首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to characterize the uptake of carnitine, the physiological substrate, and the uptake of 3-(2,2,2-trimethylhydrazinium)propionate, a consensus substrate by rat Octn2 and human OCTN2 transporters as well as to characterize drug-mediated inhibition of l-carnitine uptake by the rat and human orthologs overexpressed in CHO-K1 cells. l-carnitine and 3-(2,2,2-trimethylhydrazinium)propionate were found to be a lower affinity substrate for rat Octn2 (KM = 32.66 ± 5.11 μM and 23.62 ± 4.99 μM respectively) than for human OCTN2 (KM = 3.08 ± 0.74 μM and 7.98 ± 0.63 μM). The intrinsic clearance (CLint) value for carnitine was higher for the human than for the rat transporter (22.82 ± 5.57 ml/min*mg vs 4.008 ± 0.675 ml/min*mg). For 3-(2,2,2-trimethylhydrazinium)propionate, in contrast, the CLint value for rat Octn2 was higher than for human OCTN2 (323.9 ± 72.8 ml/min*mg vs 65.11 ± 5.33 ml/min*mg).Furthermore, many pharmacologically important drugs were shown to affect l-carnitine transport by Octn2/OCTN2. The correlation between the IC50 datasets for the rat and human transporter resulted in an r value of 0.47 (p > 0.05). However, the greatest difference was less than seven-fold and 13 of 15 compounds yielded a difference less than 3-fold.Thus, the transporters from these two species showed an overlapping but somewhat different substrate and inhibitor specificity.  相似文献   

2.
The organic cation/carnitine transporter OCTN2 transports carnitine in a sodium-dependent manner, whereas it transports organic cations sodium-independently. To elucidate the functional domain in OCTN2, we constructed chimeric proteins of human OCTN2 (hOCTN2) and mouse OCTN3 (mOCTN3) and introduced mutations at several amino acids conserved among human, rat and mouse OCTN2. We found that transmembrane domains (TMD) 1-7 are responsible for organic cation transport and for sodium dependence in carnitine transport. Within TMD1-7, Q180 and Q207 of hOCTN2 are the critical amino acids for the sodium dependence, and double mutation of Q180 and Q207 resulted in minimal change in transport activity when sodium was removed from the uptake medium. We propose that sodium-dependent affinity for carnitine is dependent on sodium recognition by these critical amino acids in hOCTN2, whereas carnitine transport by OCTN2 requires functional linkage between TMD1-7 and TMD11.  相似文献   

3.
Introduction: Transporters in the plasma membrane have been exploited successfully for the delivery of drugs in the form of prodrugs and nanoparticles. Organic cation/carnitine transporter 2 (OCTN2, SLC22A5) has emerged as a viable target for drug delivery. OCTN2 is a Na+-dependent high-affinity transporter for L-carnitine and a Na+-independent transporter for organic cations. OCTN2 is expressed in the blood-brain barrier, heart, liver, kidney, intestinal tract and placenta and plays an essential role in L-carnitine homeostasis in the body.

Areas covered: In recent years, several studies have been reported in the literature describing the utility of OCTN2 to enhance the delivery of drugs, prodrugs and nanoparticles. Here we summarize the salient features of OCTN2 in terms of its role in the cellular uptake of its physiological substrate L-carnitine in physiological and pathological context; the structural requirements for recognition and the recent advances in OCTN2-targeted drug delivery systems, including prodrugs and nanoparticles, are discussed.

Expert opinion: This transporter has great potential to be utilized as a target for drug delivery to improve oral absorption of drugs in the intestinal tract. It also has potential to facilitate the transfer of drugs across the biological barriers such as the blood-brain barrier, blood-retinal barrier, and maternal-fetal barrier.  相似文献   


