首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main objective of this study was to determine whether bone-conducted vibration (BCV) is equally effective in activating both semicircular canal and otolith afferents in the guinea pig or whether there is preferential activation of one of these classes of vestibular afferents. To answer this question a large number (346) of single primary vestibular neurons were recorded extracellularly in anesthetized guinea pigs and were identified by their location in the vestibular nerve and classed as regular or irregular on the basis of the variability of their spontaneous discharge. If a neuron responded to angular acceleration it was classed as a semicircular canal neuron, if it responded to maintained roll or pitch tilts it was classified as an otolith neuron. Each neuron was then tested by BCV stimuli—either clicks, continuous pure tones (200–1,500 Hz) or short tone bursts (500 Hz lasting 7 ms)—delivered by a B-71 clinical bone-conduction oscillator cemented to the guinea pig's skull. All stimulus intensities were referred to that animal's own auditory brainstem response (ABR) threshold to BCV clicks, and the maximum intensity used was within the animal's physiological range and was usually around 70 dB above BCV threshold. In addition two sensitive single axis linear accelerometers cemented to the skull gave absolute values of the stimulus acceleration in the rostro-caudal direction. The criterion for a neuron being classed as activated was an audible, stimulus-locked increase in firing rate (a 10% change was easily detectable) in response to the BCV stimulus. At the stimulus levels used in this study, semicircular canal neurons, both regular and irregular, were insensitive to BCV stimuli and very few responded: only nine of 189 semicircular canal neurons tested (4.7%) showed a detectable increase in firing in response to BCV stimuli up to the maximum 2 V peak-to-peak level we delivered to the B-71 oscillator (which produced a peak-to-peak skull acceleration of around 6–8 g and was usually around 60–70 dB above the animal's own ABR threshold for BCV clicks). Regular otolithic afferents likewise had a poor response; only 14 of 99 tested (14.1%) showed any increase in firing rate up to the maximum BCV stimulus level. However, most irregular otolithic afferents (82.8%) showed a clear increase in firing rate in response to BCV stimuli: of the 58 irregular otolith neurons tested, 48 were activated, with some being activated at very low intensities (only about 10 dB above the animal's ABR threshold to BCV clicks). Most of the activated otolith afferents were in the superior division of the vestibular nerve and were probably utricular afferents. That was confirmed by evidence using juxtacellular injection of neurobiotin near BCV activated neurons to trace their site of origin to the utricular macula. We conclude there is a very clear preference for irregular otolith afferents to be activated selectively by BCV stimuli at low stimulus levels and that BCV stimuli activate some utricular irregular afferent neurons. The BCV generates compressional and shear waves, which travel through the skull and constitute head accelerations, which are sufficient to stimulate the most sensitive otolithic receptor cells.  相似文献   

2.
Mechanoreceptive hair-cells of the vertebrate inner ear have a remarkable sensitivity to displacement, whether excited by sound, whole-body acceleration or substrate-borne vibration. In response to seismic or substrate-borne vibration, thresholds for vestibular afferent fibre activation have been reported in anamniotes (fish and frogs) in the range -120 to -90dB re 1g. In this article, we demonstrate for the first time that the human vestibular system is also extremely sensitive to low-frequency and infrasound vibrations by making use of a new technique for measuring vestibular activation, via the vestibulo-ocular reflex (VOR). We found a highly tuned response to whole-head vibration in the transmastoid plane with a best frequency of about 100Hz. At the best frequency we obtained VOR responses at intensities of less than -70dB re 1g, which was 15dB lower than the threshold of hearing for bone-conducted sound in humans at this frequency. Given the likely synaptic attenuation of the VOR pathway, human receptor sensitivity is probably an order of magnitude lower, thus approaching the seismic sensitivity of the frog ear. These results extend our knowledge of vibration-sensitivity of vestibular afferents but also are remarkable as they indicate that the seismic sensitivity of the human vestibular system exceeds that of the cochlea for low-frequencies.  相似文献   

