echistatin. Tactile allodynia in response to nerve injury and intrathecal administration of ATP- and fibronectin-stimulated microglia was inhibited by echistatin. Furthermore, intrathecal administration of fibronectin in normal rats increased the level of P2X(4)R protein in the spinal cord and produced tactile allodynia. Moreover, the fibronectin-induced allodynia was not observed in mice lacking P2X(4)R. Taken together with the results of our previous study showing an increase in the spinal fibronectin level after nerve injury, the present results suggest that the fibronectin/integrin system participates in the upregulation of P2X(4)R expression after nerve injury and subsequent neuropathic pain.  相似文献   

2.
Neuropathic pain, a debilitating chronic pain following nerve damage, is a reflection of the aberrant functioning of a pathologically altered nervous system. One hallmark is abnormal pain hypersensitivity to innocuous stimuli (tactile allodynia), for which effective therapy is lacking, and the underlying mechanisms of which remain to be determined. Here we show that Lyn, a member of the Src family kinases (SFKs), plays an important role in the pathogenesis of neuropathic pain. Nerve injury, but not peripheral inflammation, increased immunoreactivity for active SFKs that were autophosphorylated in the kinase domain (phospho-SFK-IR) in spinal microglia. In spinally derived microglial cells, we identified Lyn as the predominant SFK among the five members (Src, Fyn, Yes, Lck, and Lyn) known to be expressed in the CNS. Lyn expression in the spinal cord was highly restricted to microglia, and its level was increased after nerve injury. We found that mice lacking lyn (lyn(-/-)) exhibit a striking reduction in the levels of phospho-SFK-IR and tactile allodynia after nerve injury, without any change in basal mechanical sensitivity or inflammatory pain. Importantly, lyn(-/-) mice displayed impaired upregulation of the ionotropic ATP receptor subtype P2X(4) receptors (P2X(4)R) in the spinal cord after nerve injury, which is crucial for tactile allodynia. Microglial cells from lyn(-/-) mice showed a deficit in their ability to increase P2X(4)R expression in response to fibronectin, a factor implicated as a microglial P2X(4)R upregulator in allodynia. Together, our findings suggest that Lyn may be a critical kinase mediating nerve injury-induced P2X(4)R upregulation and neuropathic pain.  相似文献   

3.
Accumulating evidence suggests that microglial cells in the spinal cord play an important role in the development of neuropathic pain. However, it remains largely unknown how glia interact with neurons in the spinal cord after peripheral nerve injury. Recent studies suggest that the chemokine fractalkine may mediate neural/microglial interaction via its sole receptor CX3CR1. We have examined how fractalkine activates microglia in a neuropathic pain condition produced by spinal nerve ligation (SNL). SNL induced an upregulation of CX3CR1 in spinal microglia that began on day 1, peaked on day 3, and maintained on day 10. Intrathecal injection of a neutralizing antibody against CX3CR1 suppressed not only mechanical allodynia but also the activation of p38 MAPK in spinal microglia following SNL. Conversely, intrathecal infusion of fractalkine produced a marked p38 activation and mechanical allodynia. SNL also induced a dramatic reduction of the membrane-bound fractalkine in the dorsal root ganglion, suggesting a cleavage and release of this chemokine after nerve injury. Finally, application of fractalkine to spinal slices did not produce acute facilitation of excitatory synaptic transmission in lamina II dorsal horn neurons, arguing against a direct action of fractalkine on spinal neurons. Collectively, our data suggest that (a) fractalkine cleavage (release) after nerve injury may play an important role in neural-glial interaction, and (b) microglial CX3CR1/p38 MAPK pathway is critical for the development of neuropathic pain.  相似文献   

