首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two translocations of chromosome 15q associated with dyslexia   总被引:7,自引:1,他引:7       下载免费PDF全文
Developmental dyslexia is characterised by difficulties in learning to read. As reading is a complex cognitive process, multiple genes are expected to contribute to the pathogenesis of dyslexia. The genetics of dyslexia has been a target of molecular studies during recent years, but so far no genes have been identified. However, a locus for dyslexia on chromosome 15q21 (DYX1) has been established in previous linkage studies. We have identified two families with balanced translocations involving the 15q21-q22 region. In one family, the translocation segregates with specific dyslexia in three family members. In the other family, the translocation is associated with dyslexia in one family member. We have performed fluorescence in situ hybridisation (FISH) studies to refine the position of the putative dyslexia locus further. Our results indicate that both translocation breakpoints on 15q map within an interval of approximately 6-8 Mb between markers D15S143 and D15S1029, further supporting the presence of a locus for specific dyslexia on 15q21.


Keywords: dyslexia; reading disability; chromosome 15; translocation  相似文献   

2.
Context: Dyslexia is a common disorder with a strong genetic component, but despite significant research effort, the aetiology is still largely unknown.

Objective: To identify loci contributing to dyslexia risk.

Methods: This was a genomewide linkage analysis in a single large family. Dutch families with at least two first degree relatives suffering from dyslexia participated in the study. Participants were recruited through an advertisement campaign in papers and magazines. The main outcome measure was linkage between genetic markers and dyslexia phenotype.

Results: Using parametric linkage analysis, we found strong evidence for a locus influencing dyslexia on Xq27.3 (multipoint lod = 3.68). Recombinations in two family members flanked an 8 cM region, comprising 11 currently confirmed genes. All four males carrying the risk haplotype had very low scores on the reading tests. The presentation in females was more variable, but 8/9 females carrying the risk haplotype were diagnosed dyslexic by our composite score, so we considered the putative risk allele to be dominant with reduced penetrance. Linkage was not found in an additional collection of affected sibling pairs.

Conclusions: A locus influencing dyslexia risk is probably located between markers DXS1227 and DXS8091 on the X chromosome, closely situated to a locus indicated by a published genome scan of English sibling pairs. Although the locus may not be a common cause for dyslexia, the relatively small and gene poor region offers hope to identify the responsible gene.

  相似文献   

3.
OBJECTIVE—Autosomal dominant drusen is of particular interest because of its phenotypic similarity to age related macular degeneration. Currently, mutation R345W of EFEMP1 and, in a single pedigree, linkage to chromosome 6q14 have been causally related to the disease. We proposed to investigate and quantify the roles of EFEMP1 and the 6q14 locus in dominant drusen patients from the UK and USA.
DESIGN—Molecular genetic analysis.
PARTICIPANTS—Ten unrelated families and 17 young drusen patients.
MAIN OUTCOME MEASURES—Exons 1 and 2 of EFEMP1 were characterised by 5' rapid amplification of cDNA ends and direct sequencing. Exons 1-12 of EFEMP1 were then investigated for mutation by direct sequencing. A HpaII restriction digest test was constructed to detect the EFEMP1 R345W mutation. Marker loci spanning the two dominant drusen linked loci were used to generate haplotype data.
RESULTS—Only seven of the 10 families (70%) and one of the 17 sporadic patients (6%) had the R345W mutation. The HpaII restriction digest test was found to be a reliable and quick method for detecting this. No other exonic or splice site mutation was identified. Of the three families without EFEMP1 mutation, two were linked to the 2p16 region.
CONCLUSIONSEFEMP1 R345W accounts for only a proportion of the dominant drusen phenotype. Importantly, other families linked to chromosome 2p16 raise the possibility of EFEMP1 promoter sequence mutation or a second dominant drusen gene at this locus. Preliminary haplotype data suggest that the disease gene at the 6q14 locus is responsible for only a minority of dominant drusen cases.