3.
Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (相似文献   

4.
Recent work has demonstrated that the human vestibular system displays a remarkable sensitivity to low-frequency vibration. To address the origin of this sensitivity we compared the frequency response properties of vestibular reflexes to 10 ms bursts of air-conducted sound and transmastoid vibration, which are thought to be differentially selective for the saccule and utricle, respectively. Measurements were made using two separate central pathways: vestibular evoked myogenic potentials (VEMPs), which are a manifestation of vestibulo-collic projections, and ocular vestibular evoked myogenic potentials (OVEMPs), which are a manifestation of vestibulo-ocular projections. For both response pathways air-conducted sound and vibration stimuli produced the same patterns of quite different tuning. Sound was characterised by a band-pass tuning with best frequency between 400 and 800 Hz whereas vibration showed a low-pass type response with a largest response at 100 Hz. Our results suggest that the tuning is at least in part due to properties of end-organs themselves, while the 100 Hz best frequency may be a specifically utricular feature.  相似文献   

5.
Afferent diversity and the organization of central vestibular pathways   总被引:10,自引:0,他引:10  
This review considers whether the vestibular system includes separate populations of sensory axons innervating individual organs and giving rise to distinct central pathways. There is a variability in the discharge properties of afferents supplying each organ. Discharge regularity provides a marker for this diversity since fibers which differ in this way also differ in many other properties. Postspike recovery of excitability determines the discharge regularity of an afferent and its sensitivity to depolarizing inputs. Sensitivity is small in regularly discharging afferents and large in irregularly discharging afferents. The enhanced sensitivity of irregular fibers explains their larger responses to sensory inputs, to efferent activation, and to externally applied galvanic currents, but not their distinctive response dynamics. Morphophysiological studies show that regular and irregular afferents innervate overlapping regions of the vestibular nuclei. Intracellular recordings of EPSPs reveal that some secondary vestibular neurons receive a restricted input from regular or irregular afferents, but that most such neurons receive a mixed input from both kinds of afferents. Anodal currents delivered to the labyrinth can result in a selective and reversible silencing of irregular afferents. Such a functional ablation can provide estimates of the relative contributions of regular and irregular inputs to a central neuron’s discharge. From such estimates it is concluded that secondary neurons need not resemble their afferent inputs in discharge regularity or response dynamics. Several suggestions are made as to the potentially distinctive contributions made by regular and irregular afferents: (1) Reflecting their response dynamics, regular and irregular afferents could compensate for differences in the dynamic loads of various reflexes or of individual reflexes in different parts of their frequency range; (2) The gating of irregular inputs to secondary VOR neurons could modify the operation of reflexes under varying behavioral circumstances; (3) Two-dimensional sensitivity can arise from the convergence onto secondary neurons of otolith inputs differing in their directional properties and response dynamics; (4) Calyx afferents have relatively low gains when compared with irregular dimorphic afferents. This could serve to expand the stimulus range over which the response of calyx afferents remains linear, while at the same time preserving the other features peculiar to irregular afferents. Among those features are phasic response dynamics and large responses to efferent activation; (5) Because of the convergence of several afferents onto each secondary neuron, information transmission to the latter depends on the gain of individual afferents, but not on their discharge regularity. Received: 22 March 1999 / Accepted: 21 July 1999  相似文献   

6.
Recent studies have demonstrated the frequency selectivity of air-conducted (AC) and bone-conducted (BC) stimuli in eliciting ocular vestibular evoked myogenic potentials (oVEMPs). In this study, frequency tuning of the oVEMP was assessed in patients with superior canal dehiscence (SCD) and compared with responses previously reported for healthy subjects. Six (five unilateral) SCD patients were stimulated using AC sound (50–1,200 Hz) and BC transmastoid vibration (50–1,000 Hz). Stimuli were delivered at two standardized intensities: one the same as previously used for healthy controls and the other at 10 dB above vestibular threshold (a similar relative intensity to that used in controls). For AC stimulation, SCD patients had larger oVEMP amplitudes across all frequencies tested for both stimulus intensities. Normalized tuning curves demonstrated greater high-frequency responses with the stronger stimulus. For BC stimulation, larger oVEMP amplitudes were produced at frequencies at and above 100 Hz using standard intensity stimuli. For the matched intensity above vestibular threshold, enhancement of the oVEMP response was present in SCD patients for 500–800 Hz only. We conclude that SCD causes greater facilitation for AC than BC stimuli. The high-frequency response is likely to originate from the superior (anterior) canal and is consistent with models of inner ear changes occurring in SCD.  相似文献   

