首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murphy MM  Zayed MA  Evans A  Parker CE  Ataga KI  Telen MJ  Parise LV 《Blood》2005,105(8):3322-3329
Vaso-occlusion is a hallmark of sickle cell disease. Agonist-induced activation of sickle red blood cells (SS RBCs) promotes their adhesion to vascular proteins, potentially contributing to vasoocclusion. Previously, we described a cyclic adenosine monophosphate (cAMP)-dependent increase in SS RBC adhesion to laminin. Here, we investigated whether Rap1, a small guanosine triphosphatase (GTPase) known to promote integrin-mediated adhesion in other cells, was involved in this signaling pathway. We found that agonists known to induce cAMP signaling promoted the GTP-bound, active state of Rap1 in SS RBCs. The cAMP-dependent exchange factor Epac (exchange protein directly activated by cAMP) is a likely upstream activator of Rap1, since Epac is present in these cells and the Epac-specific cAMP analog 8CPT-2-Me (8-(4-cholorophenylthio)-2'-O-methyl-cAMP) activated Rap1 and promoted SS RBC adhesion to laminin. This 8CPT-2-Me-stimulated adhesion was integrin independent, since it was insensitive to RGD peptide or antibodies against the only known integrin on SS RBCs, alpha4beta1. However, this adhesion was completely inhibited by either a soluble version of basal cell adhesion molecule/Lutheran (BCAM/LU) or a BCAM/LU adhesion-blocking anti-body. Surprisingly, 8CPT-2-Me-activated Rap1 did not promote SS RBC adhesion to a known alpha4beta1 ligand, vascular cell adhesion molecule 1 (VCAM-1). These results demonstrate that Epac-induced Rap1 activation in SS RBCs promotes BCAM/LU-mediated adhesion to laminin. Thus, Epac-mediated Rap1 activation may represent an important signaling pathway for promoting SS RBC adhesion.  相似文献   

2.
The vaso-occlusive process in patients with sickle cell disease is complex and is likely to involve interactions between hemoglobin S red blood cells (SS RBCs) and vascular endothelium, as well as between SS RBCs and leukocytes. Vaso-occlusive events lead to recurrent pain and a wide spectrum of end-organ damage, including pulmonary hypertension and renal failure. However, the triggers inducing adhesion and vaso-occlusion are only now being elucidated. Investigators have characterized the ability of a number of RBC surface structures to adhere to both endothelial cells and components of the subendothelial extracellular matrix. In addition, evidence is accumulating to suggest that SS RBC adhesion receptors undergo activation under physiologic conditions. An understanding of these mechanisms at the molecular level should ultimately allow development of new preventive and treatment strategies to abrogate vaso-occlusive events.  相似文献   

3.
Phosphatidylserine (PS) exposure increases as red cells age, and is an important signal for the removal of senescent cells from the circulation. PS exposure is elevated in red cells from sickle cell anaemia (SCA) patients and is thought to enhance haemolysis and vaso‐occlusion. Although precise conditions leading to its externalisation are unclear, high intracellular Ca2+ has been implicated. Red cells from SCA patients are also exposed to an increased oxidative challenge, and we postulated that this stimulates PS exposure, through increased Ca2+ levels. We tested four different ways of generating oxidative stress: hypoxanthine and xanthine oxidase, phenazine methosulphate, nitrite and tert‐butyl hydroperoxide, together with thiol modification with N‐ethylmaleimide (NEM), dithiothreitol and hypochlorous acid (HOCl), in red cells permeabilised to Ca2+ using bromo‐A23187. Unexpectedly, our findings showed that the four oxidants significantly reduced Ca2+‐induced PS exposure (by 40–60%) with no appreciable effect on Ca2+ affinity. By contrast, NEM markedly increased PS exposure (by about 400%) and slightly but significantly increased the affinity for Ca2+. Dithiothreitol modestly reduced PS exposure (by 25%) and HOCl had no effect. These findings emphasise the importance of thiol modification for PS exposure in sickle cells but suggest that increased oxidant stress alone is not important.  相似文献   