Keywords: autosomal dominant drusen; molecular genetics  相似文献   

4.
Familial hyperaldosteronism type II (FH-II) is caused by adrenocortical hyperplasia or aldosteronoma or both and is frequently transmitted in an autosomal dominant fashion. Unlike FH type I (FH-I), which results from fusion of the CYP11B1 and CYP11B2 genes, hyperaldosteronism in FH-II is not glucocorticoid remediable. A large family with FH-II was used for a genome wide search and its members were evaluated by measuring the aldosterone:renin ratio. In those with an increased ratio, FH-II was confirmed by fludrocortisone suppression testing. After excluding most of the genome, genetic linkage was identified with a maximum two point lod score of 3.26 at θ=0, between FH-II in this family and the polymorphic markers D7S511, D7S517, and GATA24F03 on chromosome 7, a region that corresponds to cytogenetic band 7p22. This is the first identified locus for FH-II; its molecular elucidation may provide further insight into the aetiology of primary aldosteronism.


Keywords: chromosome 7; aldosterone; familial hyperaldosteronism type II; hypertension  相似文献   

5.
BACKGROUND—We have previously described an autosomal recessive syndrome of macrocephaly, multiple epiphyseal dysplasia (MED), and distinctive facies in a large, extended Omani family. The MED observed seems to be part of a larger malformation syndrome, since both craniofacial and central nervous system changes were present in the family. We performed a whole genome scan in this family in order to identify the gene locus for this malformation syndrome.
METHODS AND RESULTS—Using homozygosity mapping, we show linkage to the telomeric region of the long arm of chromosome 15. The position of both the disease gene and the principal glycoprotein, chondroitin sulphate proteoglycan (aggrecan, AGC1) on chromosome 15q26, suggested that the aggrecan gene is a candidate for the disease in this family. However, three of the four affected children were heterozygous for a polymorphism at position 831 of the coding sequence of AGC1, providing strong evidence against its involvement.
CONCLUSION—We have identified a gene locus for a recessive syndrome of macrocephaly, MED, and distinctive facies in a large Omani family. Aggrecan located on chromosome 15q26, within the critical region determined for this syndrome in this family, was excluded as a candidate gene.


Keywords: macrocephaly; multiple epiphyseal dysplasia; distinctive facies; chromosome 15q26  相似文献   

6.
The pathogenesis of all forms of psoriasis remains obscure. Segregation analysis and twin studies together with ethnic differences in disease frequency all point to an underlying genetic susceptibility to psoriasis, which is both complex and likely to reflect the action of a number of genes. We performed a genome wide analysis using a total of 271 polymorphic autosomal markers on 284 sib relative pairs identified within 158 independent families. We detected evidence for linkage at 6p21 (PSORS1) with a non-parametric linkage score (NPL)=4.7, p=2 × 10-6 and at chromosome 1p (NPL=3.6, p=1.9 × 10-4) in all families studied. Significant excess (p=0.004) paternal allele sharing was detected for markers spanning the PSORS1 locus. A further three regions reached NPL scores of 2 or greater, including a region at chromosome 7 (NPL 2.1), for which linkage for a number of autoimmune disorders has been reported. Partitioning of the data set according to allele sharing at 6p21 (PSORS1) favoured linkage to chromosomes 2p (NPL 2.09) and 14q (NPL 2.0), both regions implicated in previous independent genome scans, and suggests evidence for epistasis between PSORS1 and genes at other genomic locations. This study has provided linkage evidence in favour of a novel susceptibility locus for psoriasis and provides evidence of the complex mechanisms underlying the genetic predisposition to this common skin disease.


Keywords: psoriasis; PSORS1; epistasis  相似文献   

7.
BACKGROUND—Rett syndrome is a neurodevelopmental disorder affecting only girls; 99.5% of Rett syndrome cases are sporadic, although several familial cases have been reported. Mutations in the MECP2 gene were identified in approximately 70-80% of sporadic Rett syndrome cases.
METHODS—We have screened the MECP2 gene coding region for mutations in five familial cases of Rett syndrome and studied the patterns of X chromosome inactivation (XCI) in each girl.
RESULTS—We found a mutation in MECP2 in only one family. In the four families without mutation in MECP2, we found that (1) all mothers exhibit a totally skewed pattern of XCI; (2) six out of eight affected girls also have a totally skewed pattern of XCI; and (3) it is the paternally inherited X chromosome which is active in the patients with a skewed pattern of XCI. Given that the skewing of XCI is inherited in our families, we genotyped the whole X chromosome using 32 polymorphic markers and we show that a locus potentially responsible for the skewed XCI in these families could be located on the short arm of the X chromosome.
CONCLUSION—These data led us to propose a model for familial Rett syndrome transmission in which two traits are inherited, an X linked locus abnormally escaping X chromosome inactivation and the presence of a skewed XCI in carrier women.


