首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Two genome scans for susceptibility loci for type 1 diabetes using large collections of families have recently been reported. Apart from strong linkage in both studies of the HLA region on chromosome 6p, clear consistent evidence for linkage was not observed at any other loci. One possible explanation for this is a high degree of locus heterogeneity in type 1 diabetes, and we hypothesised that the sex of affected offspring, age of diagnosis, and parental origin of shared alleles may be the bases of heterogeneity at some loci. METHODS: Using data from a genome wide linkage study of 356 affected sib pairs with type 1 diabetes, we performed linkage analyses using parental origin of shared alleles in subgroups based on (1) sex of affected sibs and (2) age of diagnosis. RESULTS: Among the results obtained, we observed that evidence for linkage to IDDM4 on chromosome 11q13 occurred predominantly from opposite sex, rather than same sex sib pairs. At a locus on chromosome 4q, evidence for linkage was observed in sibs where one was diagnosed above the age of 10 years and the other diagnosed below 10 years of age. CONCLUSIONS: We show that heterogeneity tests based on age of diagnosis, sex of affected subject, and parental origin of shared alleles may be helpful in reducing locus heterogeneity in type 1 diabetes. If repeated in other samples, these findings may assist in the mapping of susceptibility loci for type 1 diabetes. Similar analyses can be recommended in other complex diseases.  相似文献   

2.
Several candidate genes for non-insulin-dependent diabetes mellitus (NIDDM) map on chromosome 20, including the phosphoenolpyruvate carboxykinase gene (PCK1) and one of the maturity onset diabetes of the young genes (MODY1). Thus, we have investigated the entire long arm of chromosome 20. Linkage analyses were conducted in a total sample of 148 NIDDM families (301 NIDDM sib pairs) and in a subset of 42 early onset NIDDM families, where genetic components are likely to play a more important role (55 NIDDM sib pairs diagnosed at or before 45 years of age), using 10 highly polymorphic markers with an average map density of 7.5 cM. Using affected sib pair methods (two-point linkage and multipoint linkage analyses), significant results were obtained with the 20q13 region, in the vicinity of the PCK1 locus, only in the subset of 55 early onset NIDDM sib pairs (multipoint MLS = 2.74, P = 0.0004; MLS = 2.34, P = 0.0009 when using a conservative weighting procedure). Moreover, another region spanning the ribophorin II (RPNII, phospholipase C (PLC1) and adenosine deaminase (ADA) loci suggested linkage with NIDDM (multipoint MLS of 1.81 in all NIDDM sib pairs, P = 0.003; MLS = 1.31, P = 0.012 when using a conservative weighting procedure). Whereas our study suggests the location of a susceptibility locus for early onset NIDDM in the PCK1 gene region, further investigation in larger data sets is required to confirm these results and assess the role of other regions on chromosome 20q in human NIDDM.   相似文献   

3.
A full genome scan for age-related maculopathy   总被引:9,自引:0,他引:9  
Age-related macular degeneration or age-related maculopathy (ARM) is a major public health issue, as it is the leading cause of irreversible vision loss in the elderly in the Western world. Using three diagnostic models, we have genotyped markers in 16 plausible candidate regions and have carried out a genome-wide screen for ARM susceptibility loci. A panel of 225 ARM families comprising up to 212 affected sib pairs was genotyped for 386 markers. Under our most stringent diagnostic model, the regions with the strongest evidence of linkage were on chromosome 9 near D9S301 and on 10 near D10S1230, with peak multipoint heterogeneity LOD scores (HLOD) of 1.87 and 1. 42 and peak GeneHunter-Plus non-parametric LOD scores (GHP LOD) of 1. 69 and 1.83. After expanding our initial set of families to 364 ARM families with up to 329 affected sib pairs, the linkage signal on chromosome 9 vanished, while the chromosome 10 signal decreased to a GHP LOD of about 1.0, with a SimIBD P -value of 0.008 under the broadest diagnostic model with marker D10S1236. After error filtration, the GHP LOD increased to 1.27 under our most stringent model and 1.42 under our broadest model, peaking near D10S1236. This peak was seen consistently across all three diagnostic models. Our analyses also excluded up to nine different candidate regions and identified a few other regions of potential linkage, suitable for further studies. Of particular interest was the region on chromosome 5 near D5S1480, where a reasonable candidate gene, glutathione peroxidase 3, resides.  相似文献   