4.
Sickle cell disease (SCD) is a hemoglobinopathy characterized by hemolytic anemia, increased susceptibility to infections and vaso-occlusion leading to a reduced quality of life and life expectancy. Oxidative stress is an important feature of SCD and plays a significant role in the pathophysiology of hemolysis, vaso-occlusion and ensuing organ damage in sickle cell patients. Reactive oxygen species (ROS) and the (end-)products of their oxidative reactions are potential markers of disease severity and could be targets for antioxidant therapies. This review will summarize the role of ROS in SCD and their potential implication for SCD management.  相似文献   

5.
We used multiple optical trapping to study the mechanism of red cell (dis)aggregation. Two sets of optical 'tweezers' were used to bring two red blood cells together to form a two-cell aggregate and then to pull them apart, to study the interaction between the cells.
We found that cross-bridging occurred in normal reversible aggregation as we observed binding and the occurrence of small tethers between opposite cell membranes. Furthermore, the cells could only be parted by sliding them side by side with a maximum velocity in the order of μm/s indicating accumulation of the cross-bridges.  相似文献   

6.
Blood transfusion therapy is life-saving for patients with beta-thalassaemia and sickle cell disease (SCD), but often results in severe iron overload. This pilot study examined whether the biomarkers of tissue injury or inflammation differ in these two diseases. Plasma malondialdehyde (MDA) was significantly increased 1.8-fold in thalassaemia relative to control patients. In contrast, MDA in SCD was not significantly different from controls. In multivariate analysis, the strongest predictors of elevated MDA were liver iron concentration (P < 0.001) and specific diagnosis (P = 0.019). A significant 2-fold elevation of non-transferrin bound iron (NTBI) was observed in thalassaemia relative to SCD. NTBI was not a significant predictor of high MDA in multivariate analysis. SCD patients showed a significant 2.2-fold elevation of the inflammatory marker interleukin (IL)-6 relative to controls, and a 3.6- and 1.7-fold increase in IL-5 and IL-10 relative to thalassaemia. Although alpha-tocopherol was significantly decreased by at least 32% in both thalassaemia and SCD, indicating ongoing oxidant stress and antioxidant consumption, gamma-tocopherol, a nitric oxide-selective antioxidant, was increased 36% in SCD relative to thalassaemia. These results demonstrate that thalassaemia patients have increased MDA and circulating NTBI relative to SCD patients and lower levels of some cytokines and gamma-tocopherol. This supports the hypothesis that the biology of SCD may show increased inflammation and increased levels of protective antioxidants compared with thalassaemia.  相似文献   

7.
Setty  BN; Stuart  MJ 《Blood》1996,88(6):2311-2320
We investigated the effects of hypoxia on red blood cell (RBC)- endothelial cell (EC) adherence and the potential mechanism(s) involved in mediating this effect. We report that hypoxia significantly increased sickle RBC adherence to aortic EC when compared with the normoxia controls. However, hypoxia had no effect on the adherence of normal RBCs. In additional studies, we found that the least dense sickle RBCs containing CD36+ and VLA-4+ reticulocytes were involved in hypoxia-induced adherence. We next evaluated the effects of hypoxia on the expression of EC surface receptors involved in RBC adherence to macrovascular ECs, including vascular cell adhesion molecule-1 (VCAM- 1), intracellular adhesion molecule-1 (ICAM-1), and the vitronectin receptor (VnR). Hypoxia upregulated the expression of both VCAM-1 and ICAM-1, whereas no effect on VnR was noted. Potential involvement of VCAM-1 and ICAM-1 in mediating hypoxia-induced sickle RBC-EC adhesion was next investigated using monoclonal antibodies against these receptors. Whereas anti-VCAM-1 had no effect on basal adherence, it inhibited hypoxia-induced sickle RBC adherence in a concentration- dependent manner, with 50% to 75% inhibition noted at 10 to 60 micrograms/mL antibody (n = 6, P < .05 to P < .01). Anti-ICAM-1 (10 to 60 micrograms/mL, n = 8) had no effect on either basal or hypoxia- induced adherence. As noted in the bovine aortic ECs, hypoxia stimulated the adherence of sickle RBCs to human retinal capillary ECs, and this response appeared to be mediated via mechanisms similar to those observed with macro-endothelium, ie, via the adhesive receptor combination VCAM-1-VLA-4. Our studies show that hypoxia enhances sickle RBC adhesion to both macrovascular and human microvascular ECs via the adhesive receptor VCAM-1. Our findings are of interest because hypoxia is an integral part of the pathophysiology of the vaso-occlusive phenomenon in sickle cell anemia.  相似文献   