4.
Ketamine is an important analgesia clinically used for both acute and chronic pain. The acute analgesic effects of ketamine are generally believed to be mediated by the inhibition of NMDA receptors in nociceptive neurons. However, the inhibition of neuronal NMDA receptors cannot fully account for its potent analgesic effects on chronic pain because there is a significant discrepancy between their potencies. The possible effect of ketamine on spinal microglia was first examined because hyperactivation of spinal microglia after nerve injury contributes to neuropathic pain. Optically pure S-ketamine preferentially suppressed the nerve injury-induced development of tactile allodynia and hyperactivation of spinal microglia. S-Ketamine also preferentially inhibited hyperactivation of cultured microglia after treatment with lipopolysaccharide, ATP, or lysophosphatidic acid. We next focused our attention on the Ca(2+)-activated K(+) (K(Ca)) currents in microglia, which are known to induce their hyperactivation and migration. S-Ketamine suppressed both nerve injury-induced large-conductance K(Ca) (BK) currents and 1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS1619)-induced BK currents in spinal microglia. Furthermore, the intrathecal administration of charybdotoxin, a K(Ca) channel blocker, significantly inhibited the nerve injury-induced tactile allodynia, the expression of P2X(4) receptors, and the synthesis of brain-derived neurotrophic factor in spinal microglia. In contrast, NS1619-induced tactile allodynia was completely inhibited by S-ketamine. These observations strongly suggest that S-ketamine preferentially suppresses the nerve injury-induced hyperactivation and migration of spinal microglia through the blockade of BK channels. Therefore, the preferential inhibition of microglial BK channels in addition to neuronal NMDA receptors may account for the preferential and potent analgesic effects of S-ketamine on neuropathic pain.  相似文献   

5.
We have learned various data on the role of purinoceptors (P2X4, P2X7, P2Y6 and P2Y12) expressed in spinal microglia and several factors that presumably activate microglia in neuropathic pain after peripheral nerve injury. Purinergic receptor-mediated spinal microglial functions make a critical contribution to pathologically enhanced pain processing in the dorsal horn. Microglial purinoceptors might be promising targets for treating neuropathic pain. A predicted therapeutic benefit of interfering with microglial purinergic receptors may be that normal pain sensitivity would be unaffected since expression or activity of most of these receptors are upregulated or enhanced predominantly in activated microglia in the spinal cord where damaged sensory fibers project.  相似文献   

6.
Tetanic stimulation of the sciatic nerve (TSS) produces long-term potentiation (LTP) of C-fiber-evoked field potentials in the spinal cord. This potentiation is considered to be a substrate for long-lasting sensitization in the spinal pain pathway. Because microglia have previously been shown to regulate the induction of spinal LTP, we hypothesize that P2X7 receptors (P2X7R), which are predominantly expressed in microglia and participate in the communication between microglia and neurons, may play a role in this induction. This study investigated the potential roles of P2X7Rs in spinal LTP and persistent pain induced by TSS in rats. OxATP or BBG, a P2X7R antagonist, prevented the induction of spinal LTP both in vivo and in spinal cord slices in vitro and alleviated mechanical allodynia. Down-regulation of P2X7Rs with P2X7-siRNA blocked the induction of spinal LTP and inhibited mechanical allodynia. Double immunofluorescence showed colocalization of P2X7Rs with the microglial marker OX-42, but not with the astrocytic marker GFAP or the neuronal marker NeuN. Intrathecal injection of BBG suppressed the up-regulation of microglial P2X7Rs and increased expression of Fos in the spinal superficial dorsal horn. Further, pre-administration of BBG inhibited increased expression of the microglial marker Iba-1, phosphorylated p38 (p-p38), interleukin 1β (IL-1β) and GluR1 following TSS. Pre-administration of the IL-1 receptor antagonist (IL-1ra) blocked both the induction of spinal LTP and the up-regulation of GluR1. These results suggest that microglial P2X7Rs and its downstream signaling pathways play a pivotal role in the induction of spinal LTP and persistent pain induced by TSS.  相似文献   

