首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristics of the primary afferent depolarization (PAD) of Ia- and Ib-fibers generated by segmental and descending inputs have been analyzed in the spinal cord of anesthetized cats. The PAD was inferred from the changes produced by conditioning inputs on the intraspinal stimulus current required to produce a constant antidromic firing of single group I afferent fibers from the gastrocnemius (GS) or posterior biceps and semitendinosus (PBSt) nerves. Group I GS and PBSt fibers ending in the intermediate nucleus could be classified in three different types according to their PAD patterns in response to stimulation of cutaneous nerves and of descending fibers. In one set of group I fibers stimulation of cutaneous nerves and of the ipsilateral brain stem reticular formation, or the contralateral red nucleus, produced no PAD, but was able to inhibit the PAD generated by stimulation of group I fibers from flexors (type A PAD pattern). PBSt nerve fibers with this PAD pattern had peripheral thresholds and conduction velocities between 1.01 and 1.56 times threshold and 76.3 to 118 m/s, respectively. A second set of group I fibers was found to be depolarized by cutaneous nerves as well as by stimulation of rubrospinal and reticulospinal fibers (type B PAD pattern). The peripheral thresholds and conduction velocities of PBSt afferent fibers with a type B PAD pattern were of 1.66-2.03 times threshold and 71-83 m/s, respectively. We found a third set of group I fibers that were also depolarized by reticulospinal and rubrospinal inputs, but not by cutaneous nerves that instead inhibited the PAD elicited by group I volleys in flexor nerves (type C PAD pattern). All PBSt afferent fibers with a type C PAD pattern, with the exception of two, had peripheral thresholds and velocities between 1.46 and 2.16 times threshold and between 72 and 89 m/s, respectively. Stimulation of the Deiter's nucleus was found to depolarize the intraspinal terminals of a small fraction of group I GS fibers with a type A PAD pattern and of all group I GS and PBSt fibers with type B and C PAD patterns. The PAD produced by vestibulospinal stimulation in fibers with type A and C PAD patterns could be inhibited by conditioning volleys applied to cutaneous nerves. It is suggested that group I afferent fibers from flexors and extensors with a type A PAD pattern are group Ia, and that most fibers with type B and type C PAD patterns are group Ib.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Summary The purpose of the present series of experiments was to analyze, in anesthetized and paralyzed cats, the effects of (-)-baclofen and picrotoxin on the primary afferent depolarization (PAD) generated in single Ib afferent fibers by either intraspinal microstimulation or stimulation of the segmental and descending pathways. PAD was estimated by recording dorsal root potentials and by measuring the changes in the intraspinal activation threshold of single Ib muscle afferent fibers. The PAD elicited by stimulation of group I muscle or cutaneous afferents was readily depressed and often abolished 20–40 min after the intravenous injection of 1–2 mg/kg (-)-baclofen. In contrast, the same amounts of (-)-baclofen produced a relatively small depression of the PAD elicited by stimulation of the brainstem reticular formation (RF). The monosynaptic PAD produced in single Ib fibers by intraspinal microstimulation within the intermediate nucleus was depressed and sometimes abolished following the i.v. injections of 1–2 mg/kg (-)-baclofen. Twenty to forty minutes after the i.v. injection of picrotoxin (0.5–1 mg/kg), there was a strong depression of the PAD elicited by stimulation of muscle and cutaneous afferents as well as of the PAD produced by stimulation of the RF and the PAD produced by intraspinal microstimulation. The results obtained suggest that, in addition to its action on primary afferents, (-)-baclofen may depress impulse activity and/or transmitter release in a population of last-order GABAergic interneurons that mediate the PAD of Ib fibers. The existence of GABAb autoreceptors in last-order interneurons mediating the PAD may function as a self-limiting mechanism controlling the synaptic efficacy of these interneurons.  相似文献   

