首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tissue-engineered ureteral scaffold was constructed with composited poly L-lactic acid (PLLA)-collagen endoluminal stent and uroepithelial cells (UECs) using a new seeding system. The electrospun PLLA-collagen nanofibrous mesh was seeded efficiently with human ureteral epithelial cells using a modified centrifugal seeding device. The cellular nanofibrous mesh was then wound around a spiral endoluminal stent to form a cellular composited PLLA-collagen ureteral scaffold. The cellular ureteral scaffold was subcutaneously implanted into nude mice. Cell attachment, distribution, and viability in vitro were investigated along with the cell fate in vivo. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that scaffolds seeded with centrifugal method had higher cellular activity than scaffolds seeded with static method (p < 0.05), and the metabolic activity per cell had no significant differences between the two methods (p > 0.05). Histologic analysis showed that the entrapped UECs remained in the scaffolds after 2 wk of implantation. The results of the study indicated that the composited PLLA-collagen endoluminal stent could serve as alternative cell carrier for tissue engineering ureter. In addition, the new modified centrifugal seeding system allowed rapid homogeneous distribution of cells onto the nanofibrous mesh, which will be useful to ureteral reconstruction.  相似文献   

2.
We examined whether transplantation of autologous bone marrow mononuclear cells (BM-MNCs) can augment neovascularization and bone regeneration of bone marrow in femoral bone defects of rabbits. Gelatin microspheres containing basic fibroblast growth factor (bFGF) were prepared for the controlled release of bFGF. To evaluate the in vivo effect of implanted BM-MNCs, we created bone defects in the rabbit medial femoral condyle, and implanted into them 5 x 10(6) fluorescent-labeled autologous BM-MNCs together with gelatin microspheres containing 10 microg bFGF on an atelocollagen gel scaffold. The four experimental groups, which were Atelocollagen gel (Col), Col + 5 x 10(6) BM-MNCs, Col + 10 microg bFGF, and Col + 5 x 10(6) BM-MNCs + 10 microg bFGF, were implanted into the sites of the prepared defects using Atelocollagen gel as a scaffold. The autologous BM-MNCs expressed CD31, an endothelial lineage cell marker, and induced efficient neovascularization at the implanted site 2 weeks after implantation. Capillary density in Col + BM-MNCs + bFGF was significantly large compared with other groups. This combination also enhanced regeneration of the bone defect after 8 weeks to a significantly greater extent than either BM-MNCs or bFGF on their own. In summary, these findings demonstrate that a combination of BM-MNCs and bFGF gelatin hydrogel enhance the neovascularization and the osteoinductive ability, resulting in bone regeneration.  相似文献   

3.
Tissue engineering approaches using the combination of porous ceramics and bone marrow mesenchymal stem cells (BMSCs) represent a promising bone substitute for repairing large bone defects. Nevertheless, optimal conditions for constructing tissue-engineered bone have yet to be determined. It remains unclear if transplantation of predifferentiated BMSCs is superior to undifferentiated BMSCs or freshly isolated bone marrow mononucleated cells (BMNCs) in terms of new bone formation in vivo. The aim of this study was to investigate the effect of in vitro osteogenic differentiation (β-glycerophosphate, dexamethasone, and l-ascorbic acid) of human BMSCs on the capability to form tissue-engineered bone in unloaded conditions after subcutaneous implantation in nude mice. After isolation from human bone marrow aspirates, BMNCs were divided into three parts: one part was seeded onto porous beta-tricalcium phosphate ceramics immediately and transplanted in a heterotopic nude mice model; two parts were expanded in vitro to passage 2 before cell seeding and in vivo transplantation, either under osteogenic conditions or not. Animals were sacrificed for micro-CT and histological evaluation at 4, 8, 12, 16, and 20 weeks postimplantation. The results showed that BMSCs differentiated into osteo-progenitor cells after induction, as evidenced by the altered cell morphology and elevated alkaline phosphatase activity and calcium deposition, but their clonogenicity, proliferating rate, and seeding efficacy were not significantly affected by osteogenic differentiation, compared with undifferentiated cells. Extensive new bone formed in the pores of all the scaffolds seeded with predifferentiated BMSCs at 4 weeks after implantation, and maintained for 20 weeks. On the contrary, scaffolds containing undifferentiated BMSCs revealed limited bone formation only in 1 out of 6 cases at 8 weeks, and maintained for 4 weeks. For scaffolds with BMNCs, woven bone was observed sporadically only in one case at 8 weeks. Overall, this study suggests that ectopic osteogenesis of cell/scaffold composites is more dependent on the in vitro expansion condition, and osteo-differentiated BMSCs hold the highest potential concerning in vivo bone regeneration.  相似文献   