7.
Neuropathic pain is an expression of pathological operation of the nervous system, which commonly results from nerve injury and is characterized by pain hypersensitivity to innocuous stimuli, a phenomenon known as tactile allodynia. The mechanisms by which nerve injury creates tactile allodynia have remained largely unknown. We report that the development of tactile allodynia following nerve injury requires activation of p38 mitogen-activated protein kinase (p38MAPK), a member of the MAPK family, in spinal microglia. We found that immunofluorescence and protein levels of the dually phosphorylated active form of p38MAPK (phospho-p38MAPK) were increased in the dorsal horn ipsilateral to spinal nerve injury. Interestingly, the phospho-p38MAPK immunofluorescence in the dorsal horn was found exclusively in microglia, but not in neurons or astrocytes. The level of phospho-p38MAPK immunofluorescence in individual microglial cells was much higher in the hyperactive phenotype in the ipsilateral dorsal horn than the resting one in the contralateral side. Intrathecal administration of the p38MAPK inhibitor, 4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580), suppresses development of the nerve injury-induced tactile allodynia. Taken together, our results demonstrate that nerve injury-induced pain hypersensitivity depends on activation of the p38MAPK signaling pathway in hyperactive microglia in the dorsal horn following peripheral nerve injury.  相似文献   

8.
P2X7 receptor is an important member of ATP-sensitive ionotropic P2X receptors family, which includes seven receptor subtypes (P2X1-P2X7). Recent evidence indicates that P2X7R participates in the onset and persistence of neuropathic pain. In tetanic stimulation of the sciatic nerve model, P2X7R was involved in the activation of microglia, but whether this happens in other neuropathic pain models remains unclear. In this study we used immunohistochemistry and Western blot to explore the relationship of P2X7R expression with microglia activation, and with mechanical allodynia and thermal hypersensitivity in the chronic constriction of the sciatic nerve (CCI) rat model. The results show that following nerve ligature, mechanical allodynia and thermal hypersensitivity were developed within 3 days (d), peaked at 14 d and persisted for 21 d on the injured side. P2X7R levels in the ipsilateral L4-6 spinal cord were increased markedly after injury and the highest levels were observed on day 14, significant difference was observed at I-IV layers of the dorsal horn. The change in P2X7R levels in the spinal cord was consistent with the development of mechanical allodynia and thermal hypersensitivity. Intrathecal administration of the P2X7R antagonist Brilliant Blue G (BBG) reversed CCI-induced mechanical allodynia and thermal hypersensitivity. Double-labeled immunofluorescence showed that P2X7R expression were restricted to microglia, spinal microglia were activated after nerve injury, which was inhibited by BBG. These results indicated that spinal P2X7R mediate microglia activation, this process may play an important role in development of mechanical allodynia and thermal hypersensitivity in CCI model.  相似文献   

9.
ATP‐gated P2X4 receptor channels expressed in spinal microglia actively participate in central sensitization, making their functional regulation a key process in chronic pain pathologies. P2Y6 metabotropic Gq‐coupled receptors, also expressed in microglia, are involved in the initial response to nerve injury, triggering phagocytosis upon activation by UDP. It has been reported recently that expression of both P2X4 and P2Y6 is upregulated in activated microglia following nerve injury. We show here, in resting as well as LPS‐activated primary microglia, that P2Y6 decreases P2X4‐mediated calcium entry and inhibits the dilation of P2X4 channels into a large‐conductance pore measured with a YO‐PRO‐1 uptake assay. Furthermore, P2Y6 activation modulates the ATP‐dependent migration of microglia, a process likely involved in their shift from migratory to phagocytic phenotype. Reconstituting the P2X4‐P2Y6 interaction in recombinant systems shows that P2Y6 activation decreases P2X4 current amplitude, activation and desensitization rates, and reduces P2X4 channel permeability to the large cation NMDG+. Phospholipase C‐mediated hydrolysis of the phosphoinositide PI(4,5)P2, a necessary cofactor for P2X4 channel function, underlies this inhibitory crosstalk. As extracellular levels of both ATP and UDP are increased in the spinal cord following nerve injury, the control of P2X4 activity by P2Y6 might play a critical role in regulating neuropathic pain‐inducing microglial responses. GLIA 2013;61:2038–2049  相似文献   