3.
The effects of the brainstem reticular formation on the intraspinal excitability of low threshold cutaneous and muscle afferents were studied in the frog neuraxis isolated together with the right hindlimb nerves. Stimulation of low threshold fibers (less than two times threshold) in cutaneous nerves produced short latency, negative field potentials in the ipsilateral dorsal neuropil (200–400 m depth) that reversed to positivity at deeper regions (500–700 m). Stimulation of low threshold fibers (less than two times threshold) in muscle nerves produced, instead, negative responses that acquired their maximum amplitude in the ventral neuropil (700–900 m depth). These electrophysiological findings suggest, in agreement with observations in the cat, that low threshold cutaneous and muscle afferents end at different sites in the spinal cord. Intraspinal microstimulation applied within the dorsal neuropil produced antidromic responses in low threshold cutaneous afferents that were increased in size following stimulation of the dorsal or ventral roots, as well as of the brainstem reticular formation. This increase in excitability is interpreted as being due to primary afferent depolarization (PAD) of the intraspinal terminals of cutaneous fibers. Antidromic responses recorded in muscle nerves following intraspinal stimulation within the ventral neuropil were also increased following conditioning stimulation of adjacent dorsal or ventral roots. However, stimulation of the bulbar reticular formation produced practically no changes in the antidromic responses, but was able to inhibit the PAD of low threshold muscle afferents elicited by stimulation of the dorsal or ventral roots. It is suggested that the PAD of low threshold cutaneous and muscle afferents is mediated by independent sets of interneurons. Reticulospinal fibers would have excitatory connections with the interneurons mediating the PAD of cutaneous fibers and inhibitory connections with the interneurons mediating the PAD of muscle afferents. Although our results provide no direct information on whether the reticulospinal depression of the PAD elicited in low threshold muscle afferents is due to inhibition along the pathways producing PAD of muscle spindle or of tendon organ afferents, it seems likely — by analogy with what has been seen in the cat spinal cord — that these inhibitory actions are mostly restricted to the pathways producing PAD in the terminal arborizations of muscle spindle afferents. These results emphasize the specificity of the descending control of the synaptic efficacy of low threshold cutaneous and muscle afferents which could be of importance for motor performance.  相似文献   

4.
We have examined in the anesthetized cat the threshold changes produced by sensory and supraspinal stimuli on intraspinal collaterals of single afferents from the posterior articular nerve (PAN). Forty-eight fibers were tested in the L3 segment, in or close to Clarke’s column, and 70 fibers in the L6–L7 segments within the intermediate zone. Of these, 15 pairs of L3 and L6–L7 collaterals were from the same afferent. Antidromically activated fibers had conduction velocities between 23 and 74 m/s and peripheral thresholds between 1.1 and 4.7 times the threshold of the most excitable fibers (xT), most of them below 3 xT. PAN afferents were strongly depolarized by stimulation of muscle afferents and by cutaneous afferents, as well as by stimulation of the bulbar reticular formation and the midline raphe nuclei. Stimulation of muscle nerves (posterior biceps and semitendinosus, quadriceps) produced a larger PAD (primary afferent depolarization) in the L6–L7 than in the L3 terminations. Group II were more effective than group I muscle afferents. As with group I muscle afferents, the PAD elicited in PAN afferents by stimulation of muscle nerves could be inhibited by conditioning stimulation of cutaneous afferents. Stimulation of the cutaneous sural and superficial peroneal nerves increased the threshold of few terminations (i.e., produced primary afferent hyperpolarization, PAH) and reduced the threshold of many others, particularly of those tested in the L6–L7 segments. Yet, there was a substantial number of terminals where these conditioning stimuli had minor or no effects. Autogenetic stimulation of the PAN with trains of pulses increased the intraspinal threshold in 46% and reduced the threshold in 26% of fibers tested in the L6–L7 segments (no tests were made with trains of pulses on fibers ending in L3). These observations indicate that PAN afferents have a rather small autogenetic PAD, particularly if this is compared with the effects of heterogenetic stimulation. Therefore, the depression of the PAN intraspinal fields produced by autogenetic stimulation described by Rudomin et al. (Exp Brain Res DOI 10.1007/s00221-006-0600-x, 2006) may be ascribed to other mechanisms besides a GABAa PAD. It is suggested that the small or no autogenetic PAD displayed by the examined joint afferents prevents presynaptic filtering of their synaptic actions and preserves the original information generated in the periphery. This could be important for proper adjustment of limb position.  相似文献   