7.
We investigated the changes in cervical (cVEMP) and ocular (oVEMP) vestibular evoked myogenic potentials in response to differing stimulus durations. cVEMPs (n = 12 subjects) and oVEMPs (n = 13 subjects) were recorded using air-conducted (AC: 500 Hz) and bone-conducted (BC: 500 Hz) tone burst stimuli with durations varying from 2 to 10 ms. BC stimulation was applied both frontally and to the mastoid. AC cVEMPs showed an increase in amplitude with stimuli up to 6-ms duration associated with a prolonged latency, as previously reported. In contrast, AC oVEMP amplitude decreased with increasing stimulus duration. BC stimuli showed no significant increase in amplitude with increasing stimulus duration for either reflex using either location of stimulation. BC cVEMPS following forehead stimulation showed a significant decrease as duration increased, and BC oVEMPs to mastoid stimulation were largest at 2 ms and decreased thereafter. We conclude that an increase in amplitude with increasing stimulus duration, using 500 Hz stimuli, only occurs for AC cVEMPs. There is no definite benefit in using longer stimuli than 2 ms for BC or oVEMP studies. Shorter stimuli also minimise subject exposure to sound and vibration.  相似文献   

8.
Summary Dynamic characteristics of primary vestibular afferents innervating the horizontal semicircular canal were studied in decerebrate, unanesthetized cats. Activities of individual afferent fibers were recorded intracranially by glass micropipettes. Frequency of sinusoidal rotation was varied from 0.014 Hz to 0.42 Hz, and phase and gain properties were examined.All of the fibers recorded fired spontaneously, and their firing rate ranged from 7 to 128 spikes/sec. Regularity of firing, phase lags, and gains were calculated in individual fibers. There was a tendency that the units with high spontaneous firing rates showed regular firing, larger phase lags, and lower gains than the units with low spontaneous firing rates.The transfer function of the system (firing rate of the primary afferent per angular acceleration of the head) was . A high frequency phase lead component was needed to account for the data obtained, indicating a slight deviation from the relationship predicted by the torsion pendulum model.The present phase properties were compared with those of vestibular nucleus neurons reported previously. It was suggested that a group of vestibular nucleus neurons transmits fairly faithfully the phase properties of primary afferents, and that another group of vestibular nucleus neurons receive additional influences from central structures, exhibiting larger phase lags than primary afferents.  相似文献   

9.
Sound activates not only the cochlea but also the vestibular end organs. Research on this phenomenon led to the discovery of the sound-evoked vestibular myogenic potentials recorded from the sternocleidomastoid muscles (cervical VEMP, or cVEMP). Since the cVEMP offers simplicity and the ability to stimulate each labyrinth separately, its values as a test of human vestibular function are widely recognized. Currently, the cVEMP is interpreted as a test of saccule function based on the assumption that clicks primarily activate the saccule. However, sound activation of vestibular end organs other than the saccule has been reported. To provide the neural basis for interpreting clinical VEMP testing, we employed the broadband clicks used in clinical VEMP testing to examine the sound-evoked responses in a large sample of vestibular afferents in Sprague-Dawley rats. Recordings were made from 924 vestibular afferents from 106 rats: 255 from the anterior canal (AC), 202 from the horizontal canal (HC), 177 from the posterior canal (PC), 207 from the superior vestibular nerve otolith (SO), and 83 from the inferior nerve otolith (IO). Sound sensitivity of each afferent was quantified by computing the cumulative probability of evoking a spike (CPE). We found that clicks activated irregular afferents (normalized coefficient of variation of interspike intervals >0.2) from both the otoliths (81%) and the canals (43%). The order of end organ sound sensitivity was SO = IO > AC > HC > PC. Since the sternocleidomastoid motoneurons receive inputs from both the otoliths and the canals, these results provide evidence of a possible contribution from both of them to the click-evoked cVEMP.  相似文献   