10.
Neuropathic pain induced by sciatic nerve injury not only causes peripheral dysfunctions but also affects the cortical and subcortical regions of the brain. It is still unknown whether neuropathic pain could relate to behavioral and neurochemical alterations in the central nervous system. This paper deals with the effect of peripheral neuropathic pain on mechanical allodynia, neuropeptide levels, neuropeptide-degrading enzyme activities, and microglial cells in the brain regions of rats by applying chronic constriction injury, a partial sciatic nerve injury. We examined the possible protection effect on the allodynia and changes in levels of neuropeptides and microglial activation in chronic constriction injury of the rat brain by memantine. On 4 days after chronic constriction injury, the induction of mechanical allodynia was suppressed by memantine treatment. Reductions in the substance P in the hypothalamus and somatostatin in the periaqueductal gray of chronic constriction injury rat brain were reversed by memantine. This suggests the role of these neuropeptides in pain information processing in the brain. Immunohistochemical experiments revealed that the expression of CD11b, a marker protein of microglia, was increased in the hypothalamus and periaqueductal gray in the chronic constriction injury rat brain as compared with the controls, and memantine treatment could suppress the activation of microglia, suggesting the involvement of microglia in pain mechanism. The present behavioral, biochemical, and immunohistochemical studies demonstrated that peripheral neuropathic pain affects the neuropeptide levels and microglial activation in the brain regions, and these events described above may play an important role in neuropathic pain pathogenesis.  相似文献   

11.
Kobayashi K  Yamanaka H  Yanamoto F  Okubo M  Noguchi K 《Glia》2012,60(10):1529-1539
A prominent signaling pathway in the development of neuropathic pain involves ATP acting on microglial purinergic receptors. Among the P2Y metabotropic receptors, we reported before that the P2Y12 receptor is upregulated in microglia following nerve injury and involved in the phosphorylation of p38 MAPK, and in the development of pain behavior. In this study, we examined the expression of P2Y6, P2Y13, and P2Y14 receptors in the spinal cord and whether these receptors are involved in the pathogenesis of neuropathic pain following peripheral nerve injury. We found that spared nerve injury induced a dramatic increase of not only P2Y12, but also P2Y6, 13, and 14 receptor mRNA expression in spinal microglia. The increase continued for at least 2 weeks after injury. To determine whether p38 MAPK can induce the expression of P2Y receptors, we administered intrathecally the p38 MAPK inhibitor SB203580 and found that it significantly suppressed P2Y6, P2Y13, and P2Y14 but not P2Y12 mRNAs. Intrathecal injection of the specific P2Y6 antagonist MRS2578, specific P2Y13 antagonist MRS2211 or P2Y14 antisense LNA, attenuated mechanical pain hypersensitivity. Themixture of three antagonists for P2Y6, 12, and 13 showed a longer suppressive effect on pain behavior than the individual treatments. Our data demonstrate that ATP and other nucleotides may stimulate activated microglia with the upregulation of P2Y6, P2Y12, P2Y13, and P2Y14 receptors following nerve injury and these receptors are involved in the development of neuropathic pain. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Microglia were described by Pio del Rio-Hortega (1932) as being the 'third element' distinct from neurons and astrocytes. Decades after this observation, the function and even the very existence of microglia as a distinct cell type were topics of intense debate and conjecture. However, considerable advances have been made towards understanding the neurobiology of microglia resulting in a radical shift in our view of them as being passive bystanders that have solely immune and supportive roles, to being active principal players that contribute to central nervous system pathologies caused by disease or following injury. Converging lines of evidence implicate microglia as being essential in the pathogenesis of neuropathic pain, a debilitating chronic pain condition that can occur after peripheral nerve damage caused by disease, infection, or physical injury. A key molecule that modulates microglial activity is ATP, an endogenous ligand of the P2-purinoceptor family consisting of P2X ionotropic and P2Y metabotropic receptors. Microglia express several P2 receptor subtypes, and of these the P2X4, P2X7, and P2Y12 receptor subtypes have been implicated in neuropathic pain. The P2X4 receptor has emerged as the core microglia-neuron signaling pathway: activation of this receptor causes release of brain-derived neurotrophic factor (BDNF) which causes disinhibition of pain-transmission neurons in spinal lamina I. The present review highlights recent advances in understanding the signaling and regulation of P2 receptors expressed in microglia and the implications for microglia-neuron interactions for the management of neuropathic pain.  相似文献   