5.
 This study was primarily aimed at investigating the selectivity of the cortico-spinal actions exerted on the pathways mediating primary afferent depolarization (PAD) of muscle spindle and tendon organ afferents ending within the intermediate nucleus at the L6–L7 segmental level. To this end we analyzed, in the anesthetized cat, the effects produced by electrical stimulation of sensory nerves and of the cerebral cortex on (a) the intraspinal threshold of pairs of single group I afferent fibers belonging to the same or to different hindlimb muscles and (b) the intraspinal threshold of two collaterals of the same muscle afferent fiber. Afferent fibers were classified in three categories, according to the effects produced by stimulation of segmental nerves and of the cerebral cortex. Twenty-five of 40 fibers (62.5%) were depolarized by stimulation of group I posterior biceps and semitendinosus (PBSt) or tibialis (Tib) fibers, but not by stimulation of the cerebral cortex or of cutaneous and joint nerves, which instead inhibited the PBSt- or Tib-induced PAD (type A PAD pattern, usually seen in Ia fibers). The remaining 15 fibers (37.5%) were all depolarized by stimulation of the PBSt or Tib nerves and the cerebral cortex. Stimulation of cutaneous and joint nerves produced PAD in 10 of those 15 fibers (type B PAD pattern) and inhibited the PBSt- or Tib-induced PAD in the 5 remaining fibers (type C PAD pattern). Fibers with a type B or C PAD pattern are likely to be Ib. Not all sites in the cerebral cortex inhibited with the same effectiveness the segmentally induced PAD of group I fibers with a type A PAD pattern. With the weakest stimulation of the cortical surface, the most effective sites that inhibited the PAD of individual fibers were surrounded by less effective sites, scattered all along the motor cortex (area 4γ and 6) and sensory cortex (areas 3, 2 and 1), far beyond the area of projection of group I fibers from the hindlimb. With higher strengths of cortical stimulation, the magnitude of the inhibition was also increased, and previously ineffective or weakly effective sites became more effective. Maps obtained when using the weakest cortical stimuli have indicated that the most effective regions that produced PAD of group I fibers with a type B or type C PAD pattern were also scattered throughout the sensory-motor cortex, in the same general area as those that inhibited the PAD of group I afferents with a type A PAD pattern. In eight fibers with a type A PAD pattern it was possible to examine the intraspinal threshold of two collaterals of the same single afferent fiber ending within the intermediate nucleus at the L7 segmental level. In six fibers, stimulation of the PBSt nerve with trains of pulses between 1.5 and 1.86 times threshold (×T) produced a larger PAD in one collateral than in the other. In seven fibers, stimulation of the sensory-motor cortex and of cutaneous nerves produced a larger inhibition of the PBSt-induced PAD in one collateral than in the other. The ratio of the cortically induced inhibition of the PAD elicited in the two collaterals could be modified by changing the strength of cortical and of PBSt stimulation. In three fibers it was possible to inhibit almost completely the background PAD elicited in one collateral while having little or no effect on the PAD in the other collateral. Changes in the intraspinal threshold of pairs of collaterals following electrical stimulation of segmental nerves and of the somato-sensory cortex were examined in three fibers with a type B and two fibers with a type C PAD pattern. In four fibers the PAD elicited by stimulation of cutaneous (4–20×T) and muscle nerves (1.54–3.7×T), or by stimulation of the sensory-motor cortex, was of different magnitude in the two collaterals. In two experiments it was possible to find cortical sites in which weak surface stimulation produced PAD in one collateral only. The magnitude of the PAD elicited in pairs of collaterals of group I afferents with a type B or C PAD pattern, or the inhibition of the PAD in pairs of collaterals of fibers with a type A PAD pattern, appeared not to be topographically related to the site of spinal projection of the cutaneous and cortico-spinal fibers used for conditioning stimulation. The present demonstration of a differential control of the PAD exerted on two collaterals of the same afferent fiber suggests that the profuse intraspinal branching of muscle spindle and tendon organs is a potentially rich substrate for information transmission. By means of presynaptic control mechanisms, the terminal arborizations of the afferent fibers could function either as a simple unit or in a fractionated manner, allowing funneling of information to selected groups of central neurons. Received: 18 April 1996 / Accepted: 5 September 1996  相似文献   

6.
 A technique was developed to measure, in the anesthetized and paralyzed cat under artificial ventilation, changes of excitability to intraspinal stimulation simultaneously in two different afferent fibers or in two collaterals of the same afferent fiber. Intraspinal stimulation reduced the threshold of single muscle afferent fibers ending in the intermediate nucleus. This effect was seen with strengths below those required to activate the afferent fiber tested (1.5–12 μA), occurred at a short latency (1.5–2.0 ms), reached a maximum between 15 and 30 ms, and lasted up to 100 ms. The effects produced by graded stimulation applied at the shortest conditioning-testing stimulus time intervals increased by fixed steps, suggesting recruitment of discrete elements, most likely of last-order interneurons mediating primary afferent depolarization (PAD). The short-latency increases in excitability produced by the weakest effective intraspinal stimuli were usually detected only in the collateral closest to the stimulating micropipette, indicating that the stimulated interneurons mediating PAD have spatially restricted actions. The short-latency PAD produced by intraspinal stimuli, as well as the PAD produced by stimulation of the posterior biceps and semitendinosus (PBSt) nerve or by stimulation of the bulbar reticular formation (RF), was depressed 19–30 min after the i.v. injection of 0.5 mg/kg of picrotoxin, suggesting that all these effects were mediated by GABAergic mechanisms. The PAD elicited by stimulation of muscle and/or cutaneous nerves was depressed following the i.v. injection of (–)-baclofen, whereas the PAD elicited in the same collateral by stimulation of the RF was baclofen-resistant. The short-latency PAD produced by intraspinal stimulation was not always depressed by i.v. injections of (–)-baclofen. Baclofen-sensitive and baclofen-resistant monosynaptic PADs could be produced in different collaterals of the same afferent fiber. The results suggest that the intraspinal terminals of single muscle afferents receive synapses from more than one PAD-mediating GABAergic interneuron and that a single last-order interneuron has synaptic connections with a restricted number of intraspinal terminals and/or collaterals of the same afferent fiber. In addition, they support the existence of separate subsets of last-order baclofen-sensitive and baclofen-resistant interneurons that respond predominantly to segmental and to descending inputs. It is suggested that the restricted nature of the PAD plays an important role in the central control of the synaptic effectiveness of group I muscle afferents. Received: 10 October 1996 / Accepted: 10 December 1996  相似文献   

