首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transient global brain ischemia causes delayed neuronal death in the hippocampus that has been associated with impairments in hippocampus-dependent brain function, such as mood, learning, and memory. We investigated the expression of voltage-dependent Kcnh1 and Kcnh5, ether à go-go-related Eag1 and Eag2 (K(V) 10.1 and K(V) 10.2), and small-conductance calcium-activated SK3 (K(Ca) 2.3, Kcnn3) K(+) channels in the hippocampus in rats after transient global brain ischemia. We tested whether the expression of these channels is associated with behavioral changes by evaluating the animals in the elevated plus maze and step-down inhibitory avoidance task. Seven or tweny-eight days after transient global brain ischemia, one group of rats had the hippocampus bilaterally dissected, and mRNA levels were determined. Seven days after transient global brain ischemia, the rats exhibited a decrease in anxiety-like behavior and memory impairments. An increase in anxiety levels was detected 28 days after ischemia. Eag2 mRNA downregulation was observed in the hippocampus 7 days after transient global brain ischemia, whereas Eag1 and SK3 mRNA expression remained unaltered. This is the first experimental evidence that transient global brain ischemia temporarily alters Eag2. The number of intact-appearing pyramidal neurons was substantially decreased in CA1 and statistically measurable in CA2, CA3, and CA4 hippocampal subfields compared with sham control animals 7 or 28 days after ischemia. mRNA expression in the rat hippocampus. The present results provide further information for the characterization of the physiological role of Eag2 channels in the central nervous system.  相似文献   

2.
Although it is well established that cortical and hippocampal gamma-aminobutyric acid (GABA)-ergic neurons generally have large numbers of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate channels (Ca-A/K channels), their presence on pyramidal neurons is controversial. Ca2+ permeability of AMPA channels is regulated by expression of a particular glutamate receptor subunit (GluR2), which confers Ca2+ impermeability to heteromeric channels. Most electrophysiology studies, as well as in situ hybridization and immunolabeling studies demonstrating expression of GluR2 mRNA or peptide in pyramidal neurons, have provided evidence against the presence of Ca-A/K channels on pyramidal neurons. However, observations that pyramidal neurons often appear to be labeled by kainate-stimulated Co2+ influx (Co2+(+) cells), a histochemical stain that identifies cells possessing Ca-A/K channels, suggests that they may have these channels. The present study futher examines cellular and subcellular distribution of Ca-A/K channels on hippocampal pyramidal neurons in slice as well as in culture. To this end, techniques of kainate-stimulated Co2+ influx labeling, supplemented by AMPA receptor subunit immunocytochemistry and fluorescent imaging of kainate-stimulated intracellular Ca2+ ([Ca2+]i) rises are employed. Co2+ labeling is often seen in pyramidal neuronal dendrites in both slice and in culture. In addition, although GluR1 and 4 staining in these neurons is often seen in the soma and dendrites, GluR2 label, when evident, is generally more restricted to the soma. Finally, measurement of kainate-stimulated [Ca2+]i rises in cultured neurons, assessed by using low affinity Ca2+ indicators in the presence of N-methyl-D-aspartate (NMDA) receptor and voltage-sensitive Ca2+ channel blockade, often shows dendritic rises to precede those in the somata. Thus, these data support the hypothesis that Ca-A/K channels are present in dendritic domains of many pyramidal neurons, and may help to provide resolution of the apparently conflicting data regarding their distribution.  相似文献   

3.
The physiological properties of Purkinje neurons play a central role in their ability to regulate information transfer through the cerebellum. A number of ion channels contribute to Purkinje neuron physiology including an abundance of P-type Ca2+ channels, particularly in the dendritic region. Purkinje neurons also express L-type Ca2+ channels both during development and in the mature state. However, a role for L-type channels in Purkinje neuron physiology has yet to be fully defined. In the current study we used physiological recordings from cultured Purkinje neurons and the L-type Ca2+ channel agonist S-(-)-Bay K to assess a potential role for L-type Ca2+ channels in spike firing. Results show that Bay K alters current-evoked spike firing in young, immature Purkinje neurons without dendritic structure and in older, more mature Purkinje neurons with dendritic structure. Bay K also enhanced Ca2+ signals associated with the current-evoked spike firing. The effect of Bay K was more prominent in the young Purkinje neurons than in the older Purkinje neurons, suggesting that L-type Ca2+ channels may be more important in the Purkinje neuron physiology during the early stages of development rather than at mature stages. In the older Purkinje neurons, immunohistochemical studies using antibodies to L-type Ca2+ channels showed more intense immunolabeling in the somatic region than in the dendritic region. This result suggests that L-type Ca2+ channels may play a more important role in somatic physiology than dendritic physiology, whereas P-type channels may play a more important role in dendritic physiology.  相似文献   