Keywords: Rett syndrome; skewed X chromosome inactivation; X chromosome; MECP2  相似文献   

8.
Distal deletion of chromosome 3p25-pter (3p− syndrome) produces a distinct clinical syndrome characterised by low birth weight, mental retardation, telecanthus, ptosis, and micrognathia. Congenital heart disease (CHD), typically atrioventricular septal defect (AVSD), occurs in about a third of patients. In total, approximately 25 cases of 3p− syndrome have been reported world wide. We previously analysed five cases and showed that (1) the 3p25-pter deletions were variable and (2) the presence of CHD correlated with the proximal extent of the deletion, mapping a CHD gene centromeric to D3S18. To define the molecular pathology of the 3p− syndrome further, we have now proceeded to analyse the deletion region in a total of 10 patients (five with CHD), using a combination of FISH analysis and polymorphic markers, for up to 21 loci from 3p25-p26. These additional investigations further supported the location of an AVSD locus within 3p25 and refined its localisation. Thus, the critical region was reduced to an interval between D3S1263 and D3S3594. Candidate 3p25 CHD genes, such as PMCA2 (ATP2B2), fibulin 2, TIMP4, and Sec13R, were shown to map outside the target interval. Additionally, the critical region for the phenotypic features of the 3p− phenotype was mapped to D3S1317 to D3S17 (19-21 cM). These findings will accelerate the identification of the 3p25 CHD susceptibility locus and facilitate investigations of the role of this locus in non-syndromic AVSDs, which are a common form of familial and isolated CHD.


Keywords: congenital heart disease; chromosome 3p25  相似文献   

9.
We report on a male patient and members of his family with additional material in chromosome 3. This derivative chromosome 3 was transmitted from his mother who had a complex rearrangement between chromosomes 2, 3, and 7. It was possible to delineate her chromosomal rearrangement by microdissection and reverse painting and to exclude these aberrations from being responsible for neonatal deaths and several abortions in this family. Two members of this family suffer from ectrodactyly or split hand/foot malformations (SHFM) of the feet which possibly correlates with the derivative chromosome 7 containing a breakpoint in the SHFM1 critical region involving several homeobox genes.


Keywords: microdissection; CGH; SHFM; ectrodactyly  相似文献   

10.
We describe monozygotic male twins with an interstitial deletion of Xp22.3 including the steroid sulphatase gene (STS). The twins had X linked ichthyosis, X linked mental retardation, and epilepsy. A locus for X linked mental retardation has been assigned to a region between STS and DXS31 spanning approximately 3 Mb. Recently the locus was further refined to an approximately 1 Mb region between DXS1060 and GS1. By PCR analysis of flanking STS gene markers in our patients we succeeded in narrowing down the locus to between DXS6837 and GS1.


Keywords: Xp22.3 deletion; X linked mental retardation; X linked ichthyosis; epilepsy; Rudd syndrome  相似文献   

11.
Kufor-Rakeb syndrome is an autosomal recessive nigro-striatal-pallidal-pyramidal neurodegeneration. The onset is in the teenage years with clinical features of Parkinson's disease plus spasticity, supranuclear upgaze paresis, and dementia. Brain scans show atrophy of the globus pallidus and pyramids and, later, widespread cerebral atrophy. We report linkage in Kufor-Rakeb syndrome to a 9 cM region of chromosome 1p36 delineated by the markers D1S436 and D1S2843, with a maximum multipoint lod score of 3.6.


Keywords: Kufor-Rakeb syndrome; autozygosity mapping; Parkinson's disease; chromosome 1p36  相似文献   

12.
Objective:To investigate the genes involved in a Dutch family with NSSHL.

Methods:Linkage analysis in a large Dutch pedigree with progressive bilateral loss of the mid and high frequencies, in which a novel dominant locus for postlingual NSSHL (DFNA31) has been identified.

Results:DFNA31 was found to be located in a 7.5 cM region of chromosome 6p21.3 between D6S276 (telomeric) and D6S273 (centromeric), with a maximum two point LOD score of 5.99 for D6S1624. DNA sequencing of coding regions and exon/intron boundaries of two candidate genes (POU5F1, GABBR1) in this interval did not reveal disease causing mutations.