7.
The aim of the study was to investigate whether common or independent neuronal pathways are used to evoke primary afferent depolarization (PAD) from selectively activated group Ia and Ib afferents of different muscles. To this end, the spatial facilitation of effects of various afferents, indicating convergence on the same interneurons, was used as a test. Its occurrence was assessed on dorsal root potentials (DRPs) evoked in unspecified fibers or using intra-axonal recording from identified group Ia muscle spindle afferents or group Ib tendon organ afferents. Spatial facilitation has been found in PAD pathways a) from various Ia-afferents, whether of flexors or extensors; b) from various Ib-afferents, whether of flexors or extensors; and c) from flexor Ib-afferents and flexor or extensor Ia-afferents. In contrast, no indications have been found for common pathways from extensor Ib- and any Ia-afferents under conditions that proved effective in other combinations. Latencies of those components of PAD that appeared as a result of the spatial facilitation ranged from 2 to more than 7 ms, indicating that the convergence occurred in the shortest (trisynaptic) as well as longer pathways. The same patterns of convergence have been found in PAD pathways to extensor and flexor Ia-afferents (in experiments with intraaxonal recording from these afferents). The possibility might thus be considered that some neuronal pathways are used to modulate transmission via Ia-afferents independently of their muscle origin. The same might hold true for extensor and flexor Ib-afferents. Generally, it is concluded that the minimal number of distinct neuronal populations subserving PAD of group I afferents may be two to six. Additionally, actions of cutaneous, joint, and interosseous afferents on DRPs from Ia-afferents were reexamined to further the comparison between neurons mediating PAD and those mediating postsynaptic excitation or inhibition of motoneurons. Only depression of Ia DRPs followed stimulation of these afferents at intensities of 1.5-2.0 times threshold and higher; lower threshold afferents were apparently ineffective. On the basis of lack of convergence of extensor Ib and Ia muscle afferents and of low-threshold cutaneous afferents, interneurons mediating PAD may thus be distinguished from the interneurons subserving Ib and Ia-like-Ib postsynaptic actions in motoneurons. The latter are coexcited by these three groups of afferents.  相似文献   

8.
We examined primary afferent depolarization (PAD) in the anesthetized cat elicited in 109 pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pair ending in the L3 segment, around the Clarkes column nuclei, and the other in the L6 segment within the intermediate zone. Tests for refractoriness were made to assess whether the responses produced by intraspinal stimulation in the L3 and L6 segments were due to activation of collaterals of the same afferent fiber. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. In most fibers, stimulation of the ipsilateral posterior biceps and semitendinosus (PBSt) nerve with trains of pulses maximal for group I afferents had a qualitatively similar effect but produced a larger PAD in the L6 than in the L3 collaterals. Stimulation of cutaneous nerves (sural and superficial peroneus) with single pulses and of the posterior articular nerve, the ipsilateral reticular formation, nucleus raphe magnus and contralateral motor cortex with trains of pulses often had qualitatively different effects. They could produce PAD and/or facilitate the PBSt-induced PAD in one collateral, and produce PAH and/or inhibit the PAD in the other collateral. These patterns could be changed in a differential manner by sensory or supraspinal conditioning stimulation. In summary, the present investigation suggests that the segmental and ascending collaterals of individual afferents are not fixed routes for information transmission, but parts of dynamic systems in which information transmitted to segmental reflex pathways and to Clarkes column neurons by common sources can be decoupled by sensory and descending inputs and funneled to specific targets according to the motor tasks to be performed.  相似文献   

9.
Summary The relative contribution of specific and unspecific (potassium) components involved in the generation of primary afferent depolarization (PAD) of cutaneous fibres was analyzed in the spinal cord of the anaesthetized cat. To this end we examined the correlation between the intraspinal threshold changes of single afferent fibres in the sural nerve produced by segmental and descending inputs and the negative DC potential shifts produced by these same stimuli at the site of excitability testing, the latter taken as indicators of the changes in extracellular concentration of potassium ions. Stimulation of the ipsilateral brain-stem reticular formation and of the contralateral red nucleus with 100–200 Hz trains reduced very effectively the intraspinal threshold of sural nerve fibres ending in the dorsal horn practically without producing any negative DC potential shifts at the site of excitability testing. However, negative DC potential shifts were produced more ventrally, in the intermediate nucleus and/or motor nucleus. Stimulation of the sural and superficial peroneus nerves with pulses at 2 Hz and strengths below 2×T, also reduced the intraspinal threshold of single SU fibres without producing significant DC potential changes at the site of excitability testing. On the other hand, 100 Hz trains with strengths above 2×T produced negative DC potential shifts and a proportional reduction of the intraspinal threshold of the SU fibres. The PAD of sural fibres produced by stimulation of rubro-spinal and reticulospinal fibres as well as by stimulation of sensory nerves with low frequency trains was unaffected or slightly increased, by i.v. injection of strychnine (0.2 mg/kg), but was readily abolished 5–10 min after the i.v. injection of picrotoxin (2 mg/kg). The results suggest that activation of reticulo-spinal and rubrospinal fibres, as well as stimulation of cutaneous nerves with low frequencies and low strengths, produce PAD of cutaneous fibres involving activation of specific interneuronal pathways with interposed last-order GABAergic interneurons. The potassium component of the PAD produced by cutaneous fibres becames dominant with high stimulus frequencies and strengths.  相似文献   