4.
Around 20 susceptibility loci for type 1 diabetes mellitus (T1DM) have been mapped. One of these loci, IDDM10, was found on chromosome 10p11-q11. Here, we investigated whether the IDDM10 locus contributes in the susceptibility to T1DM in a Russian family dataset. One hundred and fourteen simplex Russian families, each containing two siblings (one affected with T1DM diagnosed and one nondiabetic sibling), and 97 multiplex families, containing 106 affected full sibling pairs, were studied. Genomic DNA from the venous blood of the patients was genotyped by PCR using 12 microsatellites (D10S193, D10S548, D10S565, D10S586, D10S588, D10S675, D10S1243, D10S1426, D10S1733, D10S1772, D10S1780 and D10S1783) located on chromosome 10p11-q11. Using the multipoint linkage analysis, the region of suggestive linkage, with a multipoint logarithm of odds (LOD) ratio (MLS) value of more than 2.2, was found between markers D10S1733 and D10S1780, an area of 9.0 cM on the genetic map. The maximum linkage peak (MLS = 2.85 and nonparametric logarithm = 2.68) was observed between markers D11S565 and D11S1243. Using the transmission disequilibrium test, an association of these markers, D10S565 (P overall = 0.0082) and D10S1243 (P overall = 0.017), with T1DM was shown. These results suggest the evidence for the IDDM10 susceptibility locus on chromosome 10p11-q11.  相似文献   

5.
The KCNJ9 gene encodes a G-protein-coupled inwardly rectifying potassium channel and is located within a region on human chromosome 1 that has been linked with type 2 diabetes mellitus in Pima Indians and Caucasians. To assess the potential contribution of genetic alterations within KCNJ9 to diabetes susceptibility in the Pimas, we have genotyped 11 single nucleotide polymorphisms (SNPs) in 50 Pimas with diabetes and 50 Pimas over the age of 45 without diabetes and in 51 sib pairs, discordant for the disease, who were characterized by decreased allele sharing at the chromosomal location of the maximum LOD score. We detected three SNP clusters exhibiting distinct linkage disequilibria. Polymorphisms in intron 2, exon 3, and the 3'-UTR were in statistically significant linkage disequilibrium with diabetes in the case-control group (P = 0.006), but not the sibling pairs (P = 0.097). A weak association with diabetes was also found in the original linkage set comprising 1150 Pimas (odds ratio = 0.64/P = 0.079 for a dominant model and OR = 0.67/P = 0.005 for a recessive model). However, no effect on linkage was detected following adjustment for one of the most strongly associated SNPs in the entire original linkage set. Our results indicate that variants in KCNJ9 are associated with diabetes in Pimas but do not account for the linkage of 1q with diabetes in this population.  相似文献   

6.
Prostate cancer (PC) is one of the most common causes of cancer mortality in Western countries, and familial aggregation of PC is well known. Multiple PC susceptibility loci have been reported in Western countries, but attempts to confirm the loci in independent data sets have proven to be inconsistent. We performed a genomewide linkage analysis with 53 affected sib pairs to identify genetic loci related to PC in a Japanese population. Two linkage analyses, GENEHUNTER-PLUS and SIBPAL, were applied and detected nominal statistical significance of linkage to PC at chromosome 1p and 8p, which were reported as being loci for PC in Caucasians. The best evidence of linkage was detected near D8S550 on 8p23 (maximum Zlr=2.25, P=0.037), and the second-best evidence of linkage was observed near D1S2667 on 1p36 (maximum Zlr=2.24, P=0.034). This is the first genetic mapping of PC in Japanese, and the results suggest that susceptibilities to PC lie close to D8S550 on 8p23 and D1S2667 on 1p36.  相似文献   