Conclusions:Haplotype analysis indicated that the genetic defect in this family does not overlap the DFNA13 and DFNA21 regions that are also located on 6p. Identification of the disease gene will be of major importance in understanding the pathophysiology of hearing impairment.

  相似文献   

13.
Chromosomal losses involving the short arm of chromosome 8 are frequent in a variety of tumour types, including breast cancer, suggesting the presence of one or more tumour suppressor genes in this region. In this study, we have used 11 microsatellite markers to analyse loss of heterozygosity (LOH) at chromosome 8p in 151 sporadic breast tumours and 50 tumours from subjects carrying the BRCA2 999del5 mutation. Fifty percent of sporadic tumours compared to 78% of BRCA2 linked tumours exhibit LOH at one or more markers at 8p showing that chromosome 8p alterations in breast tumours from BRCA2 999del5 carriers are more pronounced than in sporadic breast tumours. The pattern of LOH is different in the two groups and a higher proportion of BRCA2 tumours have LOH in a large region of chromosome 8p. In the total patient material, LOH of 8p is associated with LOH at other chromosome regions, for example, 1p, 3p, 6q, 7q, 9p, 11p, 13q, 17p, and 20q, but no association is found between LOH at 8p and chromosome regions 11q, 16q, 17q, and 18q. Furthermore, an association is detected between LOH at 8p and positive node status, large tumour size, aneuploidy, and high S phase fraction. Breast cancer patients with LOH at chromosome 8p have a worse prognosis than patients without this defect. Multivariate analysis suggests that LOH at 8p is an independent prognostic factor. We conclude that chromosome 8p carries a tumour suppressor gene or genes, the loss of which results in growth advantage of breast tumour cells, especially in carriers of the BRCA2 999del5 mutation.


Keywords: chromosome 8; BRCA2; LOH; breast cancer  相似文献   

14.
Family and twin studies have indicated that genes influence susceptibility to panic and phobic anxiety disorders, but the location of the genes involved remains unknown. Animal models can simplify gene‐mapping efforts by overcoming problems that complicate human pedigree studies including genetic heterogeneity and high phenocopy rates. Homology between rodent and human genomes can be exploited to map human genes underlying complex traits. We used regions identified by quantitative trait locus (QTL)‐mapping of anxiety phenotypes in mice to guide a linkage analysis of a large multiplex pedigree (99 members, 75 genotyped) segregating panic disorder/agoraphobia. Two phenotypes were studied: panic disorder/agoraphobia and a phenotype (“D‐type”) designed to capture early‐onset susceptibility to anxiety disorders. A total of 99 markers across 11 chromosomal regions were typed. Parametric lod score analysis provided suggestive evidence of linkage (lod = 2.38) to a locus on chromosome 10q under a dominant model with reduced penetrance for the anxiety‐proneness (D‐type) phenotype. Nonparametric (NPL) analysis provided evidence of linkage for panic disorder/agoraphobia to a locus on chromosome 12q13 (NPL = 4.96, P = 0.006). Modest evidence of linkage by NPL analysis was also found for the D‐type phenotype to a region of chromosome 1q (peak NPL = 2.05, P = 0.035). While these linkage results are merely suggestive, this study illustrates the potential advantages of using mouse gene‐mapping results and exploring alternative phenotype definitions in linkage studies of anxiety disorder. © 2001 Wiley‐Liss, Inc.  相似文献   

15.
BACKGROUND—Hereditary spastic paraparesis is a genetically heterogeneous condition. Recently, mutations in the spastin gene were reported in families linked to the common SPG4 locus on chromosome 2p21-22.
OBJECTIVES—To study a population of patients with hereditary spastic paraparesis for mutations in the spastin gene (SPG4) on chromosome 2p21-22.
METHODS—DNA from 32 patients (12 from families known to be linked to SPG4) was analysed for mutations in the spastin gene by single strand conformational polymorphism analysis and sequencing. All patients were also examined clinically.
RESULTS—Thirteen SPG4 mutations were identified, 11 of which are novel. These mutations include missense, nonsense, frameshift, and splice site mutations, the majority of which affect the AAA cassette. We also describe a nucleotide substitution outside this conserved region which appears to behave as a recessive mutation.
CONCLUSIONS—Recurrent mutations in the spastin gene are uncommon. This reduces the ease of mutation detection as a part of the diagnostic work up of patients with hereditary spastic paraparesis. Our findings have important implications for the presumed function of spastin and schemes for mutation detection in HSP patients.