4.
Although the concept of GABAB receptors was introduced only ten years ago, several actions of GABAB agonists are already well established. They cause depression of transmitter release, a decrease in voltage-dependent Ca2+ conductance and an increase in K+ conductance. It has recently been reported that GABA also changes the voltage dependence of the transient ('A' type) K+ channel. Depression of transmitter release by GABAB agonists may be caused by a decrease in Ca2+ conductance, an increase in K+ conductance or a modulation of A channels in presynaptic nerve terminals. Slow IPSPs in some neurons are generated by an increase in K+ conductance that can be blocked by GABAB antagonists and pertussis toxin. K+ channels of variable amplitude that are blocked by pertussis toxin are activated by GABAB agonists in cultured hippocampal neurons. Since arachidonic acid activates similar channels in excised patches of membrane, it may form part of a normal second messenger system linking GABAB receptors to K+ channels.  相似文献   

5.
Tandem pore domain (or 2P) K channels form a recently isolated family of channels that are responsible for background K currents in excitable tissues. Previous studies have indicated that 2P K channel activity produces membrane hyperpolarization, which may offer protection from cellular insults. To study the effect of these channels in neuroprotection, we overexpressed pH-sensitive 2P K channels by transfecting the partially transformed C8 cell line with these channels. Tandem pore weak inward rectifier K channel (TWIK)-related acid-sensitive K channel 3 (TASK-3, KCNK9) as well as other pH sensitive 2P K channels (TASK-1 and TASK-2) enhanced cell viability by inhibiting the activation of intracellular apoptosis pathways. To explore the cellular basis for this protection in a more complex cellular environment, we infected cultured hippocampal slices with Sindbis virus constructs containing the coding sequences of these channels. Expression of TASK-3 throughout the hippocampal structure afforded neurons within the dentate and CA1 regions significant protection from an oxygen-glucose deprivation (OGD) injury. Neuroprotection within TASK-3 expressing slices was also enhanced by incubation with isoflurane. These results confirm a protective physiologic capability of TASK-3 and related 2P K channels, and suggest agents that enhance their activity, such as volatile anesthetics may intensify these protective effects.  相似文献   

6.
Voltage-activated, Ca2+-sensitive K+ channels (BK or maxi K,Ca channels) play a major role in the control of neuronal excitability. We have cloned pSlo, the BK channel alpha subunit of the cockroach Periplaneta americana. The amino acid sequence of pSlo shows 88% identity to dSlo from Drosophila. There are five alternatively spliced positions in pSlo showing differential expression in various tissues. A pSlo-specific antibody prominently stained the octopaminergic dorsal unpaired median (DUM) neurons and peptidergic midline neurons in Periplaneta abdominal ganglia. HEK293 cells expressing pSlo exhibit K+ channels of 170 pS conductance. They have a tendency for brief closures, exhibit subconductance states and show slight inward rectification. Activation kinetics and voltage dependence are controlled by cytoplasmic [Ca2+]. In contrast to dSlo, pSlo channels are sensitive to charybdotoxin and iberiotoxin. Mutagenesis at two positions (E254 and Q285) changed blocking efficacy of charybdotoxin. In contrast to pSlo expressed in HEK293 cells, native IbTx-sensitive K,Ca currents in DUM and in peptidergic neurons, exhibited rapid, partial inactivation. The fast component of the K,Ca current partly accounts for the repolarization and the early after-hyperpolarization of the action potential. By means of Ca2+-induced repolarization, BK channels may reduce the risk of Ca2+ overload in cockroach neurons. Interestingly, the neurons expressing pSlo were also found to express taurine, a messenger that is likely to limit overexcitation by an autocrine mechanism in mammalian central neurons.  相似文献   