4.
This study was designed to clarify the pharmacological role of carnitine/organic cation transporter (Octn) family members in mouse heart. Immunohistochemical analysis revealed that Octn1 was exclusively expressed on endothelial cells in blood vessels. Octn2 was detected on the plasma membrane of cardiac muscle cells by immunoelectron microscopy. Octn3 was not detected in the heart. Integration plot analysis showed that coadministration of unlabeled L-carnitine reduced distribution of L-[3H]carnitine to the heart. L-[3H]Carnitine uptake in heart slices was reduced by carnitine analogs and various Octn2 substrates. L-[3H]Carnitine uptake by heart slices from juvenile visceral steatosis (jvs) mice, which have a hereditary octn2 gene deficiency, was negligible. Distribution of [3H]quinidine, another Octn2 substrate, to the heart was not reduced by L-carnitine, and [3H]quinidine uptake in heart slices was Na(-)-independent and inhibited by cationic drugs, but not carnitine analogs. [3H]Quinidine uptake by heart slices from jvs mice was similar to that of wild-type mice. These results demonstrate that OCTN2 is functionally expressed on the plasma membrane of muscle cells and is involved in distribution of carnitine to the heart. Some mechanism(s) other than OCTN2 is involved in the distribution of quinidine to the heart.  相似文献   

5.
Systemic carnitine deficiency (SCD) is a rare autosomal recessive disease resulting from defects in the OCTN2 (SLC22A5) gene, which encodes the high-affinity plasma membrane carnitine transporter. Although OCTN2 is fairly well studied in its relationship with SCD, little is known about the carrier frequency of disease-causing alleles of OCTN2, or of more common functional polymorphisms in this gene. To address these issues, we screened for genetic variants in the OCTN2 coding region by direct sequencing of the exons and flanking intronic region of OCTN2 in a large sample (n = 276) of ethnically diverse subjects. In addition, we established lymphoblastoid cell lines from subjects homozygous for either allele of the previously identified promoter region variant, -207G>C. We found eight amino acid sequence variants of OCTN2, of which three (Phe17Leu, Leu144Phe, and Pro549Ser) were polymorphic in at least one ethnic group. When assayed for functional activity by expression in human embryonic kidney 293 cells, using as probes both the endogenous substrate (l-carnitine) and the organic cation tetraethylammonium, three variants showed functional differences from the reference OCTN2 (Phe17Leu, Tyr449Asp, Val481Phe; p < 0.05). Further studies of the Phe17Leu polymorphism showed a reduced V(max) for l-carnitine transport to approximately 50% of the reference OCTN2. Confocal microscopy studies using an OCTN2-GFP fusion protein showed that Phe17Leu had distinct subcellular localization from the reference OCTN2, with diffuse cytoplasmic retention of Phe17Leu, in contrast to reference OCTN2, which localized specifically to the plasma membrane. Lymphoblasts from subjects homozygous for the -207G allele showed increased l-carnitine transport compared with the -207C/C homozygotes (p < 0.05). This study suggests that although loss-of-function mutations in OCTN2 are likely to be rare, common variants of OCTN2 found in healthy populations may contribute to variation in the disposition of carnitine and some clinically used drugs.  相似文献   

6.
OCTN2 is an Na(+)-dependent transporter for carnitine, which is essential for fatty acid metabolism, and its functional defect leads to fatal systemic carnitine deficiency (SCD). It also transports the organic cation tetraethylammonium (TEA) in an Na(+)-independent manner. Here, we studied the multifunctionality of OCTN2, by examining the transport characteristics in cells transfected with mouse OCTN2 and in juvenile visceral steatosis (jvs) mice that exhibit a SCD phenotype owing to mutation of the OCTN2 gene. The physiological significance of OCTN2 as an organic cation transporter was confirmed by using jvs mice. The embryonic fibroblasts from jvs mice exhibited significantly decreased transport of [(14)C]TEA. Pharmacokinetic analysis of [(14)C]TEA disposition demonstrated that jvs mice showed decreased tissue distribution and renal secretory clearance. In transport experiments using OCTN2-expressing cells, TEA and carnitine showed mutual trans-stimulation effects in their transport, implying a carnitine/TEA exchange mechanism. In addition, Na(+) affected the affinity of carnitine for OCTN2, whereas Na(+) is unlikely to be involved in TEA transport. This is the first molecular and physiological demonstration of the operation of an organic cation transporter in renal apical membrane. The results are consistent with the physiological coupling of carnitine reabsorption with the secretion of organic cations.  相似文献   

