首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transient receptor potential vanilloid subfamily 1 (TRPV1) is an ion channel activated by capsaicin, heat, protons and endogenous ligands such as anandamide. It is largely expressed in the urinary tract of mammals. Structures in which the receptor expression is firmly established include sensory fibers and urothelial cells, although the presence of TRPV1 in other cell types has been reported. As in other systems, pain perception was the first role attributed to TRPV1 in the urinary tract. However, it is now increasingly clear that TRPV1 also regulates the frequency of bladder reflex contractions, either through direct excitation of sensory fibers or through urothelial-sensory fiber cross talk involving the release of neuromediators from the epithelial cells. In addition, the recent identification of the receptor in urothelial and prostatic cancer cells raise the exciting hypothesis that TRPV1 is involved in cell differentiation. Desensitization of the receptor by capsaicin and resiniferatoxin has been investigated for therapeutic purposes. For the moment, lower urinary tract dysfunctions in which some benefit was obtained include painful bladder syndrome and overactive bladder of neurogenic and non-neurogenic origin. However, desensitization may become obsolete when non-toxic, potent TRPV1 antagonists become available.  相似文献   

2.

BACKGROUND AND PURPOSE

The transient receptor potential vanilloid 1 (TRPV1) plays a role in the activation of sensory neurons by various painful stimuli and is a therapeutic target. However, functional TRPV1 that affect microvascular diameter are also expressed in peripheral arteries and we attempted to characterize this receptor.

EXPERIMENTAL APPROACH

Sensory TRPV1 activation was measured in rats by use of an eye wiping assay. Arteriolar TRPV1-mediated smooth muscle specific responses (arteriolar diameter, changes in intracellular Ca2+) were determined in isolated, pressurized skeletal muscle arterioles obtained from the rat and wild-type or TRPV1−/− mice and in canine isolated smooth muscle cells. The vascular pharmacology of the TRPV1 agonists (potency, efficacy, kinetics of action and receptor desensitization) was determined in rat isolated skeletal muscle arteries.

KEY RESULTS

Capsaicin evoked a constrictor response in isolated arteries similar to that mediated by noradrenaline, this was absent in arteries from TRPV1 knockout mice and competitively inhibited by TRPV1 antagonist AMG9810. Capsaicin increased intracellular Ca2+ in the arteriolar wall and in isolated smooth muscle cells. The TRPV1 agonists evoked similar vascular constrictions (MSK-195 and JYL-79) or were without effect (resiniferatoxin and JYL-273), although all increased the number of responses (sensory activation) in the eye wiping assay. Maximal doses of all agonists induced complete desensitization (tachyphylaxis) of arteriolar TRPV1 (with the exception of capsaicin). Responses to the partial agonist JYL-1511 suggested 10% TRPV1 activation is sufficient to evoke vascular tachyphylaxis without sensory activation.

CONCLUSIONS AND IMPLICATIONS

Arteriolar TRPV1 have different pharmacological properties from those located on sensory neurons in the rat.  相似文献   

3.
Vanilloid receptor-1 (TRPV1) is a non-selective cation channel, predominantly expressed by peripheral sensory neurones, which is known to play a key role in the detection of noxious painful stimuli, such as capsaicin, acid and heat. To date, a number of antagonists have been used to study the physiological role of TRPV1; however, antagonists such as capsazepine are somewhat compromised by non-selective actions at other receptors and apparent modality-specific properties. SB-366791 is a novel, potent, and selective, cinnamide TRPV1 antagonist isolated via high-throughput screening of a large chemical library. In a FLIPR-based Ca(2+)-assay, SB-366791 produced a concentration-dependent inhibition of the response to capsaicin with an apparent pK(b) of 7.74 +/- 0.08. Schild analysis indicated a competitive mechanism of action with a pA2 of 7.71. In electrophysiological experiments, SB-366791 was demonstrated to be an effective antagonist of hTRPV1 when activated by different modalities, such as capsaicin, acid or noxious heat (50 degrees C). Unlike capsazepine, SB-366791 was also an effective antagonist vs. the acid-mediated activation of rTRPV1. With the aim of defining a useful tool compound, we also profiled SB-366791 in a wide range of selectivity assays. SB-366791 had a good selectivity profile exhibiting little or no effect in a panel of 47 binding assays (containing a wide range of G-protein-coupled receptors and ion channels) and a number of electrophysiological assays including hippocampal synaptic transmission and action potential firing of locus coeruleus or dorsal raphe neurones. Furthermore, unlike capsazepine, SB-366791 had no effect on either the hyperpolarisation-activated current (I(h)) or Voltage-gated Ca(2+)-channels (VGCC) in cultured rodent sensory neurones. In summary, SB-366791 is a new TRPV1 antagonist with high potency and an improved selectivity profile with respect to other commonly used TRPV1 antagonists. SB-366791 may therefore prove to be a useful tool to further study the biology of TRPV1.  相似文献   