13.
Neuropathic pain produced by damage to or dysfunction of the nervous system is a common and severely disabling state that affects millions of people worldwide. Recent evidence indicates that activated microglia are key cellular intermediaries in the pathogenesis of neuropathic pain and that ATP serves as the mediator. However, the in vivo mechanism underlying the retention of activated microglia in the injured region has not yet been completely elucidated. Prostaglandin E(2) (PGE(2)) is the principal proinflammatory prostanoid and plays versatile roles by acting via four PGE receptor subtypes, EP1-EP4. In the present study, we investigated the role of PGE(2) in spinal microglial activation in relation to neuropathic pain by using genetic and pharmacological methods. Mice deficient in microsomal prostaglandin E synthase-1 impaired the activation of microglia and the NMDA-nitric oxide (NO) cascade in spinal neurons in the dorsal horn and did not exhibit mechanical allodynia after peripheral nerve injury. The intrathecal injection of indomethacin, a nonsteroidal anti-inflammatory drug, ONO-8713, a selective EP1 antagonist, or 7-nitroindole, a neuronal NO synthase inhibitor, attenuated mechanical allodynia and the increase in activated microglia observed in the established neuropathic-pain state. We further demonstrated that ATP-induced microglial migration was blocked in vitro by PGE(2) via EP2 and by S-nitrosoglutathione, an NO donor. Taken together, the present study suggests that PGE(2) participated in the maintenance of neuropathic pain in vivo not only by activating spinal neurons, but also by retaining microglia in the central terminals of primary afferent fibers via EP2 subtype and via EP1-mediated NO production.  相似文献   

14.
Microglia, the resident immune cells of the central nervous system, responds to brain disarrangements by becoming activated to contend with brain damage. Here we show that the expression of P2X4 receptors is upregulated in inflammatory foci and in activated microglia in the spinal cord of rats with experimental autoimmune encephalomyelitis (EAE) as well as in the optic nerve of multiple sclerosis patients. To study the role of P2X4 receptors in microgliosis, we activated microglia with LPS in vitro and in vivo. We observed that P2X4 receptor activity in vitro was increased in LPS‐activated microglia as assessed by patch‐clamp recordings. In addition, P2X4 receptor blockade significantly reduced microglial membrane ruffling, TNFα secretion and morphological changes, as well as LPS‐induced microglial cell death. Accordingly, neuroinflammation provoked by LPS injection in vivo induced a rapid microglial loss in the spinal cord that was totally prevented or potentiated by P2X4 receptor blockade or facilitation, respectively. Within the brain, microglia in the hippocampal dentate gyrus showed particular vulnerability to LPS‐induced neuroinflammation. Thus, microglia processes in this region retracted as early as 2 h after injection of LPS and died around 24 h later, two features which were prevented by blocking P2X4 receptors. Together, these data suggest that P2X4 receptors contribute to controlling the fate of activated microglia and its survival.GLIA 2014;62:171–184  相似文献   

15.
Neuropathic pain is a devastating neurological disease that seriously affects quality of life in patients. The mechanisms leading to the development and maintenance of neuropathic pain are still poorly understood. However, recent evidence points towards a role of spinal microglia in the modulation of neuronal mechanisms. In this context, cannabinoids are thought to modulate synaptic plasticity as well as glial functions. Here, we have investigated the effect of chronic treatment with a selective agonist of cannabinoid type 2 receptor (CB2), 1-(2′,4′-dichlorophenyl)-6-methyl-N-cyclohexylamine-1,4-dihydroindeno[1,2-c]pyrazole-3 carboxamide (NESS400), on pain thresholds in the spared nerve injury (SNI) model in the mouse and on the distribution and activation of spinal microglia. Repeated treatment with NESS400 (4 mg/kg) significantly alleviated neuropathic mechanical allodynia and thermal hyperalgesia. In the dorsal horn (L4–L6) of neuropathic mice microglia activation (quantification of the length of microglial processes) and astrocytosis were associated with CB2 receptor over-expression on both cell types. Treatment with NESS400 significantly reduced the number of hypertrophic microglia while leaving microglial cell number unaffected and reduced astrogliosis. Moreover, prolonged administration of NESS400 reduced mRNA expression of pro-inflammatory markers and enhanced anti-inflammatory marker gene expression in dorsal horn extracts. In conclusion, we show that selective CB2 receptor stimulation prevents thermal hyperalgesia, alleviates mechanical allodynia and facilitates the proliferation of anti-inflammatory microglial phenotype in the ipsilateral dorsal horn of the spinal cord in SNI mice.  相似文献   

