首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE OF REVIEW: Gene knockout mice have been created for the collecting duct urea transporters UT-A1 and UT-A3, the descending thin-limb urea transporter UT-A2 and the descending vasa recta isoform, UT-B. In this brief review, the new insights in our understanding of the role of urea in the urinary concentrating mechanism and kidney function resulting from studies in these mice are discussed. RECENT FINDINGS: The major findings in studies on urea transporter knockout mice are as follows: rapid transport of urea from the inner medulla collecting duct lumen via UT-A1 or UT-A3 is essential for urea accumulation in the inner medullary interstitium; inner medulla collecting duct urea transporters are essential in water conservation by preventing urea-induced osmotic diuresis; an absence of inner medulla collecting duct urea transport does not prevent the concentration of sodium chloride in the inner medulla interstitium; deletion of the vasa recta isoform UT-B has a much greater effect on urinary concentration than deleting the descending limb isoform UT-A2. SUMMARY: Multiple urea transport mechanisms within the kidney are essential for producing maximally concentrated urine.  相似文献   

2.
Regulation of renal urea transporters   总被引:3,自引:0,他引:3  
Urea is important for the conservation of body water due to its role in the production of concentrated urine in the renal inner medulla. Physiologic data demonstrate that urea is transported by facilitated and by active urea transporter proteins. The facilitated urea transporter (UT-A) in the terminal inner medullary collecting duct (IMCD) permits very high rates of transepithelial urea transport and results in the delivery of large amounts of urea into the deepest portions of the inner medulla where it is needed to maintain a high interstitial osmolality for concentrating the urine maximally. Four isoforms of the UT-A urea transporter family have been cloned to date. The facilitated urea transporter (UT-B) in erythrocytes permits these cells to lose urea rapidly as they traverse the ascending vasa recta, thereby preventing loss of urea from the medulla and decreasing urine-concentrating ability by decreasing the efficiency of countercurrent exchange, as occurs in Jk null individuals (who lack Kidd antigen). In addition to these facilitated urea transporters, three sodium-dependent, secondary active urea transport mechanisms have been characterized functionally in IMCD subsegments: (1) active urea reabsorption in the apical membrane of initial IMCD from low-protein fed or hypercalcemic rats; (2) active urea reabsorption in the basolateral membrane of initial IMCD from furosemide-treated rats; and (3) active urea secretion in the apical membrane of terminal IMCD from untreated rats. This review focuses on the physiologic, biophysical, and molecular evidence for facilitated and active urea transporters, and integrative studies of their acute and long-term regulation in rats with reduced urine-concentrating ability.  相似文献   

3.
4.
Urea transport in the kidney is important for the production of concentrated urine and is mediated by a family of transporter proteins, identified from erythropoietic tissue (UT-B) and from kidney (UT-A). Two isoforms of the renal urea transporter (UT-A) have been cloned so far: UT-A1 and UT-A2. We used rapid amplification of cDNA ends to clone two new isoforms of the rat UT-A transporter: UT-A3 and UT-A4. UT-A3 and UT-A4 are 87% homologous. The UT-A3 cDNA encodes a peptide of 460 amino acids, which corresponds to the amino-terminal half of the UT-A1 peptide and is 62% identical to UT-A2. The UT-A4 cDNA encodes a peptide of 466 amino acids, which is 84% identical to UT-A2. Transient transfection of HEK-293 cells with the UT-A3 or UT-A4 cDNA results in phloretin-inhibitable urea uptake, which is increased by forskolin. Thus, both new isoforms encode functional urea transporters that may be vasopressin-regulated. UT-A3 and UT-A4 mRNA are expressed in the renal outer and inner medulla but not in the cortex; unidentified UT-A isoforms similar to UT-A3 may also be expressed in the testis. It is concluded that there are at least four different rat UT-A urea transporters.  相似文献   