4.
Anti-emetic drugs such as the tachykinin NK1 receptor antagonists are useful to control emesis induced by diverse challenges. Evidence suggests pungent capsaicin-like TRPV1 activators also have broad inhibitory anti-emetic activity. However, pungent compounds are associated with undesirable effects including adverse actions on the cardiovascular system and on temperature homeostasis. In the present investigations using the ferret, we examine if the non-pungent vanilloid, olvanil, has useful anti-emetic properties without adversely affecting behaviour, blood pressure or temperature control. Olvanil (0.05-5 mg/kg, s.c.) was compared to the pungent vanilloid, resiniferatoxin (RTX; 0.1 mg/kg, s.c.), and to the anandamide reuptake inhibitor, AM404 (10 mg/kg, s.c.), for a potential to inhibit emesis induced by apomorphine (0.25 mg/kg, s.c.), copper sulphate (50 mg/kg, intragastric), and cisplatin (10 mg/kg, i.p.). Changes in blood pressure and temperature were also recorded using radiotelemetry implants.In peripheral administration studies, RTX caused transient hypertension, hypothermia and reduced food and water intake, but also significantly inhibited emesis induced by apomorphine, copper sulphate, or cisplatin. Olvanil did not have a similar adverse profile, and antagonised apomorphine- and cisplatin-induced emesis but not that induced by copper sulphate. AM404 reduced only emesis induced by cisplatin without affecting other parameters measured. Following intracerebral administration only olvanil antagonised cisplatin-induced emesis, but this was associated with transient hypothermia. In conclusion, olvanil demonstrated clear anti-emetic activity in the absence of overt cardiovascular, homeostatic, or behavioural effects associated with the pungent vanilloid, RTX. Our studies indicate that non-pungent vanilloids may have a useful spectrum of anti-emetic properties via central and/or peripheral mechanisms after peripheral administration.  相似文献   

5.
The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol.  相似文献   

6.
Pungent transient receptor potential vanilloid (TRPV1) channel activators have been shown to have broad inhibitory anti-emetic activity against centrally- and peripherally acting challenges but only at doses that have adverse effects on the cardiovascular system and on temperature homeostasis. In the present studies, we investigated the anti-emetic potential of the non-pungent TRPV1 activator, olvanil (0.05–5 mg/kg, s.c., 3 times per day, for 3 days) to antagonise the acute and delayed emesis induced by cisplatin (5 mg/kg, i.p.) in ferrets that had been implanted with radiotelemetry devices to enable an analysis of heart rate and temperature. Cisplatin induced an acute (day 1: 48.0 ± 18.3 retches + vomits) and delayed (day 2: 111.7 ± 35.5; day 3: 147.5 ± 20.2 retches + vomits) emetic response that was associated with reduced food (−98.7% at day 3, P < 0.001) and water consumption (−70.2% at day 3, P < 0.001) and progressive weight loss (−12.0% at day 3, P < 0.001). Olvanil did not prevent either emesis or the weight loss and negative effects on food and water consumption (P > 0.05); the effect on food consumption appeared potentiated by a further 21.2% at 0.05 mg/kg (P < 0.05) and 19.9% at 0.5 mg/kg (P < 0.05). Cisplatin did not alter body temperature (basal: 37.7 ± 0.1 °C) or heart rate (basal: 233.7 ± 5.5 beats per min (BPM); P > 0.05), but hypothermia (−1.6 °C) and increases in locomotor activity (50–90%) were recorded in animals concomitantly treated with olvanil (P < 0.05). These data indicate that non-pungent activators as exemplified by olvanil are unlikely to be useful clinically for the control of the gastrointestinal side effects induced by cisplatin.  相似文献   