10.
Summary In rats and guinea pigs, primary afferent neurons from the horizontal semicircular canal were divided into two categories, regular and irregular, on the basis of the regularity of their resting activity. Regular neurons tend to have higher average resting rates than irregular neurons and in response to a constant angular acceleration stimulus of 16.7 deg/s2 regular neurons tended to have lower sensitivity and longer time constants than irregular cells. Some irregular neurons are more sensitive to incremental accelerations than to decremental accelerations of the same magnitude, whereas regular neurons tend to show symmetrical sensitivity.In response to sinusoidal angular acceleration stimuli (fixed frequencies) in the range 0.01–1.5 Hz, cells which fired regularly at rest tended to have smaller gain and longer phase lag re acceleration at most frequencies than irregular cells. Transfer functions were obtained for averaged data for regular and irregular neurons separately in both species.In both species there is evidence of systematic variation between neurons within each category, and this systematic variation is obscured by averaging across neurons.  相似文献   

11.
In anesthetized toads, spontaneous activities were recorded from single afferent fibers of three semicircular canals and three otolith organs. Since some efferent fibers ramify within the eighth nerve and innervate two or more vestibular organs, a single branchlet of the eighth nerve was disconnected from its end organ, and was electrically stimulated to activate divergent efferent collaterals leading to other vestibular organs. The stimulation elicited an inhibitory effect on spontaneous activities of about one third of the afferent population, and a facilitatory effect on those of another one third. The remaining one third was unaffected. Whether or not the inhibitory or facilitatory effect was observed in an individual unit seemed to be related to its pattern and its rate of spontaneous activity. Most of the units showing relatively high and regular spontaneous firing were insensitive to the electrical stimulation, and units with a low firing rate and an irregular pattern of activity tended to be affected by the electrical stimulation. The activation of divergent efferent fibers elicited both inhibition and facilitation on the spontaneous afferent activities in all vestibular nerve branchlets, except in the saccular branchlet, where only inhibition was elicited. Electrical stimulation of the central stump of the saccular nerve branchlet, however, could produce both inhibitory and facilitatory effects in other vestibular nerve branchlets.  相似文献   

12.
Whole-body responses evoked by bone-conducted sound, a stimulus known to activate vestibular afferents, were recorded in standing subjects deprived of vision. With the head facing forward, unilateral mastoid vibration (500 Hz, 2 s, 136 dB force level) produced an oblique body sway with a consistent lateral component away from the stimulated ear and an average forward component. The side of stimulation had a powerful influence on the direction but not the magnitude of sway. Individuals' mean response directions were significantly clustered between subjects, as well as within subjects for 12 of 16 subjects when tested on five occasions. Single trial analysis did not reveal any habituation of the response. To investigate whether muscle spindle activation might be responsible for the response, vibration was applied directly over posterior and anterior neck muscles and tendons. This generally produced responses that were smaller and with different direction characteristics than with mastoid vibration. In contrast, stimulation over the temporal fossa produced responses similar in magnitude and direction to mastoid stimulation. When the head was turned in yaw to face in different directions the sway response changed direction by the same amount but with no change in magnitude, suggesting response organization in a craniocentric reference frame. Whole-body sway evoked by 500 Hz vibration delivered over sites close to the ear is thus likely to represent a vestibular-evoked balance response. When compared with sway responses evoked by 500 Hz vibration of the left temporal fossa, responses to 1 mA left cathodal galvanic vestibular stimulation were of similar magnitude, yet significantly different in direction, suggesting differences in the end organ afferents activated by these two stimuli. This may enable investigation of previously inaccessible aspects of vestibular function in intact freely behaving human subjects.  相似文献   