8.
Transfusion of red blood cells is an important therapeutic method employed in the care of people with sickle cell disease (SCD). There are several clinical situations in which patients with SCD clearly need red cell transfusion (RCT). In other situations, the indication for RCT is doubtful, controversial, or ill-advised. RCT is used on either an episodic or chronic basis in the management of SCD. Episodic transfusions are usually applied in a patient who has already developed a serious complication of SCD or are used to reduce the chances for the development of a complication. Chronic transfusion therapy is often used to prevent the recurrence of a major complication such as a stroke. Recently, chronic transfusion has been applied to patients with evidence of cerebrovascular disease to prevent the first occurrence of stroke.  相似文献   

9.
Disturbances in the physiological regulation of erythropoietin (EPO) in patients with sickle cell disease (SCD) may contribute to worsening anaemia and increased transfusion requirements, but the use of recombinant EPO in this group of patients is controversial. The objective of this study was to evaluate the use of this drug in adult patients with SCD and its effects on haemoglobin levels and transfusion requirements. We conducted a retrospective analysis at the University of Campinas, with nineteen adults with a diagnosis of SCD (HbSS and HbS/β+ thalassaemia), who had received at least 1 year of EPO therapy between 2007 and 2014. Haemoglobin concentrations and trends of variation in transfused RBC volumes were compared before and after EPO administration. We observed that seven patients had a good response to treatment (Hb increment higher than 1·5 g/dl) and nine had a partial response (0·5–1·5 g/dl increment) and there was a significant decrease in the need for transfusion amongst those who usually required regular transfusions. There were no increases in the rates of vaso‐occlusive crisis or venous thromboembolism in comparison to the year before the onset of the therapy. Erythropoietin therapy led to a marked increase in haemoglobin concentration with a concomitant decrease in the demand for transfusion. Considering all complications related to allogeneic transfusion, we believe that EPO therapy represents an important therapeutic tool in sickle cell anaemia.  相似文献   

10.
Oxidative stress plays a crucial role in sickle cell disease (SCD) physiopathology. Given that chronic physical activity is known to decrease reactive oxygen species (ROS) and increase nitric oxide (NO) bioavailability in healthy subjects and in patients with cardiovascular or inflammatory pathologies, modulating these factors involved in the severity of the pathology could also be beneficial in SCD. This study aimed to determine if 8 weeks of increased physical activity (PA) by voluntary wheel running affects the hypoxia/reoxygenation (H/R) responses by reducing oxidative stress and increasing NO synthesis in sickle SAD mice. Nitrite/nitrate (NOx) concentrations, NOS3 mRNA expression and phosphorylated‐endothelial nitric oxide synthase immunostaining were increased in the lungs of the PA groups after H/R stress. Moreover, lipid peroxidation in the heart was decreased in PA SAD mice. The improvement of antioxidant activity at rest and the decrease in haemolysis may explain this reduced oxidative stress. These results suggest that physical activity probably diminishes some deleterious effects of H/R stress in SAD mice and could be protective against vascular occlusions.  相似文献   

11.
Thrombophilia in sickle cell disease: the red cell connection.   总被引:5,自引:3,他引:2  
B N Setty  A K Rao  M J Stuart 《Blood》2001,98(12):3228-3233
Complex pertubations of hemostasis occur in sickle cell disease (SCD). Although the procoagulant property of sickle erythrocytes in vitro is tied to exposure of phosphatidylserine (PS), no study has directly linked this PS positivity to in vivo thrombin generation. This study was designed to determine if thrombin generation in SCD correlates with erythrocyte PS, or whether platelets play a significant role. PS was quantified on erythrocytes and platelets from 40 patients with SCD (SS genotype = 25; SC genotype = 15) and 11 controls. Markers of thrombin generation (prothrombin fragment F1.2; thrombin-antithrombin or TAT complexes) and fibrin dissolution (D-dimer; plasmin-antiplasmin or PAP complexes) were also evaluated. Thrombin generation and activation of fibrinolysis occurred with elevations in F1.2, TAT, and D-dimer. Although numbers of both PS-positive erythrocytes and platelets were elevated, there was no correlation between PS-positive platelets and any hemostatic markers. In contrast, correlations were noted between PS-positive erythrocytes and F1.2 (P <.0002), D-dimer (P <.000002), and PAP (P <.01). Correlations between F1.2 and D-dimer (P <.0001) demonstrated that fibrinolysis was secondary to thrombin generation. In patients with the SC genotype, abnormalities in coagulation, although present, were of a lesser magnitude than in SS disease. This study suggests that the sickle erythrocyte is the cell responsible for the thrombophilic state in SCD because associations between erythrocyte PS and thrombin generation were observed. No such relationship with platelet PS was noted. The use of erythrocyte PS as a surrogate marker in trials testing new therapeutic modalities may provide insights into the vascular complications of SCD.  相似文献   