7.
It has been reported that organic cation/carnitine transporter 1 (OCTN1) is associated with rheumatoid arthritis and Crohn's disease. Additionally, we reported that OCTN1 is expressed in hematopoietic cells, and is associated with proliferation and differentiation of erythroid cells. However, physiological role of OCTN1 is still unclear. Ergothioneine, an anti-oxidant, was recently reported to be a good substrate of human OCTN1. However, the transport characteristics of ergothioneine in rat remains to be clarified. The present study, is to further investigate the role of rat Octn1 on transport of ergothioneine in rat Octn1 transfected cells and natively expressing cell line PC12 derived from rat adrenal pheochromocytoma. [(3)H]Ergothioneine uptake by rat Octn1 stably transfected HEK293 cells was saturable, sodium dependent with 1 : 1 stoichiometry of ergothioneine, and pH dependent. Since ergothioneine was reported to presumably play a protective role against oxidative stress-induced apoptosis in PC12 cells, its transport in this cell line was investigated. The expression of rat Octn1 and a saturable and Na(+)-dependent transport of ergothioneine were observed in PC12 cells, suggesting that ergothioneine transport in this cell line may be mediated by rat Octn1. These findings suggested that rat Octn1 may act as a survival factor by taking up ergothioneine to suppress oxidative stress in this cell line. In conclusion, functional characteristics of ergothioneine transport by rat Octn1 is similar to that of human OCTN1 and it is suggested that rat Octn1 is important by transporting anti-oxidant ergothioneine in PC12 cells, though its role in vivo is to be investigated.  相似文献   

8.
A part of the organic cation transporter families (OCT3, OCTN1, and OCTN2) has recently been identified to physically interact with PDZ (PSD95, Dlg, and ZO1) domain-containing proteins, although the physiological relevance of such interaction has not yet been fully examined. Here we have examined the stimulatory effect of PDZK2 [also named NaPi-Cap2 and intestinal and kidney-enriched PDZ protein (IKEPP)] on those cation transporters. In HEK293 cells, coexpression with PDZK2 increased the uptake of carnitine by OCTN2 with minimal effect on its substrate recognition specificity, but not for transport activity of OCT3 or OCTN1. The stimulatory effect of PDZK2 on OCTN2 was compatible with an approximately 2 times increase in transport capacity and can be accounted for by the increase in cell surface expression of OCTN2. Coexpression of PDZK2 did not affect carnitine transport activity of OCTN2 with deletion of the last four amino acids, which were found to be important for the interaction, suggesting involvement of physical interaction of the two proteins in the increase of cell surface expression of OCTN2. In mouse kidney, colocalization of PDZK2 and OCTN2 occurred predominantly in the region that was close to, but not the same as, the surface of apical membranes where OCTN2 alone was observed, suggesting the existence of OCTN2 in the subapical compartment that interacts with PDZK2. The present data have thus proposed an "intracellular pool" for OCTN2 that may be relevant to the stabilization of cell surface expression of OCTN2, thereby increasing transport activity for carnitine.  相似文献   

9.
Organic anion transporter (Slc22a) family members as mediators of toxicity   总被引:12,自引:0,他引:12  
Exposure of the body to toxic organic anions is unavoidable and occurs from both intentional and unintentional sources. Many hormones, neurotransmitters, and waste products of cellular metabolism, or their metabolites, are organic anions. The same is true for a wide variety of medications, herbicides, pesticides, plant and animal toxins, and industrial chemicals and solvents. Rapid and efficient elimination of these substances is often the body's best defense for limiting both systemic exposure and the duration of their pharmacological or toxicological effects. For organic anions, active transepithelial transport across the renal proximal tubule followed by elimination via the urine is a major pathway in this detoxification process. Accordingly, a large number of organic anion transport proteins belonging to several different gene families have been identified and found to be expressed in the proximal nephron. The function of these transporters, in combination with the high volume of renal blood flow, predisposes the kidney to increased toxic susceptibility. Understanding how the kidney mediates the transport of organic anions is integral to achieving desired therapeutic outcomes in response to drug interactions and chemical exposures, to understanding the progression of some disease states, and to predicting the influence of genetic variation upon these processes. This review will focus on the organic anion transporter (OAT) family and discuss the known members, their mechanisms of action, subcellular localization, and current evidence implicating their function as a determinant of the toxicity of certain endogenous and xenobiotic agents.  相似文献   