10.
Summary Intracellular recordings were made in the barbiturate-anesthetized cat from single afferent fibres left in continuity with the medial gastrocnemius muscle to document the transmembrane potential changes produced in functionally identified fibres by stimulation of sensory nerves and of the contralateral red nucleus (RN). Fifty five fibres from muscle spindles had conduction velocities above 70 m/s and were considered as from group Ia. Stimulation of group I afferent fibres of the posterior biceps and semitendinosus nerve (PBSt) produced primary afferent depolarization (PAD) in 30 (54%) Ia fibres. Stimulation of the sural (SU) nerve produced no transmembrane potential changes in 39 (71%) group Ia fibres and dorsal root reflex-like activity (DRRs) in 16 (29%) fibres. In 17 out of 28 group Ia fibres (60.7%) SU conditioning inhibited the PAD generated by stimulation of the PBSt nerve. Facilitation of the PBSt-induced PAD by SU conditioning was not seen. Repetitive stimulation of the RN had mixed effects: it produced PAD in 1 out of 8 fibres and inhibited the PAD induced by PBSt stimulation in 2 other fibres. Nine fibres connected to muscle spindles had conduction velocities below 70 m/s and were considered to be group II afferents. No PAD was produced in these fibres by SU stimulation but DRRs were generated in 5 of them. In 23 out of 31 fibres identified as from tendon organs group I PBSt volleys produced PAD. However, stimulation of the SU nerve produced PAD only in 3 out of 34 fibres, no transmembrane potential changes in 30 fibres and DRRs in 1 fibre. The effects of SU conditioning on the PAD produced by PBSt stimulation were tested in 19 Ib fibres and were inhibitory in 12 of them. In 9 of these fibres SU alone produced no transmembrane potential changes. Repetitive stimulation of the RN produced PAD in 3 out of 9 Ib fibres. SU conditioning inhibited the RN-induced PAD. The present findings support the existence of an alternative inhibitory pathway from cutaneous to Ib fibres, in addition to the well known excitatory pathway producing PAD. Possible functional implications of inhibitory actions of cutaneous fibres with the pathways mediating the PAD of group Ia and Ib fibres are discussed.  相似文献   

11.
The present investigation documents the patterns of primary afferent depolarization (PAD) of single, functionally identified muscle afferents from the medial gastrocnemius nerve in the intact, anesthetized cat. Classification of the impaled muscle afferents as from muscle spindles or from tendon organs was made according to several criteria, which comprised measurement of conduction velocity and electrical threshold of the peripheral axons, and the maximal frequency followed by the afferent fibers during vibration, as well as the changes in discharge frequency during longitudinal stretch, the projection of the afferent fiber to the motor pool, and, in unparalyzed preparations, the changes in afferent activity during a muscle twitch. In confirmation of a previous study, we found that most muscle spindle afferents (46.1–66.6%, depending on the combination of criteria utilized for receptor classification) had a type A PAD pattern. That is, they were depolarized by stimulation of group I fibers of the posterior biceps and semitendinosus (PBSt) nerve, but not by stimulation of cutaneous nerves (sural and superficial peroneus) or the bulbar reticular formation (RF), which in many cases inhibited the PBSt-induced PAD. In addition, we found a significant fraction of muscle spindle primaries that were depolarized by stimulation of group I PBSt fibers and also by stimulation of the bulbar RF. Stimulation of cutaneous nerves produced PAD in 9.1–31.2% of these fibers (type B PAD pattern) and no PAD in 8.2–15.4% (type C PAD pattern). In contrast to muscle spindle afferents, only the 7.7–15.4% of fibers from tendon organs had a type A PAD pattern, 23–46.1% had a type B and 50–61.5% a type C PAD pattern. These observations suggest that the neuronal circuitry involved in the control of the synaptic effectiveness of muscle spindles and tendon organs is subjected to excitatory as well as to inhibitory influences from cutaneous and reticulospinal fibers. As shown in the accompanying paper, the balance between excitation and inhibition is not fixed, but can be changed by crushing the afferent axons in the peripheral nerve and allowing subsequent reconnection of these afferent fibers with muscle receptors.  相似文献   