12.
Sickle cell disease (SCD) is a recessive genetic blood disorder exhibiting abnormal blood rheology. Polymerization of sickle hemoglobin, due to a point mutation in the β-globin gene of hemoglobin, results in aberrantly adhesive and stiff red blood cells (RBCs). Hemolysis, abnormal RBC adhesion, and abnormal blood rheology together impair endothelial health in people with SCD, which leads to cumulative systemic complications. Here, we describe a microfluidic assay combined with a micro particle image velocimetry technique for the integrated in vitro assessment of whole blood viscosity (WBV) and RBC adhesion. We examined WBV and RBC adhesion to laminin (LN) in microscale flow in whole blood samples from 53 individuals with no hemoglobinopathies (HbAA, N = 10), hemoglobin SC disease (HbSC, N = 14), or homozygous SCD (HbSS, N = 29) with mean WBV of 4.50 cP, 4.08 cP, and 3.73 cP, respectively. We found that WBV correlated with RBC count and hematocrit in subjects with HbSC or HbSS. There was a significant inverse association between WBV and RBC adhesion under both normoxic and physiologically hypoxic (SpO2 of 83%) tests, in which lower WBV associated with higher RBC adhesion to LN in subjects with HbSS. Low WBV has been found by others to associate with endothelial activation. Altered WBV and abnormal RBC adhesion may synergistically contribute to the endothelial damage and cumulative pathophysiology of SCD. These findings suggest that WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD.  相似文献   

13.
The adhesion of sickle erythrocytes to the vascular endothelium and subendothelial matrix probably contributes to the pathogenesis of vaso-occlusive disease. The chemotherapeutic agent hydroxyurea (HU) decreases the frequency of vaso-occlusive crises in patients with sickle cell disease. However, the exact mechanism(s) of HU's effect on vaso-occlusive crises is not fully understood. The goal of this study was to determine the effect of HU therapy on the adhesion of sickle erythrocytes to the subendothelial matrix proteins thrombospondin (TSP) and laminin under conditions of flow in vitro. Erythrocytes from patients with severe sickle cell disease on HU therapy (n = 14) had significantly less adhesion to TSP (687 +/- 92 erythrocytes/mm2, mean +/- SE) than untreated patients with severe disease (n = 18, 1176 +/- 117 erythrocytes/mm2, P = 0.003). In addition, there was significantly less adhesion of erythrocytes to immobilized laminin in patients treated with HU (1695 +/- 293 erythrocytes/mm2) than in the untreated patients (2590 +/- 296 erythrocytes/mm2, P = 0.02). Erythrocytes from an additional nine patients with severe sickle cell disease were studied both before and after initiation of HU therapy. Erythrocytes from these patients became less adhesive to both TSP (P = 0.001) and laminin (P = 0.01), a change that was sustained in most patients throughout the duration of the study (2 months to > 12 months). This study suggests that HU modulates the adhesive phenotype of sickle erythrocytes, an effect that may be in addition to, or independent of, other known effects of HU, such as an increase in fetal haemoglobin level.  相似文献   