7.
Previous attempts to identify genetic loci conferring risk for late-onset Alzheimer's disease (LOAD) through linkage analysis have observed some regions of linkage in common. However, due to the sometimes-considerable overlap between the samples, some of these reports cannot be considered to be independent replications. In order to assess the strength of the evidence for linkage and to obtain the best indication of the location of susceptibility genes, we have amalgamated three large samples to give a total of 723 affected relative pairs (ARPs). Multipoint, model-free ARP linkage analysis was performed. Genome-wide significant evidence for linkage was observed on 10q21.2 (LOD=3.3) and genome-wide suggestive evidence was observed on 9q22.33 (LOD=2.5) and 19q13.32 (LOD=2.0). One further region on 9p21.3 was identified with an LOD score>1. We observe no evidence to suggest that more than one locus is responsible for the linkage to 10q21.2, although this linked region may harbour more than one susceptibility gene. Evidence of allele-sharing heterogeneity between the original collection sites was observed on chromosome 9 but not on chromosome 10 or 19. Evidence for an interaction was observed between loci on chromosomes 10 and 19. Where samples overlapped, the genotyping consistency was high, estimated to average at 97.3%. Our large-scale linkage analysis consolidates clear evidence for a susceptibility locus for LOAD on 10q21.2.  相似文献   

8.
Over the last few years several studies of linkage between non-HLA loci and type 1 diabetes mellitus have mapped several putative susceptibility genes on chromosome 6q; in fact, positive evidence of linkage and/or association of IDDM5 (6q25), IDDM8 (6q27) and IDDM15 (6q21) with type 1 diabetes has been reported. We have studied these loci in diabetic families of Basque origin, a genetically homogeneous population, to avoid artifactual association results due to admixture within the sample analysed. Statistical analyses of linkage were performed using a transmission disequilibrium test (TDT). We could not confirm linkage for IDDM5, IDDM8 and IDDM15 in our population, possibly due to population-specific differences in genetic susceptibility and/or environmental triggering factors to type 1 diabetes.  相似文献   

9.
Body mass index (BMI) is used as a measure of fatness. Here we performed a genome-wide scan for genes related to BMI, while allowing for the possible effects of imprinting. We applied a sib pair linkage analysis to a sample of primarily children and young adults by using the Haseman-Elston method, which we modified to model the separate effects of paternally and maternally derived genetic factors. After stratification of sib pairs according to age, a number of regions showing linkage with BMI were identified. Most linkage and imprinting effects were found in children 5-11 years of age. Strongest evidences for linkage in children were found on chromosome 20 at 20p11.2-pter near the marker D20S851 (LOD(Total)=4.08, P=0.000046) and near the marker D20S482 (LOD(Total) =3.55, P=0.00016), and Chromosome 16 at 16p13 near the marker ATA41E04 (LOD(Total) =3.12, P=0.00025), and those loci did not show significant evidence for imprinting. Six regions showing evidence of imprinting were 3p23-p24 (paternal expression), 4q31.1-q32 (maternal expression), 10p14-q11 (paternal expression), and 12p12-pter (paternal expression) in children, and 4q31-qter (paternal expression) and 8p (paternal expression) in adults.  相似文献   

10.
Autism is characterized by impairments in reciprocal social interaction and communication, and restricted and sterotyped patterns of interests and activities. Developmental difficulties are apparent before 3 years of age and there is evidence for strong genetic influences most likely involving more than one susceptibility gene. A two-stage genome search for susceptibility loci in autism was performed on 87 affected sib pairs plus 12 non-sib affected relative-pairs, from a total of 99 families identified by an international consortium. Regions on six chromosomes (4, 7, 10, 16, 19 and 22) were identified which generated a multipoint maximum lod score (MLS) > 1. A region on chromosome 7q was the most significant with an MLS of 3.55 near markers D7S530 and D7S684 in the subset of 56 UK affected sib-pair families, and an MLS of 2.53 in all 87 affected sib-pair families. An area on chromosome 16p near the telomere was the next most significant, with an MLS of 1.97 in the UK families, and 1.51 in all families. These results are an important step towards identifying genes predisposing to autism; establishing their general applicability requires further study.   相似文献   