12.
In anesthetized and paralyzed cats under artificial respiration, we examined the extent to which primary afferent depolarization (PAD) might affect invasion of action potentials in intraspinal axonal and/or terminal branches of single muscle afferents. To this end, one stimulating micropipette was placed at the L6 spinal level within the intermediate or motor nucleus, and another one at the L3 level, in or close to Clarke's column. Antidromically conducted responses produced in single muscle afferents by stimulation at these two spinal levels were recorded from fine lateral gastrocnemius nerve filaments. In all fibers examined, stimulation of one branch, with strengths producing action potentials, increased the intraspinal threshold of the other branch when applied at short conditioning testing stimulus intervals (<1.5-2.0 ms), because of the refractoriness produced by the action potentials invading the tested branch. Similar increases in the intraspinal threshold were found in branches showing tonic PAD and also during the PAD evoked by stimulation of group I afferent fibers in muscle nerves. It is concluded that during tonic or evoked PAD, axonal branches in the dorsal columns and myelinated terminals of muscle afferents ending deep in the L6 and L3 segmental levels continue to be invaded by action potentials. These findings strengthen the view that presynaptic inhibition of muscle afferents produced by activation of GABAergic mechanisms is more likely to result from changes in the synaptic effectiveness of the afferent terminals than from conduction failure because of PAD.  相似文献   

13.
Summary The experiments were done on unanaesthetized, decerebrate, and decerebellate cats. Recording was made from axons originating in the lateral reticular nucleus on stimulation of various nerves, cutaneous receptors, and certain descending tracts. Excitatory and inhibitory effects were evoked from the flexor reflex afferents of receptive fields which included most of the body surface. It is concluded that the lateral reticular nucleus with respect to its afferent inflow is similar to the non-cerebellar nuclei of the reticular formation. The possibility that the reticulocerebellar tract is important in determining the background excitation of cortical neurones is discussed. The effects evoked by stimulation of descending tracts were consistent with the disclosure that the bilateral ventral flexor reflex tract is the afferent path to the lateral reticular nucleus.This investigation was supported by the Swedish Medical Research Council (Project No. 14X-606-01K). Technical assistance was given by Mr. A. Jönsson and Miss Ulla Persson.  相似文献   

14.
In the anesthetized cat we have analyzed the changes in primary afferent depolarization (PAD) evoked in single muscle spindle and tendon organ afferents at different times after their axons were crushed in the periphery and allowed to regenerate. Medial gastrocnemius (MG) afferents were depolarized by stimulation of group I fibers in the posterior biceps and semitendinosus nerve (PBSt), as soon as 2 weeks after crushing their axons in the periphery, in some cases before they could be activated by physiological stimulation of muscle receptors. Two to twelve weeks after crushing the MG nerve, stimulation of the PBSt produced PAD in all MG fibers reconnected with presumed muscle spindles and tendon organs. The mean amplitude of the PAD elicited in afferent fibers reconnected with muscle spindles was increased relative to values obtained from Ia fibers in intact (control) preparations, but remained essentially the same in fibers reconnected with tendon organs. Quite unexpectedly, we found that, between 2 and 12 weeks after crushing the MG nerve, stimulation of the bulbar reticular formation (RF) produced PAD in most afferent fibers reconnected with muscle spindle afferents. The mean amplitude of the PAD elicited in these fibers was significantly increased relative to the PAD elicited in muscle spindle afferents from intact preparations (from 0.08–0.4 to 0.47-0.34 mV). A substantial recovery was observed between 6 months and 2.5 years after the peripheral nerve injury. Stimulation of the sural (SU) nerve produced practically no PAD in muscle spindles from intact preparations, and this remained so in those afferents reconnected with muscle spindles impaled 2–12 weeks after the nerve crush. The mean amplitude of the PAD produced in afferent fibers reconnected with tendon organs by stimulation of the PBSt nerve and of the bulbar RF remained essentially the same as the PAD elicited in intact afferents. However, SU nerve stimulation produced a larger PAD in afferents reconnected with tendon organs 2–12 weeks after the nerve crush (mean PAD changed from 0.05-0.04 to 0.32-0.17 mV). The results obtained indicate that the PAD patterns of the afferent fibers reconnected with muscle spindle and tendon organ afferents are changed after crushing their axons in the periphery: stimulation of the bulbar RF appears to produce larger PAD in fibers reconnected with muscle spindles, and stimulation of cutaneous afferents produces larger PAD in fibers reconnected with tendon organs. It is suggested that these alterations in the patterns of PAD of muscle afferents result from central changes in the balance of excitatory and inhibitory influences acting on the segmental pathways mediating the PAD. Although the functional role of these changes has not been established, they may reflect compensatory changes aimed to adjust information arising from damaged afferents.  相似文献   