5.
Urea plays a critical role in the urine-concentrating mechanism in the inner medulla. Physiologic data provided evidence that urea transport in red blood cells and kidney inner medulla was mediated by specific urea transporter proteins. Molecular approaches during the past decade resulted in the cloning of two gene families for facilitated urea transporters, UT-A and UT-B, encoding several urea transporter cDNA isoforms in humans, rodents, and several nonmammalian species. Polyclonal antibodies have been generated to the cloned urea transporter proteins, and the use of these antibodies in integrative animal studies has resulted in several novel findings, including: (1) the surprising finding that UT-A1 protein abundance and urea transport are increased in the inner medulla during conditions in which urine concentrating ability is reduced; (2) vasopressin increases UT-A1 phosphorylation in rat inner medullary collecting duct; (3) UT-A protein abundance is upregulated in uremia in both liver and heart; and (4) UT-B is expressed in many nonrenal tissues and endothelial cells. This review will summarize the knowledge gained from using molecular approaches to perform integrative studies into urea transporter protein regulation, both in normal animals and in animal models of human diseases, including studies of uremic rats in which urea transporter protein is upregulated in liver and heart.  相似文献   

6.
Urea recycling and counter-current exchange within the renal tubular, vascular and interstitial compartments help maintain high levels of this solute in the renal medulla, that are crucial for the production of concentrated urine. The role of urea in physiological and pathological conditions is still unclear, although new information is becoming available. Several urea transporters have been identified that mediate facilitated transport of urea across biological membranes in the mammalian kidney, in amphibians, and in elasmobranchs. Evidence that urea transporters may be expressed in other mammalian organs is also beginning to emerge. The mechanisms involved in the regulation of urea transport are incompletely understood. In this respect, the structural and functional characterization of individual transporters is providing the basis to identify specific regulatory factors. Urea can be viewed as a perturbing osmolyte in the renal inner medulla, and the mechanisms of adaptation of renal cells to high concentration of this destabilizing solute are being investigated. Urea-specific signaling pathways have been identified, that could contribute to clarify how cells handle urea.  相似文献   

7.
Cellular and molecular aspects of drug transport in the kidney   总被引:29,自引:0,他引:29  
The kidney plays an important role in the elimination of numerous hydrophilic xenobiotics, including drugs, toxins, and endogenous compounds. It has developed high-capacity transport systems to prevent urinary loss of filtered nutrients, as well as electrolytes, and simultaneously to facilitate tubular secretion of a wide range of organic ions. Transport systems for organic anions and cations are primarily involved in the secretion of drugs in renal tubules. The identification and characterization of organic anion and cation transporters have been progressing at the molecular level. To date, many members of the organic anion transporter (OAT), organic cation transporter (OCT), and organic anion-transporting polypeptide (oatp) gene families have been found to mediate the transport of diverse organic anions and cations. It has also been suggested that ATP-dependent primary active transporters such as MDR1/P-glycoprotein and the multidrug resistance-associated protein (MRP) gene family function as efflux pumps of renal tubular cells for more hydrophobic molecules and anionic conjugates. Tubular reabsorption of peptide-like drugs such as beta-lactam antibiotics across the brush-border membranes appears to be mediated by two distinct H+/peptide cotransporters: PEPT1 and PEPT2. Renal disposition of drugs is the consequence of interaction and/or transport via these diverse secretory and absorptive transporters in renal tubules. Studies of the functional characteristics, such as substrate specificity and transport mechanisms, and of the localization of cloned drug transporters could provide information regarding the cellular network involved in renal handling of drugs. Detailed information concerning molecular and cellular aspects of drug transporters expressed in the kidney has facilitated studies of the mechanisms underlying renal disposition as well as transporter-mediated drug interactions.  相似文献   