11.
To date, four genome screens have been completed in the demyelinating autoimmune disease multiple sclerosis (MS). Although these screens failed to identify any loci with major effects on susceptibility, several novel regions of potential linkage were suggested, including the long arm of chromosome 17. In order to further pursue this promising region we have investigated six highly polymorphic microsatellite markers in 115 Scandinavian families with MS affected sib pairs. Multipoint linkage analysis revealed a peak maximum likelihood score (MLS) of 0.9 in the region of marker D17S787. Stratifying the results on the basis of HLA-DR2 status showed that the linkage was not limited to families segregating for the HLA-DR2 allele as has previously been suggested. In conclusion, our results further support the proposal that a multiple sclerosis susceptibility locus is contained on chromosome 17q.  相似文献   

12.
Background:  Asthma is a complex genetic disorder characterized by chronic inflammation in the airways. Identification of genetic risk factors for asthma has been complicated due to genetic heterogeneity and influence from environmental risk factors. Despite the fact that multiple genetic linkage studies have been carried out the results are still conflicting and call for replication experiments. A Danish genome-wide scan has prior reported evidence for candidate regions for asthma susceptibility genes on chromosomes 1p, 5q, 6p, 12q and Xp. Linkage to chromosome 12q was later confirmed in the same replication sample as used in the present study. The aim of the study was to replicate linkage to candidate regions for asthma in an independent Danish sample.
Methods:  We performed a replication study investigating linkage to candidate regions for asthma on chromosomes 1p36.31-p36.21, 5q15-q23.2, 6p24.3-p22.3, and Xp22.31-p11.4 using additional markers in an independent set of 136 Danish asthmatic sib pair families.
Results:  Nonparametric multipoint linkage analyses yielded suggestive evidence for linkage to asthma to chromosome Xp21.2 (MLS 2.92) but failed to replicate linkage to chromosomes 1p36.31-p36.21, 5q15-q23.2 and 6p24.3-p22.3.
Conclusions:  The replication results provide evidence for chromosome Xp21 to harbour a susceptibility gene for asthma in the Danish population. To our knowledge, the study is the first to replicate evidence for linkage to chromosome X. A susceptibility gene for asthma on chromosome X could potentially explain observed gender differences in asthma prevalence.  相似文献   

13.
Evidence for linkage of asthma and its associated phenotypes with susceptibility genes on chromosome 12 has been demonstrated in one group of Minnesota families. The evidence is strong in affected sib pairs and weakens in analysis of the large pedigrees. A second group of families provided little evidence for such linkage. A discrepancy has been demonstrated in different families. This may be due to several factors, including genetic heterogeneity and gene–gene, or gene–environmental interaction effects as well as the statistical power of the sample population used.  相似文献   

14.
The sarcoidosis genetic analysis (SAGA) study previously identified eight chromosomal regions with suggestive evidence for linkage to sarcoidosis susceptibility in African-American sib pairs. Since the clinical course of sarcoidosis is variable and likely under genetic control, we used the affected relative pair portion of the SAGA sample (n=344 pairs) to perform multipoint linkage analyses with covariates based on pulmonary and organ involvement phenotypes. Chest radiographic resolution was the pulmonary phenotype with the highest LOD (logarithm of the backward odds, or likelihood ratio) score of 5.11 at D1S3720 on chromosome 1p36 (P=4 x 10(-5)). In general, higher LOD scores were attained for covariates that modeled clustered organ system involvement rather than individual organ systems, with the cardiac/renal group having the highest LOD score of 6.65 at chromosome 18q22 (P=2 x 10(-5)). The highest LOD scores for the other three organ involvement groups of liver/spleen/bone marrow, neuro/lymph and ocular/skin/joint were 3.72 at 10p11 (P=0.0004), 5.16 at 7p22 (P=4 x 10(-5)) and 2.93 at 10q26 (P=0.001), respectively. Most of the phenotype linkages did not overlap with the regions previously found linked to susceptibility. Our results suggest that genes influencing clinical presentation of sarcoidosis in African Americans are likely to be different from those that underlie disease susceptibility.  相似文献   