7.
The TRPV1 channel plays an important role in generating nociceptive signals in mammalian primary sensory neurons. It consists of 838 amino acids with six transmembrane segments (TM1-TM6), a pore-forming loop between TM5 and TM6 and N- and C- terminals located intracellularly. It is a homotetramer and forms a nonselective cationic channel that can be opened by capsaicin, weak acids and noxious heat. There are 18 cysteines (Cys), three of which are located on the extracellular side of the receptor in and around the region of the pore-forming loop. We report that the TRPV1 channel in transfected HEK293T cells and in cultured rat DRG neurons is blocked in the open state by an oxidizing agent Cu-o-phenanthroline complex (Cu:Phe). The effects of Cu:Phe are concentration dependent ( IC50 = 5.2 : 20.8 microm ) and fully reversible. Cu:Phe applied immediately before exposure to an acidic solution, capsaicin or noxious heat is without effect. Substitutions of the extracellular Cys residues (616, 621, 634) by glycine individually or together do not alter the blocking effects of Cu:Phe suggesting that disulfide cross-linking does not represent the underlying mechanism. It is suggested that the complex Cu:Phe, a bulky, positively charged molecule, represents a very effective and reversible open channel blocker of TRPV1.  相似文献   

8.
We have cloned a guinea pig Vanilloid receptor 1 (VR1) from a dorsal root ganglion cDNA library and expressed it in CHO cells. The receptor has been functionally characterized by measuring changes in intracellular calcium produced by capsaicin, low pH and noxious heat.Capsaicin produced a concentration-dependent increase in intracellular calcium in guinea pig VR1-CHO cells with an estimated EC(50) of 0.17 +/- 0.0065 micro M, similar to that previously reported for rat and human VR1. Olvanil and resiniferatoxin were also effective agonists (EC(50) values of 0.0087 +/- 0.0035 micro M and 0.067 +/- 0.014 micro M, respectively), but 12-phenylacetate 13-acetate 20-homovanillate (PPAHV) and anandamide showed little agonist activity up to 10 micro M. As with human and rat VR1, guinea pig VR1 was also activated by pH below 6.0 and by noxious heat (>42 degrees C). Capsazepine acted as an antagonist of capsaicin responses in guinea pig VR1-CHO cells (IC(50) of 0.324 +/- 0.041 micro M ), as seen at rat VR1. However, in contrast to its lack of activity against pH and heat responses at rat VR1, capsazepine was an effective antagonist of these responses at guinea pig VR1. Capsazepine displayed an IC(50) of 0.355 +/- 25 micro M against pH 5.5, and provided complete blockade of heat responses at 1 micro M. Thus, capsazepine can significantly inhibit calcium influx due to heat and pH 5.5 at guinea pig VR1 and human VR1 but is inactive against these activators at rat VR1.  相似文献   

9.
The recent cloning of vanilloid receptor 1 (TRPV1) from multiple species, together with published results showing efficacy of TRPV1 antagonists in animal models of pain, has led to substantial patenting activity by several major pharmaceutical companies and academic institutions. This review is focused on the patent literature related to non-peptidic small molecule TRPV1 antagonists. A total of 105 published patent applications claiming TRPV1 antagonists are reviewed during 2002 – 2005. Human clinical trials using TRPV1 antagonists are in the earliest stages and interest in this approach toward the treatment of various pain conditions appears to be growing annually.  相似文献   

10.
BackgroundIn the present study we determined the role of transient receptor potential V1 channel (TRPV1) and acid-sensing ion channel 3 (ASIC3) in chronic nociception.Methods1% formalin was used to produce long-lasting secondary allodynia and hyperalgesia in rats. Western blot was used to determine TRPV1 and ASIC3 expression in dorsal root ganglia.ResultsPeripheral ipsilateral, but not contralateral, pre-treatment (−10 min) with the TRPV1 receptor antagonists capsazepine (0.03–0.3 μM/paw) and A-784168 (0.01–1 μM/paw) prevented 1% formalin-induced secondary mechanical allodynia and hyperalgesia in the ipsilateral and contralateral paws. Likewise, peripheral ipsilateral, but not contralateral, pre-treatment with the non-selective and selective ASIC3 blocker benzamil (0.1–10 μM/paw) and APETx2 (0.02–2 μM/paw), respectively, prevented 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. Peripheral ipsilateral post-treatment (day 6 after formalin injection) with capsazepine (0.03–0.3 μM/paw) and A-784168 (0.01–1 μM/paw) reversed 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. In addition, peripheral ipsilateral post-treatment with benzamil (0.1–10 μM/paw) and APETx2 (0.02–2 μM/paw), respectively, reversed 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. TRPV1 and ASIC3 proteins were expressed in dorsal root ganglion in normal conditions, and 1% formalin injection increased expression of both proteins in this location at 1 and 6 days compared to naive rats.ConclusionsData suggest that TRPV1 and ASIC3 participate in the development and maintenance of long-lasting secondary allodynia and hyperalgesia induced by formalin in rats. The use of TRPV1 and ASIC3 antagonists by peripheral administration could prove useful to treat chronic pain.  相似文献   

