首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Sequence homologies between the RNAs of five isolates of the ordinary strain of potato virus S (PVSo), four isolates of the Andean strain (PVSA), potato virus M(PVM), and the type member of the carlavirus group, carnation latent virus (CLV), were compared using cDNA solution hybridization. A high degree of homology (90–100%) was detected between the majority of PVSo and PVSA isolates, but lower levels of homology (<10%) were observed between PVS, PVM, and CLV.  相似文献   

2.
Potato virus S (PVS) (genus Carlavirus, family Betaflexiviridae) is one of the most prevalent viruses in potato crops (Solanum tuberosum and S. phureja) around the world, causing reductions in crop yields between 10 and 20 %. Symptoms of PVS infection may include leaf mottling, rugosity of leaves, deepening of the veins and reductions in crop yields between 10 and 20 %. Virions are flexuous rods of 610-710 nm with a positive-sense ssRNA genome of approximately 8500 nt comprising six ORFs, a 5′CAP and a 3′poly-A tail. PVS has been classified into two groups: PVSO (Ordinary) and PVSA (Andean). PVSA induces severe symptoms in infected plants, such as premature senescence and defoliation, and is more efficiently transmitted by aphids than PVSO. To date, only five PVS genomes have been completely sequenced, including those of three PVSO and two PVSA strains. Currently, there are no reports of complete PVS genome sequences from Andean South America. In this work, we present the complete genomic sequence of a novel PVS strain infecting S. phureja that is clearly distinct from currently known PVS isolates.  相似文献   

3.
4.
Summary.  The genome of the Balaton1 severe cherry isolate of apple chlorotic leaf spot trichovirus (ACLSV-Bal1) has been cloned and sequenced. The genomic RNA is 7 549 nucleotide long, excluding the poly A tail. The genomic organization, with three overlapping open reading frames (ORF), is similar to that of the other sequenced ACLSV isolates. Sequence comparisons indicate a high variability between ACLSV isolates, with overall nucleotide sequence homology levels between 76 and 82%. The coat protein, encoded internally inside a larger ORF, is the most conserved protein (identity levels between 87 and 93%) while the central ORF, encoding the putative movement protein, is the most divergent (77 to 85% identity). Received August 5, 1996 Accepted October 21, 1996  相似文献   

5.
Swine hepatitis E virus (HEV) is a newly identified potentially zoonotic agent that is possibly transmitted to humans from pigs. Swine HEV is prevalent in pig populations and does not cause abnormal clinical symptoms in infected pigs, further implicating a likelihood of a risk of transmission to humans by normal contact. To date in North America, only one strain of swine HEV (strain US swine) has been fully sequenced. In the present study, we identified a swine HEV isolate from pigs in Canada, designated the Arkell strain, and determined the full length of the genomic sequence. The genome of Canadian strain Arkell consisted of 7,242 nucleotides, excluding the poly(A) tail of at least 15 A residues. The genome contained three open reading frames (ORFs), ORF1, ORF2, and ORF3, which had coding capacities for proteins of 1,708, 660, and 122 amino acids, respectively. Comparative analysis of the full-length genomic sequence indicated that the sequence of strain Arkell was distinct from those of all other known HEV isolates by 13 to 27% and shared the highest degrees of identity with human HEV isolates US-1 and US-2, HEV isolate US swine, and the human and swine HEV isolates recently isolated in Japan. On the basis of sequence similarities and phylogenetic analyses, HEV strain Arkell was grouped into genotype 3. The sequence of the Arkell swine HEV isolate differed from those of HEV isolate US swine and HEV isolate Japan swine by 13 and 14%, respectively. To date, two isolates of swine HEV (isolates Arkell and SK3 [D. Yoo et al., Clin. Diagn. Lab. Immunol. 8:1213-1219, 2001]) have been identified in Canadian pigs, and their sequences also differ from each other by 11.8%. Our studies indicate that, as with human HEV strains, swine HEV isolates exhibit extensive genetic heterogeneity.  相似文献   