Keywords: spastin; hereditary spastic paraparesis; mutation; recessive  相似文献   

16.
Developmental dyslexia is a distinct learning disability with unexpected difficulty in learning to read despite adequate intelligence, education, and environment, and normal senses. The genetic aetiology of dyslexia is heterogeneous and loci on chromosomes 2, 3, 6, 15, and 18 have been repeatedly linked to it. We have conducted a genome scan with 376 markers in 11 families with 38 dyslexic subjects ascertained in Finland. Linkage of dyslexia to the vicinity of DYX3 on 2p was confirmed with a non-parametric linkage (NPL) score of 2.55 and a lod score of 3.01 for a dominant model, and a novel locus on 7q32 close to the SPCH1 locus was suggested with an NPL score of 2.77. The SPCH1 locus has previously been linked with a severe speech and language disorder and autism, and a mutation in exon 14 of the FOXP2 gene on 7q32 has been identified in one large pedigree. Because the language disorder associated with the SPCH1 locus has some overlap with the language deficits observed in dyslexia, we sequenced the coding region of FOXP2 as a candidate gene for our observed linkage in six dyslexic subjects. No mutations were identified. We conclude that DYX3 appears to be important for dyslexia susceptibility in many Finnish families, and a suggested linkage of dyslexia to chromosome 7q32 will need verification in other data sets.  相似文献   

17.
CONTEXT—Chromosomal abnormalities that involve the proximal region of chromosome 15q occur relatively frequently in the human population. However, interstitial triplications involving one 15 homologue are very rare with three cases reported to date.
OBJECTIVE—To provide a detailed molecular characterisation of four additional patients with interstitial triplications of chromosome 15q11-q14.
DESIGN—Molecular analyses were performed using DNA markers and probes specific for the 15q11-q14 region.
SETTING—Molecular cytogenetics laboratory at the University of Chicago.
SUBJECTS—Four patients with mild to severe mental retardation and features of Prader-Willi syndrome (PWS) or Angelman syndrome (AS) were referred for molecular cytogenetic analysis following identification of a suspected duplication/triplication of chromosome 15q11-q14 by routine cytogenetic analysis.
MAIN OUTCOME MEASURES—Fluorescence in situ hybridisation (FISH) was performed to determine the type of chromosomal abnormality present, the extent of the abnormal region, and the orientation of the extra chromosomal segments. Molecular polymorphism analysis was performed to determine the parental origin of the abnormality. Methylation and northern blot analyses of the SNRPN gene were performed to determine the effect of extra copies of the SNRPN gene on its methylation pattern and expression.
RESULTS—Fluorescence in situ hybridisation (FISH) using probes within and flanking the Prader-Willi/Angelman syndrome critical region indicated that all patients carried an intrachromosomal triplication of proximal 15q11-q14 in one of the two chromosome 15 homologues (trip(15)). In all patients the orientation of the triplicated segments was normal-inverted-normal, suggesting that a common mechanism of rearrangement may have been involved. Microsatellite analysis showed the parental origin of the trip(15) to be maternal in three cases and paternal in one case. The paternal triplication patient had features similar to PWS, one maternal triplication patient had features similar to AS, and the other two maternal triplication patients had non-specific findings including hypotonia and mental retardation. Methylation analysis at exon 1 of the SNRPN locus showed increased dosage of either the paternal or maternal bands in the paternal or maternal triplication patients, respectively, suggesting that the methylation pattern shows a dose dependent increase that correlates with the parental origin of the triplication. In addition, the expression of SNRPN was analysed by northern blotting and expression levels were consistent with dosage and parental origin of the triplication.
CONCLUSIONS—These four additional cases of trip(15) will provide additional information towards understanding the phenotypic effects of this abnormality and aid in understanding the mechanism of formation of other chromosome 15 rearrangements.