4.
Gingras M  Paradis I  Berthod F 《Biomaterials》2003,24(9):1653-1661
A reconstructed skin made of a collagen-chitosan sponge seeded with human fibroblasts and keratinocytes and grown in vitro for 31 days was developed for the treatment of deep and extensive burns. The aim of this study was to assess whether this tissue-engineered skin could promote nerve regeneration in vivo, since recovery of sensation is a major concern for burnt patients. The human reconstructed skin was transplanted on the back of nude mice and the growth of nerve fibres within it was assessed 40, 60, 90 and 120 days after graft. Nerve growth was monitored by confocal microscopy using immunohistochemical staining of PGP 9.5 and 150 kD neurofilament, while Schwann cell migration was observed using protein S100 expression and laminin deposition. Nerve growth was first detected 60 days after transplantation and was more abundant 90 and 120 days after graft. Linear arrangements of Schwann cells were observed in the graft as early as 40 days after graft. Nerve growth was observed along these Schwann cell extensions 60 days after transplantation. We conclude that the three-dimensional architecture of the collagen-chitosan tissue-engineered skin sponge encourages nerve growth. This result provides new perspectives to increase nerve regeneration within the tissue-engineered skin by linkage of neurotrophic factors in the sponge before transplantation.  相似文献   

5.
For successful tissue engineering, neovascularization of the implanted tissue is critical. Factors generated by endothelial cells are also considered crucial for the process of osteogenesis. The direct effects of supplementing tissue engineered constructs with cultured endothelial progenitor cells (EPCs) for enhancing bone regeneration have not been reported. In this study, we investigated the potential of EPCs to facilitate neovascularization in implants and evaluated their influence on bone regeneration. The influence of EPC soluble factors on osteogenic differentiation of mesenchymal stem cells (MSCs) was tested by adding EPC culture supernatant to MSC culture medium. To evaluate the influence of EPCs on MSC osteogenesis, canine MSCs-derived osteogenic cells and EPCs were seeded independently onto collagen fiber mesh scaffolds and co-transplanted to nude mice subcutaneously. Results from coimplant experiments were compared to implanted cells absent of EPCs 12 weeks after implantation. Factors from the culture supernatant of EPCs did not influence MSC differentiation. Coimplanted EPCs increased neovascularization and the capillary score was 1.6-fold higher as compared to the MSC only group (p < 0.05). Bone area was also greater in the MSC + EPC group (p < 0.05) and the bone thickness was 1.3-fold greater in the MSC + EPC group than the MSC only group (p < 0.05). These results suggest that soluble factors generated by EPCs may not facilitate the osteogenic differentiation of MSCs; however, newly formed vasculature may enhance regeneration of tissue-engineered bone.  相似文献   

6.
胶原凝胶人工皮肤的体外构建   总被引:3,自引:0,他引:3  
高学军  蔡霞  孙文娟  唐胜建 《解剖科学进展》2007,13(1):40-41,45,I0002
目的 探讨以胶原凝胶为支架材料构建组织工程皮肤的方法.方法 体外分离、培养人皮肤表皮细胞和成纤维细胞,利用本研究所自制胶原蛋白,制备胶原凝胶作为组织工程支架材料;在成功构建人工真皮的基础上,种植表皮细胞,构建人工复合皮肤,运用HE染色与免疫组织化学进行组织学检测.结果 HE染色可见构建的人工复合皮肤具有表皮和真皮双层结构,免疫组织化学染色显示Ⅳ型胶原、纤维连接蛋白和层粘连蛋白阳性,在形态结构上与正常皮肤相似.结论 培养的人表皮细胞和成纤维细胞种植于胶原凝胶支架行气-液界面培养可构建出具有类似正常皮肤结构的组织工程皮肤.  相似文献   