8.
Renal phenotype of UT-A urea transporter knockout mice   总被引:6,自引:0,他引:6  
The urea transporters UT-A1 and UT-A3 mediate rapid transepithelial urea transport across the inner medullary collecting duct (IMCD). In a previous study, using a new mouse model in which both UT-A1 and UT-A3 were genetically deleted from the IMCD (UT-A1/3(-/-) mice), we investigated the role of these transporters in the function of the renal inner medulla. Here the authors report a new series of studies investigating more generally the renal phenotype of UT-A1/3(-/-) mice. Pathologic screening of 33 tissues revealed abnormalities in both the testis (increased size) and kidney (decreased size and vascular congestion) of UT-A1/3(-/-) mice. Total urinary nitrate and nitrite (NOx) excretion rates in UT-A1/3(-/-) mice were more than double those in wild-type mice. Total renal blood flow was not different between UT-A1/3(-/-) and wild-type mice but underwent a greater percentage decrease in response to NG-Nitro-L-arginine methyl ester hydrochloride (L-NAME) infusion. Whole kidney GFR (FITC-inulin clearance) was not different in UT-A1/3(-/-) mice compared with controls and underwent a similar increase in response to a greater dietary protein intake. Fractional urea excretion was markedly elevated in UT-A1/3(-/-) mice on a 40% protein diet, reaching 102.4 +/- 8.8% of the filtered load, suggesting that there may be active urea secretion somewhere along the renal tubule. Although there was a marked urinary concentrating defect in UT-A1/3(-/-) mice, there was no decrease in aquaporin 2 or aquaporin 3 expression. Furthermore, although urea accumulation in the inner medulla was markedly attenuated, there was no decrease in sodium ion concentration in tissue from outer medulla or two levels of the inner medulla. These results support our conclusion that the urinary concentrating defect in UT-A1/3(-/-) mice is caused by a failure of urea transport from the IMCD lumen to the inner medullary interstitium, resulting in osmotic diuresis.  相似文献   

9.
Since the turn of the 21st century, gene knockout mice have been created for all major urea transporters that are expressed in the kidney: the collecting duct urea transporters UT-A1 and UT-A3, the descending thin limb isoform UT-A2, and the descending vasa recta isoform UT-B. This article discusses the new insights that the results from studies in these mice have produced in the understanding of the role of urea in the urinary concentrating mechanism and kidney function. Following is a summary of the major findings: (1) Urea accumulation in the inner medullary interstitium depends on rapid transport of urea from the inner medullary collecting duct (IMCD) lumen via UT-A1 and/or UT-A3; (2) as proposed by Robert Berliner and colleagues in the 1950s, the role of IMCD urea transporters in water conservation is to prevent a urea-induced osmotic diuresis; (3) the absence of IMCD urea transport does not prevent the concentration of NaCl in the inner medulla, contrary to what would be predicted from the passive countercurrent multiplier mechanism in the form proposed by Kokko and Rector and Stephenson; (4) deletion of UT-B (vasa recta isoform) has a much greater effect on urinary concentration than deletion of UT-A2 (descending limb isoform), suggesting that the recycling of urea between the vasa recta and the renal tubules quantitatively is less important than classic countercurrent exchange; and (5) urea reabsorption from the IMCD and the process of urea recycling are not important elements of the mechanism of protein-induced increases in GFR. In addition, the clinical relevance of these studies is discussed, and it is suggested that inhibitors that specifically target collecting duct urea transporters have the potential for clinical use as potassium-sparing diuretics that function by creation of urea-dependent osmotic diuresis.  相似文献   