Keywords: chromosome 15 triplication; Prader-Willi syndrome; Angelman syndrome; autism  相似文献   

18.
INTRODUCTION—Germline mutations of the STK11/LKB1 tumour suppressor gene (19p13.3) are responsible for Peutz-Jeghers syndrome (PJS), a rare genetic disorder, which is dominantly inherited. In addition to the typical hamartomatous gastrointestinal polyps and perioral pigmented lesions, PJS is also associated with the development of tumours in various sites. No specific follow up has yet been evaluated for gene carriers. Furthermore, genetic heterogeneity has been reported, which makes genetic counselling difficult.
METHODS—We report here the analysis of the STK11/LKB1 locus in a series of 34 PJS families, combining the search for mutations and rearrangements in the coding sequence, allele specific expression tests, and linkage studies.
RESULTS—Germline deleterious mutation of the STK11/LKB1 gene were identified in 70% of cases. The hypothesis of a second PJS locus was reinforced and PJS families could be divided into two groups on the basis of the presence or absence of an identified STK11/LKB1 alteration. Analysis of clinical data indicates that the cancer associated risk is markedly different in the two groups. PJS patients with no identified STK11/LKB1 mutation are at major risk for proximal biliary adenocarcinoma, an infrequent tumour in the general population.
CONCLUSION—Up to 30% of PJS patients are caused by mutation in an unidentified gene that confers high susceptibility to cancer development.


Keywords: Peutz-Jeghers disease; genetic heterogeneity; cancer predisposition; risk estimation  相似文献   

19.
BACKGROUND—Hereditary forms of hearing loss are classified as syndromic, when deafness is associated with other clinical features, or non-syndromic, when deafness occurs without other clinical features. Many types of syndromic deafness have been described, some of which have been mapped to specific chromosomal regions.
METHODS—Here we describe a family with progressive sensorineural hearing loss, cognitive impairment, facial dysmorphism, and variable other features, transmitted by apparent X linked recessive inheritance. Haplotype analysis of PCR products spanning the X chromosome and direct sequencing of candidate genes were used to begin characterising the molecular basis of features transmitted in this family. Comparison to known syndromes involving deafness, mental retardation, facial dysmorphism, and other clinical features was performed by review of published reports and personal discussions.
RESULTS—Genetic mapping places the candidate locus for this syndrome within a 48 cM region on Xq1-21. Candidate genes including COL4A5, DIAPH, and POU3F4 were excluded by clinical and molecular analyses.
CONCLUSIONS—The constellation of clinical findings in this family (deafness, cognitive impairment, facial dysmorphism, variable renal and genitourinary abnormalities, and late onset pancytopenia), along with a shared haplotype on Xq1-21, suggests that this represents a new form of syndromic deafness. We discuss our findings in comparison to several other syndromic and non-syndromic deafness loci that have been mapped to the X chromosome.


  相似文献   

20.
A novel acropectoral syndrome maps to chromosome 7q36   总被引:3,自引:0,他引:3       下载免费PDF全文
F syndrome (acropectorovertebral syndrome) is a dominantly inherited skeletal dysplasia affecting the hands, feet, sternum, and lumbosacral spine, which has previously been described in only two families. Here we report a six generation Turkish family with a related but distinct dominantly inherited acropectoral syndrome. All 22 affected subjects have soft tissue syndactyly of all fingers and all toes and 14 also have preaxial polydactyly of the hands and/or feet. In addition, 14 have a prominent upper sternum and/or a blind ending, inverted U shaped sinus in the anterior chest wall. Linkage studies and haplotype analysis carried out in 16 affected and nine unaffected members of this family showed that the underlying locus maps to a 6.4 cM interval on chromosome 7q36, between EN2 and D7S2423, a region to which a locus for preaxial polydactyly and triphalangeal thumb-polysyndactyly has previously been mapped. Our findings expand the range of phenotypes associated with this locus to include total soft tissue syndactyly and sternal deformity, and suggest that F syndrome may be another manifestation of the same genetic entity. In mice, ectopic expression of the gene Sonic hedgehog (Shh) in limb buds and lateral plate mesoderm during development causes preaxial polydactyly and sternal defects respectively, suggesting that misregulation of SHH may underlie the unusual combination of abnormalities in this family. A recently proposed candidate gene for 7q36 linked preaxial polydactyly is LMBR1, encoding a novel transmembrane receptor which may be an upstream regulator of SHH.


Keywords: preaxial polydactyly; sternal deformity; F syndrome; chromosome 7q36  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号