13.
Parallel pathways mediate the rotatory vestibuloocular reflex (VOR). If the VOR undergoes adaptive modification with spectacles that change the magnification of the visual scene, signals in one neural pathway are modified, whereas those in another are not. By recording the responses of vestibular afferents and abducens neurons for vestibular oscillations at frequencies from 0.5 to 50 Hz, we have elucidated how vestibular signals are processed in the modified versus unmodified VOR pathways. For the small stimuli we used (+/- 15 degrees/s), the afferents with the most regular spontaneous discharge fired throughout the cycle of oscillation even at 50 Hz, whereas afferents with more irregular discharge showed phase locking. For all afferents, the firing rate was in phase with stimulus head velocity at low frequencies and showed progressive phase lead as frequency increased. Sensitivity to head velocity increased steadily as a function of frequency. Abducens neurons showed highly regular spontaneous discharge and very little evidence of phase locking. Their sensitivity to head velocity during the VOR was relatively flat across frequencies; firing rate lagged head velocity at low frequencies and shifted to large phase leads as stimulus frequency increased. When afferent responses were provided as inputs to a two-pathway model of the VOR, the output of the model reproduced the responses of abducens neurons if the unmodified and modified VOR pathways had frequency-dependent internal gains and included fixed time delays of 1.5 and 9 ms. The phase shifts predicted by the model provide fingerprints for identifying brain stem neurons that participate in the modified versus unmodified VOR pathways.  相似文献   

14.
The temporal processing in the encoding of head rotation was investigated by comparing the dynamics of vestibular nuclei neurons with those of the regularly and irregularly firing semicircular canal afferents in alert rhesus monkeys. During earth-vertical axis rotations, neurons without eye movement sensitivity differed in their response dynamics from both regularly and irregularly firing semicircular canal afferents. At high frequencies, central responses increased in sensitivity and maintained phase leads of nearly 30° relative to head velocity. These persistent high-frequency phase leads resembled those of irregularly firing (but not regularly firing) semicircular canal afferents. However, at low frequencies, central responses exhibited significantly smaller phase leads than those of irregularly firing semicircular canal afferents, and dynamics resembled more those of the regularly firing afferents. The response dynamics of central non-eye movement cells were significantly different from those of position-vestibular-pause and eye-head neurons (collectively referred to as eye movement cells). In contrast to the persistent phase leads of non-eye movement neurons, all eye movement cells modulated closely in phase with head velocity at all frequencies down to 0.05 Hz during visual suppression tasks. Vertical canal non-eye movement neurons that were insensitive to both translations and static head tilts led head velocity by approximately 5–30° during high-frequency earth-horizontal axis rotations. Unlike the earth-vertical axis responses that led head velocity at low frequencies by as much as 20–40°, vertical canal neurons only slightly led or even lagged behind head velocity during low-frequency earth-horizontal axis rotations. Posterior canal central non-eye movement cells lagged behind head velocity significantly more than anterior canal neurons. These frequency dependencies of central vestibular neurons in comparison with those of the afferents suggest that both low- and high-pass filtering might be necessary to convert primary semicircular canal afferent response dynamics to central neuron ones.  相似文献   

15.
In the present study we have investigated in the awake cat the response dynamics of vestibular nuclei neurons to visual or/and otolith stimulation elicited by vertical linear motion. Of the 53 units tested during sinusoidal motion at 0.05 Hz (9.1 cm/s), 1 (1.9%) was responsive to the otolith input only, 13 (24.5%) were influenced by the visual input only and 23 (43.4%) responded to both modalities. Neurons were excited either during upward or downward animal or visual surround movement. Most units displayed a firing rate modulation very close to motion velocity. All the neurons receiving convergent visual and otolith inputs (0.05 Hz, 9.1 cm/s) exhibited synergistic patterns of response. Motion velocity coding was improved in terms of input-output phase relationship and response sensitivity when visual and otolith signals were combined. Depending on the units, visual-otolith interactions in single neurons could follow a linear or a nonlinear mode of summation. The dynamic characteristics of visual-otolith interactions were examined in the 0.05 Hz-0.50 Hz frequency bandwidth. Visual signals seemed to predominate over otolith signals at low stimulus frequencies (up to 0.25 Hz), while the contrary was found in the higher frequency range of movement (above 0.25 Hz). The effects of visual stabilization (VS: suppression of visual motion cues) was observed in a small sample of units. As a rule, VS induced a reduction in the amplitude of unit response as compared to visual + otolith stimulation, the lower the motion frequency, the more pronounced the attenuation. VS also decreased the amplitude of the otolith-dependent component of response. The possible modes of visual-vestibular interactions in single cells are discussed. The present study supports the hypothesis that visual and vestibular motion cues are weighted according to their internal relevance.  相似文献   