10.
Renal urea transporters   总被引:4,自引:0,他引:4  
  相似文献   

11.
Two non-erythroid members of the erythrocyte Rhesus (Rh) protein family, RhBG and RhCG, have been recently cloned in the kidney. These proteins share homologies with specific NH(3)/NH(4)(+) transporters (Mep/Amt) in primitive organisms and plants. When expressed in a Mep-deficient yeast, RhCG can function as a bidirectional NH(3)/NH(4)(+) transporter. The aim of this study was to determine the intrarenal and intracellular location of RhCG in rat kidney. RT-PCR on microdissected rat nephron segments demonstrated expression of mRNAs encoding RhCG in distal convoluted tubules, connecting ducts, and cortical and outer medullary collecting ducts but not in proximal tubules and thick ascending limbs of Henle's loop. Immunolocalization studies performed on rat kidney sections with rabbit anti-human RhCG 31 to 48 antibody showed labeling of the apical pole of tubular cells within the cortex, the outer medulla, and the upper portion of the inner medulla. All cells within connecting tubules had identical apical staining. In cortical collecting ducts, a subpopulation of cells that has either apical staining (alpha-intercalated cells) or diffuse staining (beta-intercalated cells) for the beta1 subunit of the H(+)-ATPase, was heavily stained at their apical pole with the RhCG antibody while principal cells identified as H(+)-ATPase negative cells showed a faint apical staining for RhCG that was much less intense than in adjacent intercalated cells. In the outer medulla and the upper portion of the inner medulla, RhCG labeling was restricted to a subpopulation of cells within the collecting duct that apically express the beta1 subunit of the H(+)-ATPase, indicating that RhCG expression in medullary collecting ducts is restricted to intercalated cells. No labeling was seen in glomeruli, proximal tubules, and limbs of Henle's loop. Immunoblotting of apical membrane fractions from rat kidney cortex with the rabbit anti-human RhCG 31 to 48 antibody revealed a doublet band at approximatively 65 kD.  相似文献   

12.
Prostaglandins (PGs) E2 and F2 alpha in the rabbit kidney were determined by radioimmunoassay to study the effects of unilateral ureteral obstruction on intrarenal PGs. An increase of PGE2 in the inner medulla was observed in the hydronephrotic kidney. When isotonic glucose solution was infused after the release of ureteral obstruction, an elevation of PGE2 in the outer medulla occurred in the hydronephrotic kidney. Under water diuresis immediately following the release of obstruction, PGE2 in the inner medulla showed significant correlations to urinary flow rate, urinary osmolar concentration and free water clearance. The present study indicates that PGE2 in the inner medulla is enhanced by ureteral obstruction and may have a close relation to renal functional damage in mild hydronephrosis.  相似文献   

13.
Water homeostasis is regulated in large part by the proper operation of the urinary concentrating mechanism. In the renal inner medulla, urea recycling from the inner medullary collecting duct to the inner medullary interstitium is thought to be essential for the production of a concentrated urine; however, it has not been possible to test this hypothesis in humans. Recently, a unique combination of genetic abnormalities has been described: absence of Kidd blood group antigens and absence of carrier-mediated urea transport in erythrocytes. Because animal studies indicate a similarity between urea transport in red blood cells and the nephron, it was postulated that patients without the Kidd antigen might lack facilitated urea transport in their kidneys. Hence, their ability to concentrate urine maximally was measured. Current models of nephron function would predict that in the complete absence of urea transport, the maximal concentrating ability would be around 800 to 900 mosM/kg H2O. Two homozygous patients had a moderate decrease in maximal concentrating ability (UosM,max = 819 mosM/kg H2O); a heterozygote also had some limitation. These studies raise the possibility that the erythrocyte urea transporter and the kidney urea transporter are encoded by a single gene (detected by the mutational loss of the Kidd antigen) and that a lack of facilitated urea transport impairs urea recycling in the kidney and, hence, maximal urinary concentrating ability.  相似文献   