7.
ATP-sensitive potassium channels (K(ATP)), unlike other inwardly rectifying potassium (Kir) channels, require two structurally diverse subunits to form functional channels: one member of the Kir6 channel family (Kir6.1 or Kir6.2), and one sulfonylurea receptor (SUR) of the ATP-binding cassette superfamily (SURI, SUR2A or SUR2B).We have previously shown that two pore-forming subunits of K(ATP)-channels are differently distributed in frog retina. Kir6.1 is localized in Miller (glial) cells, whereas Kir6.2 is found in neurons. Using immunocytochemistry, the present study reveals that in adult frog retina, SURI is restricted to Müller (glial) cells whereas SUR2A and SUR2B are found in neurons. These data suggest that functional K(ATP) channels in Müller cells may be formed by Kir6.1/SURI, and in neurons by Kir6.2/SUR2A and/or Kir6.2/SUR2B.  相似文献   

8.
Calcium-activated potassium channels regulate AHP and excitability in neurons. Since we have previously shown that axotomy decreases I(Ca) in DRG neurons, we investigated the association between I(Ca) and K((Ca)) currents in control medium-sized (30-39 microM) neurons, as well as axotomized L5 or adjacent L4 DRG neurons from hyperalgesic rats following L5 SNL. Currents in response to AP waveform voltage commands were recorded first in Tyrode's solution and sequentially after: 1) blocking Na(+) current with NMDG and TTX; 2) addition of K((Ca)) blockers with a combination of apamin 1 microM, iberiotoxin 200 nM, and clotrimazole 500 nM; 3) blocking remaining K(+) current with the addition of 4-AP, TEA-Cl, and glibenclamide; and 4) blocking I(Ca) with cadmium. In separate experiments, currents were evoked (HP -60 mV, 200 ms square command pulses from -100 to +50 mV) while ensuring high levels of activation of I(K(Ca)) by clamping cytosolic Ca(2+) concentration with pipette solution in which Ca(2+) was buffered to 1 microM. This revealed I(K(Ca)) with components sensitive to apamin, clotrimazole and iberiotoxin. SNL decreases total I(K(Ca)) in axotomized (L5) neurons, but increases total I(K(Ca)) in adjacent (L4) DRG neurons. All I(K(Ca)) subtypes are decreased by axotomy, but iberiotoxin-sensitive and clotrimazole-sensitive current densities are increased in adjacent L4 neurons after SNL. In an additional set of experiments we found that small-sized control DRG neurons also expressed iberiotoxin-sensitive currents, which are reduced in both axotomized (L5) and adjacent (L4) neurons. CONCLUSIONS: Axotomy decreases I(K(Ca)) due to a direct effect on K((Ca)) channels. Axotomy-induced loss of I(Ca) may further potentiate current reduction. This reduction in I(K(Ca)) may contribute to elevated excitability after axotomy. Adjacent neurons (L4 after SNL) exhibit increased I(K(Ca)) current.  相似文献   

9.
T‐type Ca2+ channels and TRPA1 are expressed in sensory neurons and both are associated with pain transmission, but their functional interaction is unclear. Here we demonstrate that pharmacological evidence of the functional relation between T‐type Ca2+ channels and TRPA1 in mouse sensory neurons. Low concentration of KCl at 15 mM (15K) evoked increases of intracellular Ca2+ concentration ([Ca2+]i), which were suppressed by selective T‐type Ca2+ channel blockers. RT‐PCR showed that mouse sensory neurons expressed all subtypes of T‐type Ca2+ channel. The magnitude of 15K‐induced [Ca2+]i increase was significantly larger in neurons sensitive to allylisothiocyanate (AITC, a TRPA1 agonist) than in those insensitive to it, and in TRPA1?/? mouse sensory neurons. TRPA1 blockers diminished the [Ca2+]i responses to 15K in neurons sensitive to AITC, but failed to inhibit 40 mM KCl‐induced [Ca2+]i increases even in AITC‐sensitive neurons. TRPV1 blockers did not inhibit the 15K‐induced [Ca2+]i increase regardless of the sensitivity to capsaicin. [Ca2+]i responses to TRPA1 agonist were enhanced by co‐application with 15K. These pharmacological data suggest the possibility of functional interaction between T‐type Ca2+ channels and TRPA1 in sensory neurons. Since TRPA1 channel is activated by intracellular Ca2+, we hypothesize that Ca2+ entered via T‐type Ca2+ channel activation may further stimulate TRPA1, resulting in an enhancement of nociceptive signaling. Thus, T‐type Ca2+ channel may be a potential target for TRPA1‐related pain.  相似文献   