11.
Background: The capsaicin receptor TRPV1, a polymodal nociceptor whose expression is up-regulated in a number of painful inflammatory disorders, represents a promising therapeutic target for pain relief. Potent small molecule TRPV1 antagonists are now undergoing clinical trials in patients with inflammatory or neuropathic pain. This review focuses on the multiplicity of factors regulating this channel and on their contributions to the emerging complexity of responses to TRPV1 and partial antagonists. For example, it is now clear that antagonists of capsaicin response can also antagonize, have no effect, or stimulate response to heat or protons. The complexity of TRPV1 regulation affords the potential to optimize agents for a specific therapeutic indication. An encouraging advance is the dissection of therapeutic efficacy of antagonists from induction of hyperthermia, a side effect that initially had raised concerns about the suitability of systemically administered TRPV1 antagonists for therapy. Objectives and methods: To discuss the challenges facing the development of clinically useful TRPV1 antagonists based on our experience and a comprehensive review of the literature. Results/conclusions: TRPV1 is a polymodal receptor. Some antagonists block all modalities of TRPV1 stimulation whereas others are more selective in their pharmacological profile. A number of antagonists can, conversely, potentiate certain modes of TRPV1 activation (e.g., protons and heat). The selectivity of TRPV1 antagonists is species-dependent, posing a problem for extrapolation from animal models to patients. At present, this rich pharmacology of TRPV1 antagonists complicates drug development but for the future it promises great opportunities for drug design.  相似文献   

12.
The transient receptor potential V1 channel (vanilloid receptor, TRPV1) represents a promising therapeutic target for inflammatory pain and other conditions involving C-fiber sensory afferent neurons. Sensitivity of TRPV1 is known to be subject to modulation by numerous signaling pathways, in particular by phosphorylation, and we wished to determine whether TRPV1 structure activity relations could be differentially affected. We demonstrate here that the structure activity relations of TRPV1, as determined by 45Ca2 uptake, were substantially altered by treatment of the cells with cyclosporin A, an inhibitor of protein phosphatase 2B. Whereas the potency of resiniferatoxin for stimulation of 45Ca2 was not altered by cyclosporin A treatment, the potencies of some other agonists were increased up to 8-fold. Among the antagonists examined, potencies were reduced to a lesser extent, ranging from 1- to 2.5-fold. Finally, the efficacy of partial agonists was increased. In contrast to cyclosporin A, okadaic acid, an inhibitor of protein phosphatases 1 and 2A, had little effect on agonist potencies, and calyculin A, an inhibitor of protein phosphatases 1 and 2A but with somewhat different selectivity from that of okadaic acid, caused changes in structure activity relations distinct from those induced by cyclosporin A. Because phosphatase activity differentially modulates the structure activity relations of TRPV1 agonists and antagonists, our findings predict that it may be possible to design agonists and antagonists selective for TRPV1 in a specific regulatory environment. A further implication is that it may be desirable to tailor screening approaches for drug discovery to reflect the desired regulatory state of the targeted TRPV1.  相似文献   