6.
Two hundred forty potato samples with one or more symptoms of leaf mosaic, distortion, mottling and yellowing were collected between 2005 and 2008 from seven Iranian provinces. Forty-four of these samples tested positive with double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISA) using a Potato virus S (PVS) polyclonal antibody. Of these 12 isolates of PVS were selected based on the geographical location for biological and molecular characterization. The full coat protein (CP) and 11K genes from 12 PVS isolates were PCR amplified, cloned and sequenced. All 12 PVS isolates showed mosaic symptoms on Nicotiana debneyii and N. tabacum cv. Whiteburly and local lesion on Chenopodium amaranticolor, C. quinoa and C. album. The Iranian isolates share between 93 and 100% pairwise nucleotide identity with other PVSO isolates. Based on maximum likelihood phylogenetic analysis coupled with pairwise identity analysis, we propose 15 genotypes for the PVSO strain and 3 genotypes for the PVSA strain.  相似文献   

7.
Summary.  The genome of an Australian isolate of Sugarcane bacilliform virus (SCBV-IM) was cloned, sequenced and analysed. The genome consisted of 7687 nucleotides and contained three open reading frames which were similar in size and organisation to those of other badnaviruses. SCBV-IM was found to be most similar to the SCBV-Morocco isolate with amino acid sequence similarity of 91.4 %, 83.8 % and 85.3 % in the ORF I, II and III coding regions, respectively. Phylogenetic analysis of the SCBV-IM ORF III deduced amino acid sequence showed that SCBV isolates were more closely related to each other than to other badnaviruses. Amplification of SCBV sequences from three different sugarcane varieties revealed considerable variability in the viral populations, both within single infected plants as well as between infected plants, suggesting that the SCBV isolates sequenced to date may not be representative of the range of virus variability. Received February 19, 2002; accepted June 14, 2002  相似文献   

8.
The intergenic region (IGR) of the medium (M) RNA of tomato spotted wilt Tospovirus (TSWV) isolates naturally infecting peanut (groundnut), pepper, potato, stokesia, tobacco and watermelon in Georgia (GA) and a peanut isolate from Florida (FL) was cloned and sequenced. The IGR sequences were compared with one another and with respective M RNA IGRs of TSWV isolates from Brazil and Japan and other tospoviruses. The length of M IGR of GA and FL isolates varied from 271 to 277 nucleotides. The M IGRs of TSWV from potato and stokesia, and tobacco and watermelon were identical with each other in their length and sequence. IGR sequences were more conserved (95-100%) among the populations of TSWV from GA and FL, than when compared with those of TSWV isolates from other countries (83-94%). The conserved motif (CAAACTTTGG) present in the IGRs of both M and small (S) RNAs of a Brazilian isolate of TSWV was also conserved in the isolates studied. Cluster analysis of the IGR sequences showed that all GA and FL isolates are closely clustered and are distinct from the TSWV isolates from other countries as well as from other tospoviruses.  相似文献   

9.
10.
11.
目的 分析从广西地区分离的1株猪戊型肝炎病毒swGX32全基因组序列并比较其与其他分离株的差异.方法 设计PCR引物,用巢式反转录聚合酶链反应法(RT-nPCR)分段扩增戊型肝炎病毒(HEV)株swGX32全基因序列,用cDNA末端快速扩增法(RACE)扩增其末端序列,对扩增产物进行克隆和测序,并对拼接后的基因组进行序列和进化分析.结果 除3′polyA尾巴外,swGX32全长7240 nt, ORF1与ORF2重叠4 nt, ORF3包含在ORF2序列中.swGX32全基因序列与HEV1~4型核苷酸序列的同源性分别为:73%~74%、73%、74%~75%,83%~94%,其中与中国人源HEV株JKO-ChiSai98C同源性最高,达94%.全基因序列进化分析显示,swGX32位于HEV基因4型分枝上,ORF2部分核苷酸序列进化分析显示,swGX32与JKO-ChiSai98C同在HEV 4a亚型分枝上.结论 猪HEV swGX32在全基因组结构及分子进化上均与人HEV JKO-ChiSai98C有密切关系,为揭示戊型肝炎是一种人兽共患病提供了分子生物学依据.  相似文献   