10.
The effects of charybdotoxin and leiurotoxin I were examined on several classes of K+ currents in bullfrog sympathetic ganglion and hippocampal CA1 pyramidal neurons. Highly purified preparations of charybdotoxin selectively blocked a large voltage- and Ca(2+)-dependent K+ current (IC) responsible for action potential repolarization (IC50 = 6 nM) while leiurotoxin I selectively blocked a small Ca(2+)-dependent K+ conductance (IAHP) responsible for the slow afterhyperpolarization following an action potential (IC50 = 7.5 nM) in bullfrog sympathetic ganglion neurons. Neither of the toxins had significant effects on other K+ currents (M-current [IM], A-current [IA] and the delayed rectifier [IK]) present in these cells. Leiurotoxin I at a concentration of 20 nM had no detectable effect on currents in hippocampal CA1 pyramidal neurons. This lack of effect on IAHP in central neurons suggests that the channels underlying slow AHPs in those neurons are pharmacologically distinct from analogous channels in peripheral neurons.  相似文献   

11.
The intracellular free Ca2+ concentration, [Ca2+]i, plays an important role in regulating neurite growth in cultured neurons. Insofar as [Ca2+]i is partly a function of Ca2+ influx through voltage-sensitive calcium channels (VSCC), Ca2+ entry through VSCC should influence neurite growth. Vertebrate neurons may possess several types of VSCC. The most frequently described VSCC types are usually designated L, T and N. In most preparations, these VSCC types respond differently to certain pharmacological agents, including Cd2+, Ni2+, the dihydropyridines nifedipine and BAY K8644, and the aminoglycoside antibiotics. We used these agents to study the role of Ca2+ influx in regulating neurite initiation and length in cultures of chick embryo brain neurons and N1E-115 mouse neuroblastoma cells. In chick neurons, nifedipine and Cd2+ (less than 50 microM), which have been reported to inhibit L-type channels, reduced neurite initiation, but not mean neurite length. Ni2+ (less than 100 microM), reported to inhibit T-type channels, had no effect on either initiation or length. Low concentrations of most aminoglycosides (less than 300 microM), reported to inhibit N-type channels, had no effect on neurite initiation, but high concentrations of streptomycin (great than 300 microM), reported to inhibit both L- and N-type channels, reduced neurite initiation. BAY K8644, which enhances current flow through L-type channels, had no effect except at high concentration (50 microM), which inhibited initiation. N1E-115 neuroblastoma cells have been reported to contain L-type and T-type channels, but thus far no channel similar to the N-type has been described. In cultured N1E-115 cells, nifedipine (5 microM), Cd2+ (5 microM), and streptomycin (200 microM) reduced neurite initiation, while nickel (50 microM) and neomycin (100 microM) did not affect initiation. None of these agents altered neurite length. In N1E-115 cells, whole-cell voltage clamp recordings showed that nifedipine and Cd2+ inhibited L-type channels but not T-type channels, while Ni2+ inhibited T-type channels but not L-type channels. Streptomycin slightly inhibited L-type channels but enhanced current flow through T-type channels. Neomycin slightly inhibited both channel types. These data indicated that neurite initiation in these two cell types may be modulated by Ca2+ influx through L-type channels, but not T- or N-type channels. Neurite length was not significantly influenced by any of the agents tested, suggesting that Ca2+ influx through VSCC may not affect neurite elongation.  相似文献   

12.
Recordings were made from magnocellular neuroendocrine cells dissociated from the supraoptic nucleus of the adult guinea pig to determine the role of voltage gated K(+) channels in controlling the duration of action potentials and in mediating frequency-dependent action potential broadening exhibited by these neurons. The K(+) channel blockers charybdotoxin (ChTx), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) increased the duration of individual action potentials indicating that multiple types of K(+) channel are important in controlling action potential duration. The effect of these K(+) channel blockers was almost completely reversed by simultaneous blockade of voltage gated Ca(2+) channels with Cd(2+). Frequency-dependent action potential broadening was exhibited by these neurons during trains of action potentials elicited by membrane depolarizing current pulses presented at 10 Hz but not at 1 Hz. 4-AP but not ChTx or TEA inhibited frequency-dependent action potential broadening indicating that frequency-dependent action potential broadening is dependent on increasing steady-state inactivation of A-type K(+) channels (which are blocked by 4-AP). A model of differential contributions of voltage gated K(+) channels and voltage gated Ca(2+) channels to frequency-dependent action potential broadening, in which an increase of Ca(2+) current during each successive action potential is permitted as a result of the increasing steady-state inactivation of A-type K(+) channels, is presented.  相似文献   

