首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
α-Solanine, a bioactive compound mainly found in potato, exhibits anti-cancer activity towards multiple cancer cells. However, its effects on human choriocarcinoma have not been evaluated. In the present study, we investigated the effect of α-solanine on cell proliferation and apoptosis in human choriocarcinoma in vitro and in vivo. The results showed that α-solanine, at concentrations of 30 μM or below, did not affect the cell viability of the choriocarcinoma cell line JEG-3. However, colony formation was significantly decreased and cell apoptosis was increased in response to 30 μM α-solanine. In addition, α-solanine (30 μM) reduced the migration and invasion abilities of JEG-3 cells, which was associated with a downregulation of matrix metalloproteinases (MMP)-2/9. The in vivo findings provided further evidence of the inhibition of α-solanine on choriocarcinoma tumor growth. α-Solanine suppressed the xenograft tumor growth of JEG-3 cells, resulting in smaller tumor volumes and lower tumor weights. Apoptosis was promoted in xenograft tumors of α-solanine-treated mice. Moreover, α-solanine downregulated proliferative cellular nuclear antigen (PCNA) and Bcl-2 levels and promoted the expression of Bax. Collectively, α-solanine inhibits the growth, migration, and invasion of human JEG-3 choriocarcinoma cells, which may be associated with the induction of apoptosis.  相似文献   

2.
Overactivation of Wnt/β-catenin pathway due to dysfunction of retinoid-related orphan receptor α (RORα) is related to cancer development and progression. Diallyl disulfide (DADS), an active component of garlic, has been reported in our previous study for upregulation of RORα expression in gastric cancer (GC) cells. It remains to be elucidated the role and mechanism of RORα in DADS against GC. This study revealed that DADS treatment resulted in reduced expression levels of Wnt1, β-catenin, TCF-4, intranuclear β-catenin and p-β-catenin in GC cells, concomitant with the compromised expression of β-catenin target genes (Axin, c-Jun, and c-Myc). RORα overexpression augmented DADS-induced downregulation of Wnt1/β-catenin pathway, G2/M phase arrest, and cell growth inhibition in vitro and in vivo. Contrarily, knockdown of RORα attenuated these effects of DADS. Interestingly, DADS induced an increase in the binding of RORα to β-catenin, which may lead to reduction of β-catenin phosphorylation and nuclear translocation. This interplay modulated by DADS may affect β-catenin target gene expression for that the opposite results were observed in DADS-treated RORα knockdown and overexpression cells. DADS caused a decrease in vimentin, snail and MMP-9, as well as an increase in E-cadherin and TIMP3 expression, which restricted epithelial–mesenchymal transition (EMT), migration, and invasion. The aforementioned effects of DADS were weakened simultaneously when the suppression of DADS on the Wnt1/β-catenin pathway was resisted by knockdown of RORα. In contrast, overexpression of RORα enhanced the effects of DADS. Therefore, RORα-mediated downregulation of Wnt1/β-catenin pathway could undertake an important role in anticancer activity of DADS against GC cell proliferation, EMT, migration, and invasion.  相似文献   

3.
Thionyl chloride reacts with 1,ω‐bis‐(1‐tosylamidrazone)alkanes 1 to give a series of 1,ω‐bis‐(4‐alkyl‐2‐tosyl‐1,2,3,5‐thiatriazol‐5‐yl)alkanes 2 . All the newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, elemental analysis, and ESI–MS spectral data. All the new compounds were screened for their inhibitory effect on key enzymes related to diabetes and obesity, such as α‐amylase and lipase. In vitro and in vivo studies revealed that these thiatriazole derivatives exert an inhibitory action against these key enzymes. Moreover the administration of these compounds to surviving diabetic rats induced a significant decrease in plasma glucose level. Additively 2d significantly protected the liver–kidney functions and modulated lipid metabolism, which were evidenced by the decrease in aspartate transaminase (AST), alanine transaminase (ALT), and gamma‐glutamyl transpeptidase (GGT) activities and creatinine, urea albumin, LDL‐cholesterol and triglycerides levels as well as an increase in the HDL‐cholesterol level in surviving diabetic rats. Overall, the findings of the current study indicate that 2d exhibits attractive properties and can, therefore, be considered for future application in the development of anti‐diabetic and hypolipidemic drugs.  相似文献   

4.
The tumor necrosis factor-α (TNF-α)-inducing protein (tipα) gene family, comprising Helicobacter pylori membrane protein 1 (hp-mp1) and tipα, has been identified as a tumor promoter, contributing to H. pylori carcinogenicity. Tipα is a unique H. pylori protein with no similarity to other pathogenicity factors, CagA, VacA, and urease. American H. pylori strains cause human gastric cancer, whereas African strains cause gastritis. The presence of Tipα in American and Euro-Asian strains suggests its involvement in human gastric cancer development. Tipα secreted from H. pylori stimulates gastric cancer development by inducing TNF-α, an endogenous tumor promoter, through its interaction with nucleolin, a Tipα receptor. This review covers the following topics: tumor-promoting activity of the Tipα family members HP-MP1 and Tipα, the mechanism underlying this activity of Tipα via binding to the cell-surface receptor, nucleolin, the crystal structure of rdel-Tipα and N-terminal truncated rTipα, inhibition of Tipα-associated gastric carcinogenesis by tumor suppressor B-cell translocation gene 2 (BTG2/TIS21), and new strategies to prevent and treat gastric cancer. Thus, Tipα contributes to the carcinogenicity of H. pylori by a mechanism that differs from those of CagA and VacA.  相似文献   

5.
Breast cancer is one of the most prevalent malignancies among women worldwide. Triple negative breast cancer (TNBC) is a type of breast cancer in which estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER‐2) are not expressed. There is no targeted therapy for this type of cancer, and available therapies have poor therapeutic effects. Performing a preliminary research, we selected cyclin D1 (CCND1) gene of Wnt signaling pathway which is a target of miRNAs, a promising set of biomolecules in diagnosis and treatment of breast cancer. In this study using bioinformatic analyses, miR‐17 was selected as it targets the 3′UTR of CCND1 gene with the highest score. Luciferase assay results also confirmed the bioinformatic prediction. Decreased expression of miR‐17 in MDA‐MB‐231 cell line was observed using qRT‐PCR method. After lentiviral transduction of miR‐17 to the target cells, gene expression analysis showed decreased expression of CCND1 gene. We found miR‐17 as an attractive molecule that after intensive research can probably be used as a biomarker in TNBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号