7.
BACKGROUND:Nowadays, mechanical or biological valve recipients used in the clinic are still at the risk of infection, hemorrhage, thrombosis and reoperation owing to valve stenosis. Tissue-engineered heart valve with biological activity can overcome the disadvantages above. While, the optimal choice of scaffolds and seeding cells remains disputable. OBJECTIVE:To explore the feasibility to construct tissue-engineered heart valve with acellularized porcine aortic valve scaffold and human bone marrow stromal stem cells in vitro. METHODS:The porcine aortic valves were decellularized with the detergent and enzymatic extraction process to remove the cellular components. Human bone marrow stromal stem cells were aspirated from sternum of the patients with simple congenital heart malformation, and then the cells were seeded on the acellularized porcine aortic valve scaffold and cultured for 5 days. RESULTS AND CONCLUSION:Flow cytometry identified that the characteristics of surface antigen of the inoculated seed cells were in line with those of human bone marrow stromal stem cells. Light microscopy and electron microscopy confirmed that the cellular components in the porcine aortic valves could be removed to obtain the complete acellular fiber mesh stent. There was no significant difference in biomechanical property between before and after acellularization. The human bone marrow stromal stem cells implanted on the acellularized porcine aortic valve scaffold could form a continuous cell layer on the surfaces of the scaffold. The inoculated bone marrow stromal stem cells could be differentiated into fibroblasts. The implantation of human bone marrow stromal stem cells on the acellularized porcine aortic valve scaffold can construct the tissue-engineered heart valve.  相似文献   

8.
The current work investigated whether 1,25-dihydroxyvitamin D(3)(1,25-(OH)(2)D(3)) can promote the neovascularization of tissue-engineered bone. Human osteoblast-like cells (HOB) and endothelial cells (EC) were isolated and cultured. HOB and EC were inoculated at the ratio of 2:1 onto the coral-derived hydroxyapatite (CHA) scaffolds coated with and without 1,25-(OH)(2)D(3). Tissue-engineered bones were cultured for 3 days before implantation into the backs of nude mice. Four and 8 weeks after the operation, the retrieved scaffolds and cells were examined histologically and by scanning electron microscope, and the vascular area was measured. The immature bone grew into the pores of CHA scaffolds in both groups. At each time interval, there was a conspicuous neovascularization in the 1,25-(OH)(2)D(3) treatment group, with a larger amount of new capillaries accompanying immature bone. In the 1,25-(OH)(2)D(3) group, scanning electron microscopy revealed luminal sprouting from the larger vessels. Maturation of the new bone was paralleled by the occurrence of the new capillaries. The vascular areas were 28.74% +/- 7.81% and 19.52% +/- 4.57% at 4-week intervals (p < 0.05) and 24.66% +/- 7.38% and 17.84% +/- 5.22% at 8-week intervals (p < 0.05) in test and control groups, respectively. These results imply that 1,25-dihydroxyvitamin D(3) may be useful as a cytokine for tissue engineering bone for neovascularization.  相似文献   

9.
Although ischemia-induced neovascularization is reportedly impaired with aging, the effect of aged-bone marrow mononuclear cells (BM-MNCs) on neovascularization has not been investigated. The neovascularization capacity of BM-MNCs obtained from 8-week-old mice (young) was compared to those obtained from 18-month-old mice (old), both in vivo and in vitro. Neovascularization in ischemic limbs was significantly impaired in old mice. Whereas transplantation of young BM-MNCs significantly improved blood perfusion, tissue capillary density, and vascular endothelial growth factor (VEGF) production in transplanted ischemic limbs, no such effects were observed with old BM-MNCs. Old BM-MNCs also showed a significant impairment of in vitro VEGF production and migratory capacity in response to VEGF. The number of Dil/lectin-positive cells was significantly lower in old mice, but there was no difference in the number of AC133(+)/CD34(+) and CD34(+)/VEGF-R2(+) positive cells between young and old BM-MNCs. Transplantation of young BM-MNCs improved neovascularization and VEGF production in the ischemic limbs of old recipients, with results that were similar to those obtained in young recipients. These results indicate that the neovascularization capacity of transplanted BM-MNCs is impaired with aging. However, aging does not hamper the revitalization of neovascularization in the murine host in response to transplantation of young BM-MNCs.  相似文献   