13.
Lhuillier L  Dryer SE 《Brain research》2003,982(1):119-124
Large-conductance Ca(2+)-activated K(+) channels (K(Ca)) in chick ciliary ganglion neurons are regulated by target-derived TGFbeta1. Here we show that TGFbeta1 stimulation of K(Ca) expression was blocked by the structurally dissimilar Ras protein farnesyl transferase inhibitors manumycin-A and FTI-277. A similar effect was produced in ciliary neurons overexpressing RasN17, a widely used dominant-negative form of Ras. Moreover, TGFbeta1-evoked increases in phosphorylation of SMAD2 were reduced by manumycin-A, suggesting that Ras-dependent transduction cascades activated by TGFbeta1 feed back onto SMAD signaling. Thus, Ras is a mediator of pleiotropic TGFbeta1 signaling in developing neurons.  相似文献   

14.
Kang YM  Ouyang W  Chen JY  Qiao JT  Dafny N 《Brain research》2000,869(1-2):146-157
The effects of norepinephrine (NE) on the electrophysiological activities of single hypothalamic arcuate neurons were studied using extracellular recording of 385 neurons from 169 brain slices in rats. The results showed that: (1) of 236 neurons selected randomly and tested with NE application, 137 (58.0%) were excited, 67 (28.4%) were inhibited, and 32 (13.6%) failed to respond; (2) substitution of low Ca(2+)-high Mg(2+) artificial cerebrospinal fluid (ACSF) for normal ACSF abolished the NE-induced inhibitory effect but failed to abolish the excitatory effect; (3) both the NE-induced excitatory and inhibitory effects were antagonized partly by phentolamine, prazosin, and propranolol but not by yohimbine; (4) naloxone and glibenclamide, a blocker of adenosine triphosphate-sensitive (K(ATP)) channels, blocked the NE-induced inhibitory effect; and (5) neurons that were inhibited by NE were also inhibited by morphine and cromakalim, an agonist of K(ATP) channels, and moreover, the morphine-induced inhibitory effect could be blocked by glibenclamide, while the cromakalim-induced inhibitory effect was not blocked by naloxone. These results imply that: (a) NE excites arcuate neurons through a mechanism that is insensitive to lowering the extracellular Ca(2+) suggesting a direct postsynaptic response through alpha(1)- and beta-adrenergic receptors, while NE inhibits cells through at least an inhibitory interneuron in arcuate and so is dependent on a Ca(2+)-sensitive presynaptic release mechanism; and (b) the inhibitory interneuron may be opioidergic, being excited first through alpha(1)- and beta-adrenergic receptors, after which the released opioids inhibit the neurons being recorded with an involvement of activation of K(ATP) channels. This possibility needs to be substantiated in much more detail.  相似文献   

15.
Basal forebrain cholinergic neurons (BFCN) are depleted early in the course of Alzheimer's disease (AD). BFCN voltage-gated K(+) channels regulate acetylcholine release and may play a role in BFCN neurodegeneration. Neuronal voltage-gated K(+) channels are heterotetrameric assemblies of K(v) and accessory subunits. Currently, there is no available information about the K(v) proteins expressed in BFCN. Immunohistochemical techniques were used to investigate the expression of specific K(v) subunits in rat brain BFCN. Our results showed that BFCN express both K(v)3.1 and K(v)2.1 subunits. However, the K(v)2.1 subunit showed a wider distribution in noncholinergic neurons than the K(v)3.1 subunit. K(v)3.1 and K(v)2.1 immunostaining was noticeable not only in neuronal cell bodies but also in the dendritic ramifications of these neurons. Insofar as the K(v)3.1 subunit has been classically associated with "fast-spiking neurons" and BFCN have low firing rates and long-duration action potentials, K(v)3.1 subunits may have functions other than facilitating high-frequency firing in BFCN.  相似文献   

16.
Although K+ channels activated by Ca2+ have long been known to shape neuronal excitability, evidence is accumulating that K+ channels sensitive to intracellular Na+, termed K(Na) channels, have an equally significant role. K(Na) channels contribute to adaptation of firing rate and to slow afterhyperpolarizations that follow repetitive firing. In certain neurons, they also appear to be activated by Na+ influx accompanying a single spike. Two genes encoding these channels, Slick and Slack, are expressed throughout the brain. The spatial localization of K(Na) channels along axons, dendrites and somata appears to be highly cell-type specific. Their molecular properties also suggest that these channels contribute to the response of neurons to hypoxia.  相似文献   