14.
BACKGROUND: Cisplatin (CP) induced polyuria in rats is associated with a reduction in medullary hypertonicity, normally generated by the thick ascending limb (TAL) salt transporters, and the collecting duct urea transporters (UT). To investigate the molecular basis of this abnormality, we determined the protein abundance of major salt and UT isoforms in rat kidney during CP-induced polyuria. METHODS: Male Sprague-Dawley rats received either a single injection of CP (5 mg/kg, N = 6) or saline (N = 6) intraperitoneally five days before sacrifice. Urine, blood, and kidneys were collected and analyzed. RESULTS: CP-treated rats developed polyuric acute renal failure as assessed by increased blood urea nitrogen (BUN), urine volume and decreased urine osmolality. Western analysis of kidney homogenates revealed a marked reduction in band density of the bumetanide-sensitive Na-K-2Cl cotransporter in cortex (60% of control values, P < 0.05), but not in outer medulla (OM) (106% of control values). There were no differences in band densities for the renal outer medullary potassium channel (ROMK), the type III Na-H exchanger (NHE3), the alpha-subunit of Na,K-ATPase in the OM; or for UT-A1, UT-A2 or UT-A4 in outer or inner medulla. However, the band pattern of UT-A2 and UT-A4 proteins in the OM of CP-treated rats was different from the control rats, suggesting a qualitative modification of these proteins. CONCLUSIONS: Changes in the abundance of outer or inner medullary salt or urea transporters are unlikely to play a role in the CP-induced reduction in medullary hypertonicity. However, qualitative changes in UT proteins may affect their functionality and thus may have a role.  相似文献   

15.
Cellular localization of aquaporin 7 in the rat kidney   总被引:1,自引:0,他引:1  
The cDNA for the seventh mammalian aquaporin (AQP7) was isolated from rat testis, and its expression was demonstrated at the tail of late spermatids [Ishibashi et al: J Biol Chem 1997;272:20782-20786]. AQP7 is also expressed in the kidney. The localization of AQP7 in the kidney is unknown. We examined the cellular localization of AQP7 in the kidney with Northern blot, reverse transcribed PCR, Western blot and immunohistochemistry in the rat kidney. In Northern blot, AQP7 was expressed in the cortex and the outer medulla but absent in the inner medulla of the kidney. Reverse transcribed PCR of rat nephron segments revealed the selective expression of AQP7 at the proximal straight tubules (PST). Western blot of the membrane fraction of outer medulla revealed a single band of approximately 33 kDa. Immunohistochemistry of the rat kidney showed the selective expression of AQP7 at the brush border membranes of PST (S3 segment). AQP7 is now shown to be localized selectively at the brush border membranes of PST in the rat kidney. The result suggests that AQP7 may function as a pathway for transcellular water transport in PST in concert with more widely expressed AQP1 in proximal tubules. Alternatively, as AQP7 transports urea as well as water, AQP7 may function as a passive urea secretory pathway in this segment and may play a role in the formation and/or maintenance of the medullary urea concentration gradient.  相似文献   

16.
BACKGROUND: Diabetic nephropathy is commonly associated with renal salt and water retention and hypertension. The molecular mechanisms involved and how the kidney responds to this volume expansion, in terms of renal transporter regulation, are not understood. METHODS: Targeted proteomics employing semiquantitative immunoblotting were used to investigate regulation of abundance of the primary salt and water transport proteins of the kidney, in 6-month-old lean and obese Zucker rats, a model for Type II diabetes. RESULTS: Obese rats were significantly heavier, had larger kidneys, increased plasma creatinine and glucose levels and elevated blood pressures. Furthermore, they had a marked decrease in abundance of many pre-macula densa renal sodium transporters. Mean band densities (% lean) were: in cortex, sodium phosphate cotransporter (NaPi-2), 68%, and sodium hydrogen exchanger (NHE3), 66%; and in outer medulla, NHE3, 39%, and the bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2), 37%. Collecting duct proteins also were markedly reduced. In inner medulla, aquaporins-2, -3, and -4 were reduced to, 46, 48, and 46%, respectively, and the apical urea transporter, UTA1 to 52%. In contrast, post-macula densa sodium transporters were less affected. The thiazide-sensitive Na-Cl cotransporter (NCC) was 106% and the alpha- beta- and gamma-subunits of the epithelial sodium channel (ENaC), 54, 121, and 84% of lean, respectively. CONCLUSIONS: In obese rats, selective decreases for pre-macula densa sodium transporters may reflect decreased glomerular filtration rate and glomerulotubular balance. This potentially could reduce blood pressure by decreasing proximal tubule sodium reabsorption.  相似文献   