15.
1. The afferent-evoked synaptic input to lumbar spinal cord (L5-S1) neurons that were activated antidromically from the medial pontomedullary reticular formation (nucleus reticularis gigantocelluaris and vicinity) was investigated with the use of intracellular recordings in pentobarbital sodium-anesthetized cats. 2. Spinoreticular tract (SRT) neurons (n = 33) were categorized into three types ("deep-inhibited," "deep-complex," and "intermediate") on the basis of their locations and of their responses to natural and electrical stimulation. 3. The deep-inhibited-type neurons, located in the medial part of the deeper laminae (approximately VI-VIII), comprised a large component of the sample (20/33). They had no demonstrable excitatory receptive field (RF). However, electrical stimulation of low-threshold cutaneous afferents of hindlimb nerves evoked inhibitory postsynaptic potentials (IPSPs) via an oligosynaptic linkage. High-threshold cutaneous and muscle afferents also evoked IPSPs. 4. In the deep-complex-type neurons (8/33), electrical stimulation of low-threshold cutaneous afferents evoked complex IPSP-excitatory postsynaptic potential (EPSP) sequences. With intense stimuli, long-latency C-fiber-like EPSPs were evoked. Two of these eight neurons were characterized as wide-dynamic-range (WDR) neurons with large, excitatory and inhibitory cutaneous RFs. 5. Intermediate-type neurons (5/33) were concentrated in the lateral spinal gray and relatively superficially (approximately lamina V). These neurons had convergent low- and high-threshold cutaneous inputs (WDR neurons). Electrical stimulation of low-threshold cutaneous afferent fibers from within the excitatory RF evoked mono- or disynaptic EPSPs followed by IPSPs. High-threshold muscle and cutaneous afferents also evoked EPSPs. 6. These results show that SRT neurons have a variety of response characteristics resulting from various degrees of spatial and temporal summation of primary afferent input. Neurons with widespread inhibitory responses but no excitatory drive from the periphery comprise a surprisingly large component of the SRT: the function of these cells is unknown. It is apparent that the spinoreticular projection has considerable functional heterogeneity.  相似文献   

16.
In the spinal cord of the anesthetized cat, we measured the changes in extracellular concentration of potassium ions [K+]e and the negative DC shifts produced by stimulation of muscle, cutaneous and mixed afferent nerves, together with alterations in the threshold of single group Ia fibers that were tested at the same site as the potassium measurements. This approach provided information on the extent to which the excitability changes of single Ia-fibers can be correlated with the changes in [K+]e occurring at the same site. Stimulation of the tibial (TIB) nerve and of the cutaneous sural (SU), and superficial peroneous (SP) nerve (100-Hz trains lasting 30-60 s) with stimulus strengths of 10-15 times threshold increased the concentration of [K+]e in the dorsal horn by 2-5 mmol/l above the resting value of 3 mmol/l. This was in clear contrast with the very small [K+]e increases produced at the same site during stimulation of muscle nerves, such as the posterior biceps and semitendinosus (PBSt), gastrocnemius soleus (GS), and deep peroneus (DP), which were generally smaller than 0.25 mmol/l. Stimulation of the PBSt and GS muscle nerves did produce small, but clear, increases of [K+]e (up to 0.3 mmol/l) in the region of the intermediate nucleus, where these fibers synapse with second order cells. These changes were nevertheless smaller than those produced at the same site by stimulation of the TIB, SU, and SP nerves. The peak amplitudes of the [K+]e transients produced by long-lasting 100-Hz trains applied to cutaneous and/or to muscle nerves showed a linear relationship with the amplitudes of the slow negative DC shifts, which were simultaneously recorded from the NaCl barrel of the potassium electrode assembly. Stimulus trains (100 Hz) applied to group I muscle afferents (PBSt and DP) very effectively reduced the threshold for intraspinal activation of individual group I GS fibers but produced negligible negative DC shifts at the same site. On the other hand, 100-Hz stimulus trains applied to the SU and SP nerves produced large negative DC shifts, even with low-stimulus strengths (2 X T, where T is threshold), but had much smaller effects on the threshold of group Ia GS fibers. Increasing the intensity of the stimuli applied to cutaneous and mixed nerves above 2 X T strength further reduced the threshold of the Ia-fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The supraspinal and reflex control of γ-motoneurones has been studied with intra- and extracellular recording from lumbosacral γ-motoneurones in the cat. Monosynaptic EPSPs were recorded in some γ-motoneurones on stimulation of the brain stem. These effects were evoked from the Deiters' nucleus and from fibres descending in the medial longitudinal fascicle probably originating in the pontine reticular formation. Previous investigations have revealed monosynaptic connections to α-motoneurones from these regions and our results suggest parallel effects to α- and part of the γ-motoneurone population supplying one muscle. Indirect evidence suggests that this monosynaptic effect is exerted only on static γ-motoneurones, thus implying a linkage between the descending monosynaptic control of α- and static γ-motoneurones via these pathways. The reflex effects to γ-motoneurones have been studied with graded electrical stimulation of ipsi- and contralateral hindlimb nerves. Five γ-motoneurones, presumably all belonging to extensor motor nuclei, were found to receive IPSPs from group I afferents and it is suggested that only static γ-motoneurones are influenced. It has not been possible to decide if these IPSPs are evoked from Ib or Ia afferents. The reflex effects from group II and III muscular afferents, joint and cutaneous afferents seem to conform to the effects evoked in α-motoneurones from these afferents.  相似文献   