17.
The effects of locus coeruleus stimulation on nociceptive evoked discharges of thalamic parafascicular (PF) neurons were investigated in lightly urethane-anesthetized rats, aiming to study the mechanisms underlying these effects. Intrathecal (i.t.) administration of aminophylline (an adenosine antagonist), glibenclamide (an ATP-sensitive potassium [K+(ATP)] channels blocker), nicrorandil (Nico; an agonist of K+(ATP) channel and a K+(ATP) channel opener), and 5'-N-ethylcarboxamido-adenosine (NECA; an adenosine agonist) were used. The results showed that (1) locus coeruleus stimulation significantly inhibited the nociceptive evoked discharges of parafascicular neurons, (2) locus coeruleus stimulation-produced antinociception in PF neurons was blocked by both it. glibenclamide and i.t. aminophylline, (3) nociceptive discharges of PF neurons were also suppressed by both i.t. NECA and i.t. nicorandil, and (4) i.t. glibenclamide showed no effect on the suppression of nociceptive discharges induced by NECA, whereas aminophylline blocked the suppression of nociceptive discharges induced by nicorandil. These results suggest that (a) K+(ATP) channels and endogenous adenosine may be involved in the mediation of antinociception induced by norepinephrine, which is released in the dorsal horn by descending fibers originating from the locus coeruleus and (b) the opening of K+(ATP) channels may precede the release of endogenous adenosine in the process of suppressing nociceptive transmission at the spinal level.  相似文献   

18.
The effects of locus coeruleus stimulation on nociceptive evoked discharges of thalamic parafascicular (PF) neurons were investigated in lightly urethane-anesthetized rats, aiming to study the mechanisms underlying these effects. Intrathecal (i.t.) administration of aminophylline (an adenosine antagonist), glibenclamide (an ATP-sensitive potassium [K+ATP] channels blocker), nicrorandil (Nico; an agonist of K+ATP channel and a K+ATP channel opener), and 5'-N-ethylcarboxamido-adenosine (NECA; an adenosine agonist) were used. The results showed that (1) locus coeruleus stimulation significantly inhibited the nociceptive evoked discharges of parafascicular neurons, (2) locus coeruleus stimulation-produced antinociception in PF neurons was blocked by both i.t. glibenclamide and i.t. aminophylline, (3) nociceptive discharges of PF neurons were also suppressed by both i.t. NECA and i.t. nicorandil, and (4) i.t. glibenclamide showed no effect on the suppression of nociceptive discharges induced by NECA, whereas aminophylline blocked the suppression of nociceptive discharges induced by nicorandil. These results suggest that (a) K+ATP channels and endogenous adenosine may be involved in the mediation of antinociception induced by norepinephrine, which is released in the dorsal horn by descending fibers originating from the locus coeruleus and (b) the opening of K+ATP channels may precede the release of endogenous adenosine in the process of suppressing nociceptive transmission at the spinal level.  相似文献   

19.
The expression and properties of ionic channels were investigated in dissociated neurons from neonatal and adult rat intracardiac ganglia. Changes in the hyperpolarization-activated and ATP-sensitive K+ conductances during postnatal development and their role in neuronal excitability were examined. The hyperpolarization-activated nonselective cation current, Ih, was observed in all neurons studied and displayed slow time-dependent rectification. An inwardly rectifying K+ current, IK(IR), was present in a population of neurons from adult but not neonatal rats and was sensitive to block by extracellular Ba2+ Using the perforated-patch recording configuration, an ATP-sensitive K+ (KATP) conductance was identified in > or = 50% of intracardiac neurons from adult rats. Levcromakalim evoked membrane hyperpolarization, which was inhibited by the sulphonylurea drugs, glibenclamide and tolbutamide. Exposure to hypoxic conditions also activated a membrane current similar to that induced by levcromakalim and was inhibited by glibenclamide. Changes in the complement of ion channels during postnatal development may underlie observed differences in the function of intracardiac ganglion neurons during maturation. Furthermore, activation of hyperpolarization-activated and KATP channels in mammalian intracardiac neurons may play a role in neural regulation of the mature heart and cardiac function during ischaemia-reperfusion.  相似文献   

20.
Ionic currents of Drosophila neurons in embryonic cultures   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号