17.
The purpose of this study was to examine urinary concentrating ability and protein expression of renal aquaporins and ion transporters in glucocorticoid-deficient (GD) rats in response to water deprivation as compared with control rats. Rats underwent bilateral adrenalectomies, followed only by aldosterone replacement (GD) or both aldosterone and dexamethasone replacement (control). As compared with control rats, the GD rats demonstrated a decrease in cardiac output and mean arterial pressure. In response to 36-h water deprivation, GD rats demonstrated significantly greater urine flow rate and decreased urine osmolality as compared with control rats at comparable serum osmolality and plasma vasopressin concentrations. The initiator of the countercurrent concentrating mechanism, the sodium-potassium-2 chloride co-transporter, was significantly decreased, as was the medullary osmolality in the GD rats versus control rats. There was also a decrease in inner medulla aquaporin-2 (AQP2) and urea transporter A1 (UT-A1) in GD rats as compared with control rats. There was a decrease in outer medulla Gsalpha protein, an important factor in vasopressin-mediated regulation of AQP2. Immunohistochemistry studies confirmed the decreased expression of AQP2 and UT-A1 in kidneys of GD rats as compared with control. In summary, impairment in the urinary concentrating mechanism was documented in GD rats in association with impaired countercurrent multiplication, diminished osmotic equilibration via AQP2, and diminished urea equilibration via UT-A1. These events occurred primarily in the relatively oxygen-deficient medulla and may have been initiated, at least in part, by the decrease in mean arterial pressure and thus renal perfusion pressure in this area of the kidney.  相似文献   

18.
19.
Studies performed on the intrarenal distribution of nalidixic acid in dogs show that this weak organic acid is indeed accumulated in the kidney, the highest concentration being attained in the cortex and followed in order by the outer medulla, papillae, and inner cortex. Our results also show that nalidixic acid produces significant changes in the para-aminohippuric concentration and on the filtered load, secretion and clearance of para-aminohippuric acid. Stop-flow experiments confirmed the inhibitory effect of nalidixic acid upon para-aminohippuric acid secretion. It is plausible that nalidixic acid may inhibit the secreted moiety of creatinine. This inhibitory effect is localized in the proximal tubule, where para-aminohippuric acid is known to be secreted. Based on our data it is suggested that nalidixic acid competes with para-aminohippuric acid for the same transport system or that the decreased secretory para-aminohippuric acid activity after nalidixic acid may be caused by a direct inhibition produced by the latter.  相似文献   

20.
Two nonerythroid homologs of the blood group Rh proteins, RhCG and RhBG, which share homologies with specific ammonia transporters in primitive organisms and plants, could represent members of a new family of proteins involved in ammonia transport in the mammalian kidney. Consistent with this hypothesis, the expression of RhCG was recently reported at the apical pole of all connecting tubule (CNT) cells as well as in intercalated cells of collecting duct (CD). To assess the localization along the nephron of RhBG, polyclonal antibodies against the Rh type B glycoprotein were generated. In immunoblot experiments, a specific polypeptide of Mr approximately 50 kD was detected in rat kidney cortex and in outer and inner medulla membrane fractions. Immunocytochemical studies revealed RhBG expression in distal nephron segments within the cortical labyrinth, medullary rays, and outer and inner medulla. RhBG expression was restricted to the basolateral membrane of epithelial cells. The same localization was observed in rat and mouse kidney. RT-PCR analysis on microdissected rat nephron segments confirmed that RhBG mRNAs were chiefly expressed in CNT and cortical and outer medullary CD. Double immunostaining with RhCG demonstrated that RhBG and RhCG were coexpressed in the same cells, but with a basolateral and apical localization, respectively. In conclusion, RhBG and RhCG are present in a major site of ammonia secretion in the kidney, i.e., the CNT and CD, in agreement with their putative role in ammonium transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号