12.
Summary The sequence of ORFs 2 to 4 of a U.S. isolate of porcine reproductive and respiratory syndrome virus (PRRSV), ATCC VR2385, was determined by analysis of a cDNA library. The cDNA clones containing PRRSV specific sequences were selected using a VR2385 ORF 4 specific PCR probe and sequenced. The ORFs 2, 3 and 4 overlapped each other and encoded polypeptides with predicted M r of 29.5 kDa (ORF 2), 28.7 kDa (ORF 3) and 19.5 kDa (ORF 4), respectively. No overlap was found between ORFs 4 and 5, and instead there was a 10 bp sequence which separated these two ORFs. The nucleic acid homology with corresponding ORFs of the European PRRSV isolate Lelystad virus (LV) was 65% for ORF 2, 64% for ORF 3 and 66% for ORF 4. Comparison of the ORF 4 sequences of VR2385 with that of another U.S. isolate MN-1b revealed only 86% amino acid sequence homology and the presence of deletions in the ORF 4 of MN-1b. Our results further strengthen the observation that there is sequence variation between US and European PRRSV isolates.  相似文献   

13.
Information on the entire genome of TT virus (TTV) has been scarce. The circular ssDNA genome of a variant (isolate name SANBAN) that we sequenced was only 56.7% homologous to the prototype isolate (TA278), with even lower homology at the amino acid level: 34.2% for ORF1 and 39.7% for ORF2. Regarding the ORF1, SANBAN was only very distantly related to the six major TTV genotypes reported to date. In partial ORF2 sequences determined on 44 isolates taken together, TTV has a broad range of genetic diversity and the SANBAN isolate may represent a new TTV-like viral species or genus and not merely a genotype of TTV.  相似文献   

14.
Sequence analysis of RNA 2 of four Tobacco rattle virus (TRV) isolates collected from potato fields in Oregon (OR2, Umt1), Washington (BM), and Colorado (Cot2) revealed significant homologies to the ORY isolate from North America. Phylogenetic analysis based on a comparison of nucleotide (nt) and amino acid (aa) sequences with other members of the genus Tobravirus indicates that the North American isolates cluster as a distinct group. All of the RNAs are predicted to contain open reading frames (ORFs) potentially encoding the coat protein (CP, ORF 2a) and 37.6 kDa (ORF 2b) ORFs. In addition, they all contain a region of similarity to the 3' terminus of RNA 1 of ORY, including a truncated portion of the 16 kDa cistron from the 3' end of RNA 1. Three of the isolates, which are nematode transmissible, OR2, BM, and Cot2, also contain a third putative ORF (ORF 2c) which encodes a protein of 33.6 kDa. The fourth isolate, Umt1, which is not nematode transmissible, is the most divergent of the isolates as it encodes a truncated version of ORF 2c. The ORF 2c deletion in Umt1 may contribute to its inability to be transmitted by the vector. The results reported in this article indicate again that the TRV genome is flexible. Interestingly, although both isolates Umt1 and Cot2 were mechanically transmitted to tobacco from potato, only Umt1 exhibits the deletion in RNA 2. TRV Isolate Umt1, therefore, appears to be another example of rapid adaptation of the TRV genome to non-field conditions.  相似文献   

15.
Sweet potato chlorotic stunt virus (SPCSV) is probably the most important virus infecting sweetpotato worldwide, causing severe synergistic disease complexes with several co-infecting viruses. To date only one isolate (Ug), corresponding to the EA strain has been completely sequenced. It was later shown to be unusual in that, in contrast to most isolates, it encoded an additional p22 protein at the 3' end of RNA1. We report the complete sequence and genome organization of a Peruvian isolate of SPCSV (m2-47) as determined by siRNA deep sequencing. We confirm that the ORF encoding p22 is lacking from m2-47 and all tested Peruvian and South American isolates, whereas additional isolates containing p22 were identified from Uganda. Other potentially important genomic differences such as two small ORFs encoding putative small hydrophobic proteins instead of one, upstream the hsp70h gene and a more divergent sequence at its RNA1 3'-UTR in contrast to SPCSV isolates that contain p22 are discussed and a model for recent acquisition of p22 in Uganda is proposed. A role for p22 as a pathogenicity enhancer of SPCSV is also provided by complementary expression of p22 in transgenic sweetpotato plants.  相似文献   