10.
All engineered bioartificial structures developed for tissue regeneration require oxygen and nutrients to establish proper physiological functions. Aiming to improve vascularization during dermal regeneration, we combined the use of a bioartificial collagen scaffold and a defined human mesenchymal cell (MC) line. This cell line, termed V54/2, exhibits typical morphologic and immunohistochemical characteristics of MC. V54/2 cells seeded in the scaffold were able to survive, proliferate, and secrete significant amounts of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) during 2 weeks in vitro. To induce dermal regeneration, scaffolds with or without cells were transplanted in a nude mice full skin defect model. After 2 weeks of transplantation, scaffolds seeded with V54/2 cells showed more vascularization during the dermal regeneration process than controls, and the presence of human cells in the regenerating tissue was detected by immunohistochemistry. To confirm if local presence of angiogenic growth factors is sufficient to induce neovascularization, scaffolds were loaded with VEGF and bFGF and used to induce dermal regeneration in vivo. Results showed that scaffolds supplemented with growth factors were significantly more vascularized than control scaffolds (scaffolds without growth factors). The present work suggests that combined use of MC and bioartificial scaffolds induces therapeutic angiogenesis during the scaffold-based dermal regeneration process.  相似文献   

11.
Tissue-engineered heart valve leaflets: an animal study.   总被引:2,自引:0,他引:2  
BACKGROUND: Tissue-engineered heart valve leaflets are a promising way to overcome the inherent limitations of current prosthetic valves. The aim of this study was to compare the biological responses of an autologous cell seeded scaffold and an acellular scaffold implanted in the pulmonary valve leaflet in the same animal. METHODS: Myofibroblasts and endothelial cells were isolated and cultured from an ovine artery. A synthetic biodegradable scaffold consisting of polyglycolic acid and polylactic acid was initially seeded with the myofibroblasts, then coated with endothelial cells. Cells were seeded using a medium containing collagen and cultured. A tissue-engineered construct and a plain scaffold were implanted as double pulmonary valve leaflet replacement in the same animal in an ovine model (n=3). Additionally, the tissue-engineered construct (n=2) and the plain scaffold (n=2) were implanted as single valve leaflet replacements for long-term analysis. After sacrifice, the implanted valve leaflet tissues were retrieved, analyzed visually and using light microscopy. RESULTS: Three animals that underwent replacement of two valve leaflets with a tissue-engineered construct and a plain scaffold, survived only a short-time (12, 24, 36 hours). The death was attributed to heart failure caused by severe pulmonary insufficiency. Animals that underwent single valve leaflet replacement survived longer and were electively sacrificed at 6 and 9 weeks after operation. The analysis of the leaflets from the short-term survivors showed that the tissue-engineered constructs contained less fibrins and protein exudates than the plain scaffold. In contrast, leaflets obtained from animals surviving 6 and 9 weeks showed similar well organized granulation tissues in the tissue-engineered constructs and the plain scaffolds. CONCLUSION: This animal experiment demonstrates that in the early phase of implantation, the tissue-engineered construct shows a better biological response in terms of antithrombogenicity than the plain scaffold, although both of them have similar results in the later reparative phase.  相似文献   

12.
The current treatments of meniscal lesion in knee joint are not perfect to prevent adverse effects of meniscus injury. Tissue engineering of meniscus using meniscal cells and polymer scaffolds could be an alternative option to treat meniscus injury. This study reports on the regeneration of whole medial meniscus in a rabbit total meniscectomy model using the tissue engineering technique. Biodegradable scaffolds in a meniscal shape were fabricated from polyglycolic acid (PGA) fiber meshes that were mechanically reinforced by bonding PGA fibers at cross points with 75:25 poly(lactic-co-glycolic acid). The compressive modulus of the bonded PGA scaffold was 28-fold higher than that of nonbonded scaffold. Allogeneic meniscal cells were isolated from rabbit meniscus biopsy and cultured in vitro. The expanded meniscal cells were seeded onto the polymer scaffolds, cultured in vitro for 1 week, and transplanted to rabbit knee joints from which medial menisci were removed. Ten or 36 weeks after transplantation, the implants formed neomenisci with the original scaffold shape maintained approximately. Hematoxylin and eosin staining of the sections of the neomenisci at 6 and 10 weeks revealed the regeneration of fibrocartilage. Safranin-O staining showed that abundant proteoglycan was present in the neomenisci at 10 weeks. Masson's trichrome staining indicated the presence of collagen. Immunohistochemical analysis showed that the presence of type I and II collagen in neomenisci at 10 weeks was similar to that of normal meniscal tissue. Biochemical and biomechanical analyses of the tissue-engineered menisci at 36 weeks were performed to determine the quality of the tissue-engineered menisci. Tissue-engineered meniscus showed differences in collagen content and aggregate modulus in comparison with native meniscus. This study demonstrates, for the first time, the feasibility of regenerating whole meniscal cartilage in a rabbit total meniscectomy model using the tissue engineering method.  相似文献   