16.
Cyclooxygenase (COX) enzyme synthesizes prostaglandins (PGs) from arachidonic acid and exists as two major isozymes, COX‐1 and COX‐2. The crucial role of prostaglandins in the pathogenesis of inflammatory pain in peripheral tissue and the spinal cord has been established; however its expression dynamics after peripheral nerve injury and its role in neuropathic pain are not clear. In this study, we examined the detailed expression patterns of genes for COX, PGD2 and thromboxane A2 synthases and their receptors in the spinal cord. Furthermore, we explored the altered gene expression of these molecules using the spared nerve injury (SNI) model. We also examined whether these molecules have a role in the development or maintenance of neuropathic pain. We found a number of interesting results in this study, the first was that COX‐1 was constitutively expressed in the spinal cord and up‐regulated in microglia located in laminae I‐II after nerve injury. Second, COX‐2 mRNA expression was induced in blood vessels after nerve injury. Third, TXA2 synthase and hematopoietic PGD synthase mRNAs were dramatically increased in the microglia after nerve injury. Finally, we found that intrathecal injection of a COX‐1 inhibitor and DP2 receptor antagonist significantly attenuated the mechanical allodynia. Our findings indicate that PGD2 produced by microglia is COX‐1 dependent, and that neurons in the spinal cord can receive PGD2 from microglia following peripheral nerve injury. We believe that PGD2 signaling via DP2 signaling pathway from microglia to neurons is one of the triggering factors for mechanical allodynia in this neuropathic pain model.  相似文献   

17.
Shi XQ  Zekki H  Zhang J 《Glia》2011,59(2):231-241
Activation of macrophages/microglia via toll-like receptors (TLRs) plays an important role in inflammation and host defense against pathogens. Pathogen-associated molecular patterns bind TLRs, thereby triggering NF-κB signaling and production of proinflammatory cytokines. Recent data suggest that nonpathogenic molecules resulting from trauma can also trigger inflammation via TLRs. We sought to determine whether peripheral nerve injury could induce the expression of TLR2 on the site of injury-damaged nerves and/or in the central nervous system and to investigate whether TLR2 is necessary for the development of nerve injury-induced neuropathic pain. We observed a significant increase in TLR2, IκB-α, and TNF-α mRNAs in damaged nerves. Increased inflammation-related molecules were found essentially on ED1(+) macrophages. Expression of both IκB-α and TNF-α in peripheral injured nerves was reduced in TLR2 deficient mice where the recruitment of ED1(+) cells is significantly impaired. Although after peripheral nerve injury, spinal microglia became highly activated showing an increase in Iba-1 immunoreactivity and an enlargement of their cell bodies, neither TLR2 mRNA nor IκB-α mRNA was detected in activated microglia. Nerve injury-evoked spinal microglial activation was not significantly altered in TLR2 KO mice. Paw withdrawal threshold and latency in response to mechanical and heat stimuli, respectively, decreased shortly after nerve lesion in wild type mice. In TLR2 KO mice, nerve injury-induced thermal hyperalgesia was completely abolished contrary to that seen in wild-type mice, whereas mechanical allodynia was partially reduced. We suggest that TLR2 is necessary for the development of neuropathic pain and its contribution is more important in thermal hypersensitivity than that of mechanical allodynia.  相似文献   