13.
The transient receptor potential vanilloid-1 (TRPV1) cation channel is a receptor that is activated by heat (>42 degrees C), acidosis (pH<6) and a variety of chemicals among which capsaicin is the best known. With these properties, TRPV1 has emerged as a polymodal nocisensor of nociceptive afferent neurones, although some non-neuronal cells and neurones in the brain also express TRPV1. The activity of TRPV1 is controlled by a multitude of regulatory mechanisms that either cause sensitization or desensitization of the channel. As many proalgesic pathways converge on TRPV1 and this nocisensor is upregulated and sensitized by inflammation and injury, TRPV1 is thought to be a central transducer of hyperalgesia and a prime target for the pharmacological control of pain. As a consequence, TRPV1 agonists causing defunctionalization of sensory neurones and a large number of TRPV1 blockers have been developed, some of which are in clinical trials. A major drawback of many TRPV1 antagonists is their potential to cause hyperthermia, and their long-term use may carry further risks because TRPV1 has important physiological functions in the peripheral and central nervous system. The challenge, therefore, is to pharmacologically differentiate between the physiological and pathological implications of TRPV1. There are several possibilities to focus therapy specifically on those TRPV1 channels that contribute to disease processes. These approaches include (i) site-specific TRPV1 antagonists, (ii) modality-specific TRPV1 antagonists, (iii) uncompetitive TRPV1 (open channel) blockers, (iv) drugs interfering with TRPV1 sensitization, (v) drugs interfering with intracellular trafficking of TRPV1 and (vi) TRPV1 agonists for local administration.  相似文献   

14.
The Bezold-Jarisch reflex is characterized by a sudden bradycardia associated with hypotension induced by the activation of the vanilloid TRPV1 and serotonin 5-HT(3) receptors. This reflex is associated with several health conditions, including myocardial infarction. The aim of the present study was to elucidate the influence of acute experimental myocardial ischemia on the reflex bradycardia induced by anandamide and phenylbiguanide, agonists of the TRPV1 and 5-HT(3) receptors, respectively. In urethane-anesthetized rats, the rapid iv injection of anandamide (0.6 μmol/kg) or phenylbiguanide (0.03 μmol/kg) decreased heart rate (HR) by about 7-10% of the basal values. Myocardial ischemia (MI) was induced by ligation of the left anterior coronary artery. The agonists were injected 5 min before MI (S(1)) and 10, 20 and 30 min thereafter (S(2)-S(4)). MI potentiated the anandamide-induced reflex bradycardia by approximately 105% at S(2) and 70% at S(3) but had no effect at S(4). This amplificatory effect of MI was virtually abolished by the TRPV1 receptor antagonist capsazepine (1 μmol/kg) and was not modified by the cannabinoid CB(1) receptor antagonist rimonabant (0.1 μmol/kg). MI also amplified the reflex bradycardia elicited by phenylbiguanide by approximately 110, 60 and 90% (S(2), S(3) and S(4), respectively), and this effect was sensitive to the 5-HT(3) receptor antagonist ondansetron (3 μmol/kg). In conclusion, our results suggest that acute myocardial ischemia augments the Bezold-Jarisch reflex induced via activation of TRPV1 and 5-HT(3) receptors located on sensory vagal nerves in the heart.  相似文献   

15.
The transient potential vanilloid 1 receptor (TRPV1) is a calcium-permeable channel responsible for the transduction and modulation of acute and chronic pain signaling. As such, this receptor is a potential target for the treatment of a number of pain disorders. However, AMG517, a TRPV1 antagonist, presents several clinical limitations that include the induction of severe hyperthermia. The aim of this study was to investigate the possible interaction of the flavonoid eriodictyol with the TRPV1 receptor and to determine its putative antinociceptive and hyperthermic effects. Eriodictyol was able to displace [3H]-resiniferatoxin binding (IC50 = 47; 21–119 nM) and to inhibit calcium influx mediated by capsaicin (IC50 = 44; 16–125 nM), suggesting that eriodictyol acts as a TRPV1 antagonist. Moreover, eriodictyol induced antinociception in the intraplantar capsaicin test, with maximal inhibition of 49 ± 10 and 64 ± 4% for oral (ID50 = 2.3; 1.1–5.7 mg/kg) and intrathecal (ID50 = 2.2; 1.7–2.9 nmol/site) administration, respectively. Eriodictyol did not induce any change in body temperature or locomotor activity. Orally administered eriodictyol (4.5 mg/kg) prevented the nociception induced by intrathecal injections of capsaicin, as well as the non-protein thiol loss and 3-nitrotyrosine (3-NT) formation induced by capsaicin in spinal cord. Eriodictyol also reduced the thermal hyperalgesia and mechanical allodynia elicited by complete Freund's adjuvant (CFA) paw injection. In conclusion, eriodictyol acts as an antagonist of the TRPV1 receptor and as an antioxidant; it induces antinociception without some of the side effects and limitations such as hyperthermia that are expected for TRPV1 antagonists.  相似文献   