16.
Previous studies have shown that the vestibular short-latency-evoked potential (VsEP) in response to the brief head acceleration stimulus is a compound action potential of neurons innervating the otolith organs. However, due to the lack of direct evidence, it is currently unclear whether the VsEP is primarily generated by the activity of utricular or saccular afferent neurons, or some mixture of the two. Here, we investigated the origin of the VsEP evoked by brief bone-conducted vibration pulses in guinea pigs, using selective destruction of the cochlea, semicircular canals (SCCs), saccule, or utricle, along with neural blockade with tetrodotoxin (TTX) application, and mechanical displacements of the surgically exposed utricular macula. To access each end organ, either a dorsal or a ventral surgical approach was used. TTX application abolished the VsEP, supporting the neurogenic origin of the response. Selective cochlear, SCCs, or saccular destruction had no significant effect on VsEP amplitude, whereas utricular destruction abolished the VsEP completely. Displacement of the utricular membrane changed the VsEP amplitude in a non-monotonic fashion. These results suggest that the VsEP evoked by BCV in guinea pigs represents almost entirely a utricular response. Furthermore, it suggests that displacements of the utricular macula may alter its response to bone-conduction stimuli.  相似文献   

17.
The purpose of this study was to investigate adaptive changes in the activity of vestibular nuclei neurons unilaterally deprived of their primary afferent inputs when influenced by visual motion cues. These neuronal changes might account for the established role that vision plays in the compensation for posturo-kinetic deficits after the loss of vestibular inputs. Neuronal recordings were made in alert, non-paralysed cats that had undergone unilateral vestibular nerve sections. The unit responses collected in both Deiters' nuclei were compared to those previously recorded in intact cats. We analysed the extracellular activity of Deiters' nucleus neurons, as well as the optokinetic reflex (OKR) evoked during sinusoidal translation of a whole-field optokinetic stimulus in the vertical plane. In intact cats, we found the unit firing rate closely correlated with the visual surround translation velocity, and the relationship between the discharge rate and the motion frequency was tuned around an optimal frequency. The maximum firing rate modulation was generally below the 0.25 Hz stimulus frequency; unit responses were weak or even absent above 0.25 Hz. From the 4th day to the end of the 3rd week after ipsilateral deafferentation, a majority of cells was found to display maximum discharge modulation during vertical visual stimulation at 0.50 Hz, and even at 0.75 Hz, indicating that the frequency bandwidth of the visually induced responses of deafferented vestibular nuclei neurons had been extended. Consequently, the frequency-dependent attenuation in the sensitivity of vestibular neurons to visual inputs was much less pronounced. After the first 3 weeks postlesion, the unit response characteristics were very similar to those observed prior to the deafferentation. On the nucleus contralateral to the neurectomy, the maximum modulation of most cells was tuned to the low frequencies of optokinetic stimulation, as also seen prior to the lesion. We found, however, a subgroup of cells displaying well-developed responses above 0.50 Hz. Under all experimental conditions, the neuronal response phase still remained closely correlated with the motion velocity of the vertical sinusoidal visual pattern. We hypothesize that Deiters' neurons deprived of their primary afferents may transiently acquire the ability to code fast head movements on the basis of visual messages, thus compensating, at least partially, for the loss of dynamic vestibular inputs during the early stages of the recovery process. Since the overall vertical OKR gain was not significantly altered within the 0.0125 Hz–1 Hz range of stimulation after the unilateral neurectomy, it can be postulated that the increased sensitivity of deafferented vestibular neurons to visual motion cues was accounted for by plasticity mechanisms operating within the deafferented Deiters' nucleus. The neuroplasticity mechanisms underlying this rapid and temporary increase in neuronal sensitivity are discussed.  相似文献   