18.
Patterns of afferent connections from receptors of the distal forelimb were investigated in neurones located in C6-C7 segments of the spinal cord with branching axons projecting to the lateral reticular nucleus and the cerebellum. Experiments were made on five adult cats under alpha-chloralose anaesthesia. After antidromic identification, EPSPs and IPSPs were recorded from 22 neurones following stimulation of deep radial, superficial radial, median and ulnar nerves. Both excitatory and inhibitory effects were found in the majority of the cells, however, in 2 cases no synaptic actions were recorded. EPSPs were evoked from group I or II muscle, or cutaneous afferents - mostly monosynaptically. IPSPs from muscle, cutaneous or flexor reflex afferents were mostly polysynaptic. Seven various types of convergence were established in the cells investigated. Significance of parallel transmission of integrated information from various receptors of the distal forelimb to the reticular formation and cerebellum is discussed.  相似文献   

19.
1. The organization of primary afferent depolarization (PAD) produced by excitation of peripheral sensory and motor nerves was studied in the frog cord isolated with hind limb nerves.2. Dorsal root potentials from sensory fibres (DR-DRPs) were evoked on stimulation of most sensory nerves, but were largest from cutaneous, joint and flexor muscle afferents. With single shock stimulation the largest cutaneous and joint afferent fibres gave DR-DRPs, but potentials from muscle nerves resulted from activation of sensory fibres with thresholds to electrical stimulation higher than 1.2-1.5 times the threshold of the most excitable fibres in the nerve. This suggests that PAD from muscle afferents is probably due to excitation of extrafusal receptors.3. Dorsal root potentials produced by antidromic activation of motor fibres (VR-DRPs) were larger from extensor muscles and smaller or absent from flexor muscles. The VR-DRPs were produced by activation of the lowest threshold motor fibres.4. Three types of interactions were found between test and conditioning DRPs from the same or different nerves. With maximal responses occlusion was usually pronounced. At submaximal levels linear summation occurred. Near threshold the conditioning stimulus frequently resulted in a large facilitation of the test DRP. All three types of interactions were found with two DR-DRPs, two VR-DRPs or one DR-DRP and one VR-DRP.5. The excitability of sensory nerve terminals from most peripheral nerves was increased during the DR-DRP. The magnitude of the excitability increase varied roughly with the magnitude of the DR-DRP evoked by the conditioning stimulus.6. There was a marked excitability increase of cutaneous and extensor muscle afferent terminals during the VR-DRP. Flexor muscle afferent terminals often showed no excitability changes to ventral root stimulation. In those experiments where afferent terminals from flexor muscles did show an excitability increase, the effects were smaller than those of cutaneous and extensor terminals.7. The VR-DRPs appear to reflect activity of a negative feed-back loop from extensor motoneurones on to sensory fibres from cutaneous and extensor muscles. This system may have a role in modulating the ballistic movement of the frog. DR-DRPs, on the contrary, are widespread in origin and distribution. PAD from sensory fibres may function to sharpen contrast between incoming afferent information.  相似文献   

20.
1. Post-synaptic potentials (PSPs) evoked by electrical stimulation of a variety of input systems have been compared in triceps surae motoneurones innervating slow and fast muscle units, the speed of contraction of which was also determined.2. Stimulation of high threshold afferents in both flexor and extensor muscle nerves, and of joint afferents, evoked polysynaptic PSPs which were predominantly hyperpolarizing in both fast and slow twitch motor units.3. Volleys in cutaneous afferents in the sural and saphenous nerves evoked polysynaptic PSPs composed of mixtures of inhibitory and excitatory components. The inhibitory components were predominant in slow twitch motor units, while in fast twitch units there was a trend towards excitatory predominance.4. Repetitive stimulation of the red nucleus caused predominantly inhibitory PSPs in slow twitch units and mixed or predominantly excitatory PSPs in fast twitch units. There was a correlation in the excitatory/inhibitory balance between PSPs of cutaneous and rubrospinal origin in those motoneurones in which both types of PSPs were studied.5. The amplitudes of group Ia disynaptic inhibitory PSPs were found to be correlated with motor unit twitch type: IPSPs in slow twitch units were larger than those in fast twitch units. Rubrospinal conditioning volleys were found to facilitate group Ia IPSPs in both fast and slow twitch motor units.6. The results suggest that there may be several basic patterns of synaptic input organization to motoneurones within a given motor unit pool. In addition to quantitative variation in synaptic distribution, there is evidence that qualitative differences in excitatory to inhibitory balance also exist in the pathways conveying input from cutaneous afferents and rubrospinal systems to triceps surae motoneurones. These qualitative differences are correlated with the motor unit twitch type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号