18.
Spinal cord injury (SCI) impairs sensory systems causing chronic allodynia. Mechanisms underlying neuropathic pain have been more extensively studied following peripheral nerve injury (PNI) than after central trauma. Microglial activation, pro-inflammatory cytokine production and activation of p38 MAP kinase pathways may induce at-level allodynia following PNI. We investigated whether midthoracic SCI elicits similar behavioral and cellular responses below the level of injury (lumbar spinal cord; L5). Importantly, we show that anatomical connections between L5 and supraspinal centers remain intact after moderate SCI allowing direct comparison to a well-established model of peripheral nerve injury. We found that SCI elicits below-level allodynia of similar magnitude to at-level pain caused by a peripheral nerve injury. Moreover, the presence of robust microglial activation in L5 cord predicted allodynia in 86% of rats. Also increased phosphorylation of p38 MAP kinase occurred in the L5 dorsal horn of allodynic rats. For below-level allodynia after SCI, TNF-α and IL-1β increased in the L5 dorsal horn by 7 dpo and returned to baseline by 35 dpo. Interestingly, IL-6 remains at normal levels early after SCI and increases at chronic time points. Increased levels of pro-inflammatory cytokines also occurred in the thalamus after SCI-induced allodynia. These data suggest that remote microglial activation is pivotal in the development and maintenance of below-level allodynia after SCI. Fractalkine, a known activator of microglia, and astrocytes were not primary modulators of below-level pain. Although the mechanisms of remote microglial activation are unknown, this response may be a viable target for limiting or preventing neuropathic pain after SCI in humans.  相似文献   

19.
Of the seven P2X receptor subtypes, P2X4 receptor (P2X4R) is widely distributed in the central nervous system, including in neurons, astrocytes, and microglia. Accumulating evidence supports roles for P2X4R in the central nervous system, including regulating cell excitability, synaptic transmission, and neuropathic pain. However, little information is available about the distribution and function of P2X4R in the peripheral nervous system. In this study, we find that P2X4R is mainly localized in the lysosomes of Schwann cells in the peripheral nervous system. In cultured Schwann cells, TNF-a not only enhances the synthesis of P2X4R protein but also promotes P2X4R trafficking to the surface of Schwann cells. TNF-a-induced BDNF secretion in Schwann cells is P2X4R dependent. in vivo experiments reveal that expression of P2X4R in Schwann cells of injured nerves is strikingly upregulated following nerve crush injury. Moreover, overexpression of P2X4R in Schwann cells by genetic manipulation promotes motor and sensory functional recovery and accelerates nerve remyelination via BDNF release following nerve injury. Our results suggest that enhancement of P2X4R expression in Schwann cells after nerve injury may be an effective approach to facilitate the regrowth and remyelination of injured nerves.  相似文献   

20.
The reactivity of microglia within the spinal cord in response to nerve injury, has been associated with the development and maintenance of neuropathic pain. However, the temporal changes in microglial reactivity following nerve injury remains to be defined. Importantly, the magnitude of behavioural allodynia displayed and the relationship to the phenotypic microglial changes is also unexplored. Using a heterozygous CX3CR1 gfp+ transgenic mouse strain, we monitored microglial activity as measured by cell density, morphology, process movement and process length over 14 days following chronic constriction of the sciatic nerve via in vivo confocal microscopy. Uniquely this relationship was explored in groups of male mice which had graded nerve injury and associated graded behavioural mechanical nociceptive sensitivity. Significant mechanical allodynia was quantified from the ipsilateral hind paw and this interacted with the extent of nerve injury from day 5 to day 14 (p < 0.009). The extent of this ipsilateral allodynia was proportional to the nerve injury from day 5 to 14 (Spearman rho = −0.58 to −0.77; p < 0.002). This approach allowed for the assessment of the association of spinal microglial changes with the magnitude of the mechanical sensitivity quantified behaviourally. Additionally, the haemodynamic response in the somatosensory cortex was quantified as a surrogate measure of neuronal activity. We found that spinal dorsal horn microglia underwent changes unilateral to the injury in density (Spearman rho = 0.47; p = 0.01), velocity (Spearman rho = −0.68; p = 0.00009), and circularity (Spearman rho = 0.55; p = 0.01) proportional to the degree of the neuronal injury. Importantly, these data demonstrate for the first time that the mechanical allodynia behaviour is not a binary all or nothing state, and that microglial reactivity change proportional to this behavioural measurement. Increased total haemoglobin levels in the somatosensory cortex of higher-grade injured animals was observed when compared to sham controls suggesting increased neuronal activity in this brain region. The degree of phenotypic microglial changes quantified here, may explain how microglia can induce both rapid onset and sustained functional changes in the spinal cord dorsal horn, following peripheral injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号