18.
Gentamicin is toxic to vestibular hair cells, but its effects on vestibular afferents have not been defined. We treated anesthetized chinchillas with one injection of gentamicin (26.7 mg/ml) into the middle ear and made extracellular recordings from afferents after 5-25 (early) or 90-115 days (late). The relative proportions of regular, intermediate, and irregular afferents did not change after treatment. The spontaneous firing rate of regular afferents was lower (P < 0.001) on the treated side (early: 44.3 +/- 16.3; late: 33.9 +/- 13.2 spikes x s(-1)) than on the untreated side (54.9 +/- 16.8 spikes x s(-1)). Spontaneous rates of irregular and intermediate afferents did not change. The majority of treated afferents did not measurably respond to tilt or rotation (82% in the early group, 76% in the late group). Those that did respond had abnormally low sensitivities (P < 0.001). Treated canal units that responded to rotation had mean sensitivities only 5-7% of the values for untreated canal afferents. Treated otolith afferents had mean sensitivities 23-28% of the values for untreated otolith units. Sensitivity to externally applied galvanic currents was unaffected for all afferents. Intratympanic gentamicin treatment reduced the histological density of all hair cells by 57% (P = 0.04). The density of hair cells with calyx endings was reduced by 99% (P = 0.03), although some remaining hair cells had other features suggestive of type I morphology. Type II hair cell density was not significantly reduced. These findings suggest that a single intratympanic gentamicin injection causes partial damage and loss of vestibular hair cells, particularly type I hair cells or their calyceal afferent endings, does not damage the afferent spike initiation zones, and preserves enough hair cell synaptic activity to drive the spontaneous activity of vestibular afferents.  相似文献   

19.
1. The firing characteristics and projection patterns of secondary vestibular nucleus neurons involved in the vertical vestibuloocular pathways were investigated in alert cats. Single-unit recordings were made in the medial longitudinal fasciculus (MLF) near the trochlear nucleus from axons that were monosynaptically activated after electrical stimulation of the vestibular nerve. In a total of 253 identified secondary neurons, 225 discharged in relation to vertical eye movements; 189 of these increased their firing rate for downward eye movements and 36 for upward movements. The activity of the remaining 28 axons was not related to eye movements when the head was still. 2. Virtually all of the secondary neurons with downward on-direction displayed tonic activity that was primarily related to steady eye position during fixation (DPV neurons). The slope of the relationship between firing rate and vertical eye position ranged from 1.2 to 9.1 (spikes/s)/deg with a mean of 3.2 (spikes/s)/deg. The regularity of firing was quantified by calculating the coefficient of variation (CV) of interspike intervals. A comparison of the CV in the population units indicated that DPV neurons could be classified as either regular or irregular neurons. There was a tendency for regular neurons to have higher firing rates and higher correlation coefficients for the rate-position relationships than irregular neurons. 3. During pitch rotation in the light, all the DPV neurons tested increased their firing rate with upward head rotation. Both the phase and the amplitude of the response indicated that DPV neurons discharged not only in relation to eye position but also in relation to head velocity, suggesting that they received monosynaptic input from the posterior semicircular canal. The gain and phase lag of the response relative to head velocity were measured at 0.5 Hz. The range of the gain was 1.1-5.1 (spikes/s)/(deg/s), and that of the phase lag was 18.3-62.4 degrees. There was a tendency for irregular DPV neurons to have a larger gain and smaller phase lag than regular DPV neurons. 4. Ascending and descending projection pathways were determined for 147 DPV axons. Of these, 69 ascended in the contralateral MLF with respect to their soma (crossed-DPV axons), and 78 in the ipsilateral MLF (uncrossed-DPV axons), as revealed by their monosynaptic activation from the contralateral or ipsilateral vestibular nerve. Stimulation of the caudal MLF at the level of the obex evoked direct responses caused by antidromic activation of descending collaterals in approximately 70% (49/69) of the crossed-DPV axons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Responses of central vestibular neurons to horizontal sinusoidal translation (F:0.25 Hz) were recorded in albino rat. 57.5% of vestibular neurons were responding to this stimulation by a modulation of their firing rate, the mean phase angle of the response, averaged from the whole population being 22±79 deg. lag, relative to the peak of contralateral acceleration. Dynamic characteristics of phase and gain were studied and appeared to be different from previous reports on primary afferents: the gain decreased or was flat with increasing acceleration at one frequency, and the phase lag which was flat in the same conditions increased with increasing frequency. A phase lead of some units has been observed at low frequency (0.1 Hz).Regarding the convergence between otolith and canal inputs on nuclear vestibular neurons, it was shown that the major pattern of convergence is between canal and otolith inputs of same polarity.Supported by the Deutsche Forschungsgemeinschaft This project was supported by the CNRS (ATP No 3626)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号