16.
Capsaicin and other naturally occurring pungent molecules have been used for centuries as topical analgesics and rubefactants to treat a variety of chronically painful conditions. Recently, instillations of high-concentration capsaicin and resiniferatoxin solutions have been found to be useful for the management of persistent bladder pain or overactive bladder. However, only within the last 7 years has it been appreciated that the selective action of these compounds on a subset of sensory nerve fibres is mediated by agonist activity at a ligand-gated ion channel called the transient receptor potential vanilloid receptor 1 (TRPV1). Accordingly, this discovery has fueled intensive research and drug development efforts, mainly in a search for novel analgesic or anti-inflammatory therapies. Two different, but non-mutually exclusive, strategies are being pursued: optimisation of TRPV1 agonist-based therapies, which can functionally inactivate nociceptive nerve fibres, and identification of receptor antagonists, which would prevent nociceptive fibres from being activated by ongoing inflammatory stimuli. Available information on TRPV1 agonists in development and their biological rationale will be summarised in this review.  相似文献   

17.
The clinical use of TRPV1 (transient receptor potential vanilloid subfamily, member 1; also known as VR1) antagonists is based on the concept that endogenous agonists acting on TRPV1 might provide a major contribution to certain pain conditions. Indeed, a number of small-molecule TRPV1 antagonists are already undergoing Phase I/II clinical trials for the indications of chronic inflammatory pain and migraine. Moreover, animal models suggest a therapeutic value for TRPV1 antagonists in the treatment of other types of pain, including pain from cancer. We argue that TRPV1 antagonists alone or in conjunction with other analgesics will improve the quality of life of people with migraine, chronic intractable pain secondary to cancer, AIDS or diabetes. Moreover, emerging data indicate that TRPV1 antagonists could also be useful in treating disorders other than pain, such as urinary urge incontinence, chronic cough and irritable bowel syndrome. The lack of effective drugs for treating many of these conditions highlights the need for further investigation into the therapeutic potential of TRPV1 antagonists.  相似文献   

18.
The transient receptor potential vanilloid 1 and ankyrin 1 (TRPV1 and TRPA1, respectively) channels are members of the TRP superfamily of structurally related, non-selective cation channels. It is rapidly becoming clear that the functions of TRPV1 and TRPA1 interlink with each other to a considerable extent. This is especially clear in relation to pain and neurogenic inflammation where TRPV1 is coexpressed on the vast majority of TRPA1-expressing sensory nerves and both integrate a variety of noxious stimuli. The more recent discovery that both TRPV1 and TRPA1 are expressed on a multitude of non-neuronal sites has led to a plethora of research into possible functions of these receptors. Non-neuronal cells on which TRPV1 and TRPA1 are expressed vary from vascular smooth muscle to keratinocytes and endothelium. This review will discuss the expression, functionality and roles of these non-neuronal TRP channels away from sensory nerves to demonstrate the diverse nature of TRPV1 and TRPA1 in addition to a direct role in pain and neurogenic inflammation.  相似文献   

19.
TRPV通道属于瞬时受体电位(transient receptor potential,TRP)通道,含有TRPV1、TRPV2、TRPV3、TR-PV4、TRPV5和TRPV6等多种亚型,它们参与机体痛觉、味觉、体温等多种生理机能的调控.近期研究发现TRPV1和TRPV4通道可能参与缺血/氧处理诱导的心肌与血管保护.TRPV1通道的作用机制可能与降钙素基因相关肽(CGRP)及P物质的释放、花生四烯酸脂氧合酶(ALOX)的表达增多有关;TRPV4通道介导的血管保护机制可能与NO和EDHF介导的内皮源性舒张有关.本文将对TRPV1和TRPV4通道在不同形式缺血/氧处理诱导下的心血管保护机制进行综述,以期为心肌缺血的治疗提供新方向.  相似文献   

20.
The TRPV1 receptor: target of toxicants and therapeutics.   总被引:2,自引:0,他引:2  
Understanding the structural and functional complexities of the transient receptor potential vanilloid receptor (TRPV1) is essential to the therapeutic modulation of inflammation and pain. Because of its central role in initiating inflammatory processes and integrating painful stimuli, there is an understandable interest in its pharmacological manipulation (sensitization/desensitization). The present Highlight entitled "TRPV1 antagonists elevate cell surface populations of receptor protein and exacerbate TRPV1 mediated toxicities in human lung epithelial cells" describes how exposure to various antagonists produces TRPV1 sensitization and proposes a possible mechanistic explanation to that sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号