15.
Inflammatory bowel disease (IBD) is a multifactorial disorder, with both genetic and environmental factors contributing to the two clinical phenotypes of Crohn's disease (CD) and ulcerative colitis (UC). The underlying genetic model is thought to involve multiple genes with complex interactions between disease loci, and the NOD2 gene on chromosome 16 has recently been identified as a CD susceptibility locus. Several genome-wide linkage studies have identified candidate regions, but there has been little replication across studies. Here we investigate the role of sex-specific loci in susceptibility to IBD. Linkage data from our previously reported genome search and follow-up study were stratified by the sex of the affected sib pair. Non-parametric linkage analysis was performed using Genehunter Plus. Simulation studies were used to assess the significance of differences in LOD scores between male and female families for each chromosome. Several regions of sex-specific linkage were identified, including existing and novel candidate loci. The major histocompatibility region on chromosome 6p, referred to as IBD3, showed evidence of male-specific linkage with a maximum LOD score of 5.9 in both CD and UC male-affected families. Regions on chromosomes 11, 14 and 18 showed strong evidence of linkage in male-affected families but not in female-affected families. No evidence of sex-specific linkage was found in the IBD1 or IBD2 candidate regions of chromosomes 16 and 12. The existence of sex-specific linkage is further evidence of the complex mechanisms involved in IBD and will facilitate future studies to identify susceptibility genes.  相似文献   

16.
Sarcoidosis, a systemic granulomatous disease of unknown etiology, likely results from an environmental insult in a genetically susceptible host. In the US, African Americans are more commonly affected with sarcoidosis and suffer greater morbidity than Caucasians. We searched for sarcoidosis susceptibility loci by conducting a genome-wide, sib pair multipoint linkage analysis in 229 African-American families ascertained through two or more sibs with a history of sarcoidosis. Using the Haseman-Elston regression technique, linkage peaks with P-values less than 0.05 were identified on chromosomes 1p22, 2p25, 5p15-13, 5q11, 5q35, 9q34, 11p15 and 20q13 with the most prominent peak at D5S2500 on chromosome 5q11 (P=0.0005). We found agreement for linkage with the previously reported genome scan of a German population at chromosomes 1p and 9q. Based on the multiple suggestive regions for linkage found in our study population, it is likely that more than one gene influences sarcoidosis susceptibility in African Americans. Fine mapping of the linked regions, particularly on chromosome 5q, should help to refine linkage signals and guide further sarcoidosis candidate gene investigation.  相似文献   

17.
Infantile hypertrophic pyloric stenosis (IHPS) is a common cause of upper gastrointestinal obstruction during infancy. A multifactorial background of the disease is well established. Multiple susceptibility loci including the neuronal nitric oxide synthase (NOS1) gene have previously been linked to IHPS, but contradictory results of linkage studies in different materials indicate genetic heterogeneity. To identify IHPS susceptibility loci, we conducted a genome-wide linkage analysis in 37 Swedish families. In regions where the Swedish material showed most evidence in favor of linkage, 31 additional British IHPS families were analyzed. Evidence in favor of significant linkage was observed in the Swedish material to two loci on chromosome 2q24 (non-parametric linkage (NPL) =3.77) and 7p21 (NPL=4.55). In addition, evidence of suggestive linkage was found to two loci on chromosome 6p21 (NPL=2.97) and 12q24 (NPL=2.63). Extending the material with British samples did not enhance the level of significance. Regions with linkage harbor interesting candidate genes, such as glucagon-like peptide-2 (GLP-2 encoded by the glucagon gene GCG), NOS1, motilin (MLN) and neuropeptide Y (NPY). The coding exons for GLP-2, and NPY were screened for mutations with negative results. In conclusion, we could confirm suggestive linkage to the region harboring the NOS1 gene and detected additional novel susceptibility loci for IHPS.  相似文献   