14.
PURPOSE OF REVIEW: This article discusses the importance of leukocyte adhesion in sickle cell disease, and how this could be modulated for clinical benefit. RECENT FINDINGS: Recurrent inflammation and vasculopathy occur in sickle cell disease. As a result, leukocytes and vascular endothelial cells are activated and increase their expression of adhesion molecules. Adhesion of leukocytes to other blood cells and endothelium contributes to vaso-occlusion in sickle cell disease. High-level expression of adhesion molecules by leukocytes is associated with clinically severe disease. Pancellular membrane lipid abnormalities, including reduced proportions of omega-3 fatty acids, occur in sickle cell disease. These lipid abnormalities are more severe in patients with disease complications and in those with a greater degree of anaemia. Since lipid constitution of cell membranes affects surface expression of adhesion molecules, the above findings could account for earlier observations that omega-3 fatty acids reduce P-selectin expression and reduce the frequency of sickle cell crisis. By inhibition of nuclear factor kappaB, glucocorticoids reduce activation of vascular endothelial cells, their expression of ligands for leukocyte adhesion molecules, and vaso-occlusion. Monoclonal antibodies to vascular endothelial intercellular adhesion molecule-1 inhibited hypoxia-induced vaso-occlusion in transgenic sickle mice. SUMMARY: Although hydroxyurea and glucocorticoids reduce adhesion molecule expression by leukocytes and vascular endothelial cells, cytotoxicity and systemic side effects dampen enthusiasm for their use in sickle cell disease. Omega-3 fatty acids have shown promising efficacy and safety in pilot studies. A large clinical trial of these naturally occurring substances is required.  相似文献   

15.
Sickle cell anaemia (SS) and sickle cell‐haemoglobin C disease (SC) patients exhibit severe red blood cell (RBC) rheological alterations involved in the development of several complications. The contribution of oxidative stress in these haemorheological abnormalities is still unknown. We compared RBC reactive oxygen species (ROS) and glutathione (GSH) content, and the haemorheological profile of SS (n = 11), SC (n = 11) and healthy subjects (n = 12) at baseline and after in‐vitro treatment with t‐butyl hydroperoxide (TBHP). We showed: (i) higher RBC ROS content in SS and SC patients, with the highest level observed in SS patients; (ii) lower RBC GSH content in sickle syndrome patients, especially in SS patients; (iii) TBHP increased RBC ROS production and decreased RBC GSH content in all groups; (iv) TBHP decreased RBC aggregation and increased the strength of RBC aggregates in all groups but the increase in RBC aggregates strength was greater in sickle cell patients; (v) TBHP decreased RBC deformability in the three groups but with a higher magnitude in sickle cell patients. These data suggest that RBCs from sickle cell patients have an exaggerated response to oxidative stress, which is accompanied by a profound abnormal haemorheological profile, with greater alterations in SS than in SC patients.  相似文献   

16.
Red blood cells (RBCs) have been ascribed a unique role in dilating blood vessels, which requires O2-regulated binding and bioactivation of NO by Hb and transfer of NO equivalents to the RBC membrane. Vasoocclusion in hypoxic tissues is the hallmark of sickle cell anemia. Here we show that sickle cell Hb variant S (HbS) is deficient both in the intramolecular transfer of NO from heme iron (iron nitrosyl, FeNO) to cysteine thiol (S-nitrosothiol, SNO) that subserves bioactivation, and in transfer of the NO moiety from S-nitrosohemoglobin (SNO-HbS) to the RBC membrane. As a result, sickle RBCs are deficient in membrane SNO and impaired in their ability to mediate hypoxic vasodilation. Further, the magnitudes of these impairments correlate with the clinical severity of disease. Thus, our results suggest that abnormal RBC vasoactivity contributes to the vasoocclusive pathophysiology of sickle cell anemia, and that the phenotypic variation in expression of the sickle genotype may be explained, in part, by variable deficiency in RBC processing of NO. More generally, our findings raise the idea that defective NO processing may characterize a new class of hemoglobinopathy.  相似文献   

17.
Background: The phenotypic expression of sickle cell disease (SCD) is a complex pathophysiologic condition. However, sickle erythrocytes might be the cause for multiple sources of pro-oxidant processes with consequent linked to chronic and systemic oxidative stress. Herein, we explored the SCD phenomena could be the result in formation of oxidative stress as well as inflammation in children.

Material and methods: Blood samples of 147 SCD subjects were evaluated. A control group was formed of 156 individuals without SCD. Different oxidative stress markers and inflammatory mediators were measured by using various biochemical techniques. Plasma samples were collected from blood for the measurement of antioxidants and reactive oxygen species (ROS).