13.
The current treatments of meniscal lesion in knee joint are not perfect to prevent adverse effects of meniscus injury. Tissue engineering of meniscus using meniscal cells and polymer scaffolds could be an alternative option to treat meniscus injury. This study reports on the regeneration of whole medial meniscus in a rabbit total meniscectomy model using the tissue engineering technique. Biodegradable scaffolds in a meniscal shape were fabricated from polyglycolic acid (PGA) fiber meshes that were mechanically reinforced by bonding PGA fibers at cross points with 75:25 poly(lactic-co-glycolic acid). The compressive modulus of the bonded PGA scaffold was 28-fold higher than that of nonbonded scaffold. Allogeneic meniscal cells were isolated from rabbit meniscus biopsy and cultured in vitro. The expanded meniscal cells were seeded onto the polymer scaffolds, cultured in vitro for 1 week, and transplanted to rabbit knee joints from which medial menisci were removed. Ten or 36 weeks after transplantation, the implants formed neomenisci with the original scaffold shape maintained approximately. Hematoxylin and eosin staining of the sections of the neomenisci at 6 and 10 weeks revealed the regeneration of fibrocartilage. Safranin-O staining showed that abundant proteoglycan was present in the neomenisci at 10 weeks. Masson's trichrome staining indicated the presence of collagen. Immunohistochemical analysis showed that the presence of type I and II collagen in neomenisci at 10 weeks was similar to that of normal meniscal tissue. Biochemical and biomechanical analyses of the tissue-engineered menisci at 36 weeks were performed to determine the quality of the tissue-engineered menisci. Tissue-engineered meniscus showed differences in collagen content and aggregate modulus in comparison with native meniscus. This study demonstrates, for the first time, the feasibility of regenerating whole meniscal cartilage in a rabbit total meniscectomy model using the tissue engineering method.  相似文献   

14.
Lee JH  Kim JH  Oh SH  Kim SJ  Hah YS  Park BW  Kim DR  Rho GJ  Maeng GH  Jeon RH  Lee HC  Kim JR  Kim GC  Kim UK  Byun JH 《Biomaterials》2011,32(22):5033-5045
The aim of this study was to generate tissue-engineered bone formation using periosteal-derived cells seeded into a polydioxanone/pluronic F127 (PDO/Pluronic F127) scaffold with adipose tissue-derived CD146 positive endothelial-like cells. Considering the hematopoietic and mesenchymal phenotypes of adipose tissue-derived cells cultured in EBM-2 medium, CD146 positive adipose tissue-derived cells was sorted to purify more endothelial cells in characterization. These sorted cells were referred to as adipose tissue-derived CD146 positive endothelial-like cells. Periosteum is a good source of osteogenic cells for tissue-engineered bone formation. Periosteal-derived cells were found to have good osteogenic capacity in a PDO/Pluronic F127 scaffold, which could provide a suitable environment for the osteoblastic differentiation of these cells. Through the investigation of capillary-like tube formation on matrigel and the cellular proliferation of adipose tissue-derived CD146 positive endothelial-like cells cultured in different media conditions, we examined these cells could be cultured in EBM-2 with osteogenic induction factors. We also observed that the osteogenic activity of periosteal-derived cells could be good in EBM-2 with osteogenic induction factors, in the early period of culture. The experimental results obtained in the miniature pig model suggest that tissue-engineered bone formation using periosteal-derived cells and PDO/Pluronic F127 scaffold with pre-seeded adipose tissue-derived CD146 positive endothelial-like cells can be used to restore the bony defects of the maxillofacial region when used in clinics.  相似文献   