16.
Complete nucleotide sequence and molecular probing of potato virus S genome   总被引:3,自引:0,他引:3  
Complete genomes of three isolates of Potato virus S (PVS) were cloned and sequenced. The PVS ORF-1 was characterized for the first time. It encodes a putative replication protein (RPT) that shares the highest homology (about 52%) with that of Blueberry scorch virus (BlScV). ORF-1 motifs, characteristic for carlaviruses were found for methyltransferase (MTR), helicase (HEL) and RNA-dependent RNA polymerase (RdRp). The complete sequence of PVS genome enabled to develop an immunocapture RT-PCR probing of the PVS genome. Using this system, the sequence variability of 11 genome zones was examined for 34 PVS isolates including 15 PVS-CS variants that caused a systemic infection in Chenopodium quinoa. A broad variability between PVS isolates and diverse sequence variants was found. cDNA fragments covering the coat protein (CP) leader and CP-coding region (approx. 420 bp) were pooled for PVS-O and Chenopodium-systemic PVS isolates (PVS-CS) and corresponding cDNA libraries were screened for sequence variants. Both cDNA pools differred mainly in the 5'-end of the CP gene. Methionine at the position 17 in combination with serine at the position 34 were frequently associated with the CS character of PVS. In general, hydrophobic and polar amino acids were characteristic for the positions 17 and 34, respectively in PVS-CS isolates. Genome probing and evolutionary distances suggested that the PVS-CS isolates analyzed were close to the ordinary European isolates of ordinary strain of PVS (PVS-O) but distant to the original Andean strain of PVS (PVS-A).  相似文献   

17.
Luan YS  Zhang J  Liu DM  Li WL 《Virus genes》2007,35(2):379-385
A Sweet potato-infecting sweet potato leaf curl virus (SPLCV) isolated in China was detected by Polymerase Chain Reaction (PCR). PCR products amplified from DNA-A were cloned and sequenced. The isolates of SPLCV from China(SPLCV-CN)has a genome organization similar to that of monopartite begomoviruses. The DNA-A had two ORFs (AV1 and AV2) in the virion sense and four ORFs (AC1, AC2, AC3, and AC4) in the complementary sense, separated by an intergenic region (IR) containing a conserved stem-loop motif. Three incomplete direct repeat iterons were also found within the IR. The presence of AV2 ORF supports the relationship of SPLCV-CN to the Old World gemimiviruses. Sequence comparisons showed that the DNA-A sequence of SPLCV-CN were closely related to those of sweet potato leaf curl Georgia virus-[16] (SPLCGV-[16]), Ipomoea yellow vein virus (IYVV-SI), and sweet potato leaf curl virus (SPLCV) with nucleotide sequence identity ranging from 88% to 91%. Comparison of individual encoded proteins between SPLCV-CN and that of three other SPLCV isolates showed the coat protein (AV1) shared the highest amino acid sequence identity (93%–96%), suggesting the coat protein of these viruses may have identical ancestor. The relationships between SPLCV-CN and other whitefly-transmitted geminiviruses were investigated by using phylogeny of derived AV1, AC1, and AV2 amino acid sequences. In all phylogenetic trees, SPLCV-CN clustered with three other isolates of SPLCV. The analyses revealed that the four isolates of SPLCV have coat proteins which are unique from its counterparts from both the Old World and New World. The present of AV2 and phylogenic analysis of AC1 suggest that SPLCV is more close to begomoviruses from the Old World but isolates of this virus seems to form a separate subset. An erratum to this article can be found at  相似文献   