Results: The levels of plasma hydroxyl radical (HO?), and nitric oxide (NO) production were higher in SCD children in compared to control groups. The plasma antioxidants capacities such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and protein thiol levels were significantly reduced in SCD children. The plasma lipid peroxidation, protein carbonylation, DNA damage markers were significantly altered in different age groups of SCD children. Further, our results showed that SCD children have chronic inflammatory disease due to persistent alteration of haemoglobin content, reticulocyte, total bilirubin, platelet, creatinine, leukocytes, and altered expression of inflammatory mediators in compared to control groups.

Conclusion: SCD children have high oxidative stress, and conversely, decreased antioxidant activity. Decrease in antioxidant activity might explained the reduction in lipid peroxidation, protein carbonylation and increased inflammation, which in turn intensify the symptoms of SCD in children.  相似文献   


18.
Polymerization of the sickle hemoglobin (HbS) is a key determinant of sickle cell disease (SCD), an inherited blood disorder. Fetal hemoglobin (HbF) is a major modulator of the disease severity by both decreasing HbS intracellular concentration and inhibiting its polymerization. However, heterocellular distribution of HbF is common in SCD. For HbS polymerization inhibition, the hypothesis of an “HbF per red blood cell (HbF/RBC) threshold” requires accurate measurement of HbF in individual RBC. To date, HbF detection methods are limited to a qualitative measurement of RBC populations containing HbF - the F cells, which are variable. We developed an accurate method for HbF quantification in individual RBC. A linear association between mean HbF content and mean RBC fluorescence by flow cytometry, using an anti-Human-HbF antibody, was obtained from non-SCD subjects presenting homogeneous HbF distribution. This correlation was then used to measure HbF/RBC. Hydroxyurea (HU) improves SCD clinical manifestations, mainly through its ability to induce HbF synthesis. The HbF distribution was analyzed in 14 SCD patients before and during HU treatment. A significant decrease in RBC population containing less than 2 pg of HbF/RBC was observed. Therefore, we tested associations for %RBC above different HbF/RBC thresholds and showed a decrease in the pathognomonic vaso-occlusive crisis incidence from the threshold of 4 pg. This quantity was also correlated with the level of sickle RBC after in vitro deoxygenation. This new method allows the comparison of HbF/RBC distributions and could be a useful tool to characterize baseline patients HbF distribution and therapeutic response to HbF inducers.  相似文献   

19.
Setty BN  Kulkarni S  Stuart MJ 《Blood》2002,99(5):1564-1571
Phosphatidlyserine (PS) exposure on the erythrocyte surface endows the cell with the propensity of adhering to vascular endothelium. Because individuals with sickle cell disease (SCD) manifest loss of erythrocyte membrane asymmetry with PS exposure, we have assessed the contribution of this marker to the process of sickle erythrocyte-microendothelial adhesion. Assays for plasma-induced adhesion were conducted on unactivated endothelium, in the absence of immobilized ligands, such that PS was compared to the erythrocyte adhesion receptor CD36. Blocking studies with erythrocytes pretreated with annexin V (to cloak PS) or anti-CD36 or both revealed an inhibitory effect on adhesion of 36% +/- 10% and 23% +/- 8% with blocking of both sites suggestive of an additive effect. We next evaluated 87 blood samples from patients with SCD and grouped them into 4 categories based on adhesion marker (CD36 and PS) levels. Results revealed a striking correlation between erythrocyte PS positivity and adhesion. Analyses of the individual patient data demonstrated a positive correlation between PS and adhesion (R = 0.52, P <.000 001), whereas none was noted between adhesion and CD36 (R = 0.2, P >.07). The effect of PS on adhesion appears to be related to the quantitative differences in erythrocyte markers in SCD, with PS the predominant marker when compared to CD36 both in the total erythrocyte population, and when the adherence-prone erythrocyte, the CD71(+) stress reticulocyte, was evaluated. Our study signals the entrance of an important new contributor to the field of sickle erythrocyte-endothelial adhesion. The implications of erythrocyte PS exposure in relation to the vascular pathology of SCD need to be assessed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号