15.
Recent studies suggest that human adipose tissue contains pluripotent stem cells, which are similar to bone marrow-derived stem cells. The objective of the present study was to assess the effect in bone regenerating capability of human adipose-derived stem cells (ADSCs) cultured in osteogenic media layered over poly lactide-co-glycolic acid (PLGA) and implanted in a critical nude rat calvarial defect. Twenty-seven nude rats were randomized into 3 groups (n = 9): 1) PLGA alone (control), 2) PLGA with undifferentiated ADSCs, and 3) PLGA with differentiated ADSCs. These 3 groups were divided into 9 subgroups (n = 3) according to in vitro pre-cultured periods (day 1 pre-culture (Group1), day 7 pre-culture (Group2), and day 14 pre-culture (Group3)) before implantation. An 8 mm critical-size circular calvarial defect was made in each nude rat. Specimens were harvested at 12 weeks post-implantation and evaluated radiographically and histologically. Radiodensitometric analysis revealed significantly higher bone growth in implants pre-cultured in osteogenic media for 14 days for Group 3. Histomorphometric analysis demonstrated that Groups 2 and 3 had bone formation filling 35% to 72% of the area of the defect after transplantation with cells that had been pre-cultured for 14 days. Constructs with differentiated ADSCs (Group 3) had noticeably more maximal and robust bone tissue regeneration than constructs with undifferentiated ADSCs (Group 2). These data provide evidence that constructs or implants made of PLGA and osteogenically differentiated ADSCs pre-cultured for 14 days before transplantation have better, more-robust bone regeneration capability in critical-sized skeletal defects than constructs with undifferentiated ADSCs. Human adipose derived stem cells can therefore be used as seed cells to construct tissue-engineered bone.  相似文献   

16.
目的评价重组腺病毒介导的低氧诱导因子基因导入是否具有促进SD大鼠骨组织工程的血管化的作用。方法通过重组低氧诱导因子腺病毒载体转染SD大鼠的骨髓基质细胞,然后将含有目的基因种子细胞与骨组织工程的支架材料藻酸钙复合成可注射性组织工程骨植入裸鼠背部皮下,应用Masson染色和SP免疫组化法观察异位成骨能力,检测构建组织的微血管密度计数(MVD)。结果动物实验显示,实验组新骨形成和新生血管形成良好,实验组的微血管化密度显著地高于对照组。结论低氧诱导因子基因导入有利于组织工程骨的新骨形成和再血管化。  相似文献   

17.
18.
目的:观察人食管上皮细胞在聚乳酸-聚乙醇酸(PLGA)支架上的贴附和生长情况,利用组织工程技术培养工程化人工食管.方法:制作PLGA三维细胞支架;分离培养成人食管上皮细胞,体外扩增后种植到PLGA支架上.在体外和裸鼠体内分别培养食管上皮细胞-支架复合物,分期终止培养,进行组织学染色、扫描电镜、细胞角蛋白免疫组织化学检测.结果:体外培养显示,人食管上皮细胞在支架材料上贴附生长良好,长期培养仍保持食管上皮细胞特性,裸鼠体内培养4周后可形成食管黏膜样组织.结论:PLGA支架适合食管上皮细胞黏附生长,可作为食管组织工程的细胞载体.  相似文献   

19.
为阐明骨髓基质细胞和内皮细胞联合种植在生物复合材料上构建组织工程化骨 ,在促进成骨过程、加速局部血管生成中的作用 ,将大鼠骨髓基质细胞和人脐静脉内皮细胞联合种植在左旋聚乳酸 /β-磷酸三钙 (PL L A/β- TCP)多孔复合支架材料上作为实验组 ,仅种植骨髓基质细胞在该材料上作为对照组。将此种有活细胞的复合材料种植于裸鼠大腿后侧肌袋内 ,分别于种植后 1、4、8、12、16周处死动物 ,取出复合材料 ,行组织学检测 ,并用图像处理技术计算实验组和对照组的成骨面积百分比和材料面积百分比 ,观察其变化规律。结果显示 :实验组成骨面积百分比增加比对照组明显加快 ,而材料面积百分比减少比对照组迅速 ;其内毛细血管网形成情况也要明显优于对照组。表明骨髓基质细胞和内皮细胞联合种植于支架材料构建组织工程化骨不仅有利于成骨作用 ,促进新生骨区内部血管网形成 ,还有利于复合材料的降解吸收 ,这在构造组织工程化骨过程中具有重要意义。  相似文献   

20.
Cartilage engineered from mesenchymal stem cells (MSCs) requires a scaffold to keep the cells in the cartilage defect and to act as a support for inducing hyaline cartilage formation. We developed a novel three-dimensional special poly-lactic-glycolic acid (PLGA) scaffold that provided structural support and stimulated repair. Three-dimensional PLGA scaffolds seeded with cultured MSCs were transplanted into large defects in rabbit knees and analyzed histologically at 4 and 12 weeks after the operation. Our findings showed that in the engineered cartilage with the PLGA scaffold, the defects were filled with smooth, shiny white tissue macroscopically and hyaline-like cartilage histologically at 12 weeks after the transplantation. The structure of the novel PLGA scaffolds provided architectural support for the differentiation of progenitor cells and demonstrated successful induction of in vivo chondrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号