18.
We wished to determine the frequencies of the MHC and non-MHC susceptibility genes for polygenic autoimmune diseases like type 1 diabetes (IDDM). We used Mendelian inheritance and the Hardy-Weinberg equilibrium to calculate the frequencies of mating pairs and susceptible offspring under classical recessive and dominant inheritance of the MHC susceptibility gene. We then analyzed the distribution of haplotype sharing by affected sib pairs of the 4 MHC haplotypes in each of the kinds of mating pairs in terms of the frequency of the disease susceptibility gene. For IDDM, the analysis was consistent with a recessive, but not a dominant, MHC susceptibility gene of frequency 0.525 at a distribution of 55, 38 and 7% of affected sib pairs who share 2, 1 and 0 MHC haplotypes, respectively. A simple relationship was obtained: if inheritance is recessive, the MHC susceptibility gene frequency is the square root of the fraction of affected sib pairs who share no MHC haplotypes multiplied by 4. For recessive inheritance, affected sib pairs who share no haplotypes are solely in families where both parents are homozygous MHC-susceptible. Although homozygous MHC susceptibles represent over 25% of the population, only 2-3% of them are IDDM-susceptible at non-MHC susceptibility loci, also required for disease expression. Predictions from our analysis fit all published observations of the familial occurrence of disease. The analysis is general, simple and provides a single estimate (not a range) of the MHC susceptibility gene frequency. This approach should be applicable to other MHC-determined polygenic diseases.  相似文献   

19.
Benign familial infantile convulsions (BFIC) is an autosomal dominantly inherited partial epilepsy syndrome of early childhood with remission before the age of 3 years. The syndrome has been linked to loci on chromosomes 1q23, 2q24, 16p12-q12, and 19q in various families. The aim of this study was to identify the responsible locus in four unrelated Dutch families with BFIC. Two of the tested families had pure BFIC; in one family, affected individuals had BFIC followed by paroxysmal kinesigenic dyskinesias at later age, and in one family, BFIC was accompanied by later-onset focal epilepsy in older generations. Linkage analysis was performed for the known loci on chromosomes 1q23, 2q24, 16p12-q12, and 19q. The two families with pure BFIC were linked to chromosome 16p12-q12. Using recombinants from these and other published families, the chromosome 16-candidate gene region was reduced from 21.4 Mb (4.3 cm) to 2.7 Mb (0.0 cm). For the other two families, linkage to any of the known loci was unlikely. In conclusion, we confirm the linkage of pure BFIC to chromosome 16p12-q12, with further refinement of the locus. Furthermore, the lack of involvement of the known loci in two of the families indicates further genetic heterogeneity for BFIC.  相似文献   

20.
We analysed the clinical picture of 101 sibs (43 sib pairs, 5 triplets) with autosomal recessive proximal spinal muscular atrophy (SMA). Linkage data of 20 sibships, which were available for analysis, were in agreement with chromosome 5q linkage. The patients were classified according to the motor development into SMA I (never sat), SMA II (sitting without support), and SMA III (walking without aids). Three sibs with adult onset (>30 years = SMA IV) were discussed as a separate entity. Age-of-onset of the 101 patients showed a wide spectrum (prenatal to 47 years). Among sib pairs with SMA I and SMA II the ages-of-onset appeared to be very similar except of one atypically discordant sib pair. With regard to SMA III, 3 out of 13 sibships (23%) showed a marked variation in age-of-onset ranging from 5–15 years within a family. Concerning acquired motor development (ability to sit and walk), 7 sibships (15%) belonged to different SMA types. Ages of death in 29 sib pairs in whom at least one sib had died before the age of 20 years were strikingly discordant. Neither the degree of disability nor the respiratory deficits are reliable predictors of life expectancy. Although a predominance of males can be observed, no significant effect of gender has been established in familial cases. The existence of multiple allelism seems to be the most suitable explanation for the high interfamilial variability considering the clinical concordance in most affected sib pairs. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号