18.
Summary. Cacao swollen shoot virus (CSSV), a member of the family Caulimovi-ridae, genus Badnavirus occurs in all the main cacao-growing areas of West Africa. We amplified, cloned and sequenced complete genomes of five new isolates, two originating from Togo and three originating from Ghana. The genome of these five newly sequenced isolates all contain the five putative open reading frames I, II, III, X and Y described for the first sequenced CSSV isolate, Agou1 originating from Togo. Their genomes have been aligned with the genome of Agou1. The nucleotide and amino acid sequence identities between isolates have been calculated and a phylogenetic analysis has been made including other pararetroviruses. Maximum nucleotide sequence variability between complete genomes of CSSV isolates was 29.4%. Geographical differentiation between isolates appears more important than differentiation between mild and severe isolates. ORF X differs greatly in size and sequence between the Togolese isolates Nyongbo2 and Agou1, and the four other isolates, its functional role is therefore clearly questionable.  相似文献   

19.
Tobacco rattle virus (TRV) causes stem mottle on potato leaves and necrotic arcs and rings in potato tubers, known as corky ringspot disease. Recently, TRV was reported in Michigan potato tubers cv. FL1879 exhibiting corky ringspot disease. Sequence analysis of the RNA-1-encoded 16-kDa gene of the Michigan isolate, designated MI-1, revealed homology to TRV isolates from Florida and Washington. Here, we report the complete genomic sequence of RNA-1 (6,791 nt) and RNA-2 (3,685 nt) of TRV MI-1. RNA-1 is predicted to contain four open reading frames, and the genome structure and phylogenetic analyses of the RNA-1 nucleotide sequence revealed significant homologies to the known sequences of other TRV-1 isolates. The relationships based on the full-length nucleotide sequence were different from than those based on the 16-kDa gene encoded on genomic RNA-1 and reflect sequence variation within a 20–25-aa residue region of the 16-kDa protein. MI-1 RNA-2 is predicted to contain three ORFs, encoding the coat protein (CP), a 37.6-kDa protein (ORF 2b), and a 33.6-kDa protein (ORF 2c). In addition, it contains a region of similarity to the 3′ terminus of RNA-1, including a truncated portion of the 16-kDa cistron. Phylogenetic analysis of RNA-2, based on a comparison of nucleotide sequences with other members of the genus Tobravirus, indicates that TRV MI-1 and other North American isolates cluster as a distinct group. TRV M1-1 is only the second North American isolate for which there is a complete sequence of the genome, and it is distinct from the North American isolate TRV ORY. The relationship of the TRV MI-1 isolate to other tobravirus isolates is discussed.  相似文献   

20.
In the United States, two sweet potato begomoviruses, sweet potato leaf curl virus (SPLCV) and sweet potato leaf curl Georgia virus (SPLCGV), were previously identified in Louisiana. In recent years, at least seven additional sweet potato begomoviruses have been identified in other parts of the world. In an effort to determine the genetic diversity and distribution of sweet potato begomoviruses in the U.S., we focused our efforts on molecular characterization of field-collected begomovirus isolates in two states: Mississippi and South Carolina. Using rolling-circle amplification, a total of 52 clones of the full genome were obtained. Initial inspection of alignments of the end sequences in these clones revealed a strong genetic diversity. Overall, 10 genotypes could be assigned. A majority of the isolates (50/52) in eight genotypes were shown to be closely related to SPLCV. A representative clone of each genotype was fully sequenced and analyzed. Among them, four genotypes from South Carolina with 91-92% sequence identity to the type member of SPLCV were considered a new strain, whereas four other genotypes from Mississippi with >95% sequence identity to SPLCV were considered variants. In addition, a member of a proposed new begomovirus species was identified after comparative sequence analysis of the isolate [US:SC:646B-9] from South Carolina with less than 89% sequence identity to any known begomovirus. Hence, the provisional name Sweet potato leaf curl South Carolina virus (SPLCSCV) is proposed. Moreover, a natural recombinant consisting of two distinct parental genomic sequences from SPLCV and SPLCGV was identified in the sample [US:MS:1B-3] from Mississippi. Two recombinant breakpoints were identified, one in the origin of replication and the other between C2 and C4. This knowledge about the genetic diversity of begomoviruses infecting sweet potato will likely have a major impact on PCR-based virus detection and on disease management practice through breeding for virus resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号