10.
Carnitine/organic cation transporter 2 (OCTN2) recognizes various cationic compounds as substrates in vitro, but information on its pharmacokinetic role in vivo is quite limited. This paper demonstrates altered tissue distribution of the OCTN2 substrate pyrilamine in juvenile visceral steatosis (jvs) mice, which have a hereditary defect of the octn2 gene. At 30 min after intravenous injection of pyrilamine, the tissue‐to‐plasma concentration ratio (Kp) in the heart and pancreas was higher, whereas the Kp in kidney and testis was lower in jvs mice compared with wild‐type mice. Pyrilamine transport studies in isolated heart slices confirmed higher accumulation, together with lower efflux, of pyrilamine in the heart of jvs mice. The higher accumulation in heart slices of jvs mice was abolished by lowering the temperature, by increasing the substrate concentration, and in the presence of other H1 antagonists or another OCTN2 substrate, carnitine, suggesting that OCTN2 extrudes pyrilamine from heart tissue. On the other hand, the lower distribution to the kidney of jvs mice was probably due to down‐regulation of a basolateral transporter coupled with OCTN2, because, in jvs mice, (i) the Kp of pyrilamine in kidney assessed immediately after intravenous injection (~1 min) was also lower, (ii) the urinary excretion of pyrilamine was lower, and (iii) the uptake of pyrilamine in kidney slices was lower. The renal uptake of pyrilamine was saturable (Km~236 µM ) and was strongly inhibited by cyproheptadine, astemizole, ebastine and terfenadine. The present study thus indicates that genetic deficiency of octn2 alters pyrilamine disposition tissue‐dependently. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The aim of this study was to investigate the involvement of the peptide transporter for absorption of levofloxacin in Caco-2 cells. To evaluate the activity of apical and basolateral peptide transport, we first performed pharmacokinetic analysis of transcellular transport of glycylsarcosine (Gly-Sar) in cell monolayers grown on porous membrane filters. Transcellular transport of Gly-Sar at the medium pH 6 was greater in the apical-to-basolateral direction than in the opposite direction. Influx clearance of Gly-Sar at the apical membrane was much greater than basolateral influx and efflux clearance, indicating that the apical peptide transporter plays an important role in directional transcellular transport of the dipeptide across Caco-2 cell monolayers. We then evaluated the effect of various compounds on the uptake of Gly-Sar and levofloxacin at the apical membrane of Caco-2 cells. The apical uptake of [3H]Gly-Sar was significantly inhibited by Ala-Ala, Gly-Sar, and also levofloxacin, whereas that of [14C]levofloxacin was not inhibited by Ala-Ala and Gly-Sar. On the other hand, the apical uptake of [14C]levofloxacin was inhibited by nicotine, enalapril, fexofenadine, and L-carnitine. These findings indicated that the apical uptake transporter of levofloxacin is distinct from the peptide transporter in Caco-2 cells.  相似文献   

12.
The second messenger, cGMP, mediates a host of cellular responses to various stimuli, resulting in the regulation of many critical physiologic functions. The existence of specific cGMP transporters on the plasma membrane that participate in the regulation of cGMP levels has been suggested in a large number of studies. In this study, we identified a novel plasma membrane transporter for cGMP. In particular, we showed that hOAT2 (SLC22A7), a member of the solute carrier (SLC) superfamily, was a facilitative transporter for cGMP and other guanine nucleotides. hOAT2, which is ubiquitously expressed at high levels in many cell types, was previously thought to primarily transport organic anions. Among purine and pyrimidine nucleobases, nucleosides, and nucleotides, hOAT2 showed the greatest preference for cGMP, which transported cGMP with a K(m) value of 88 +/- 11 muM and exhibited between 50- and 100-fold enhanced uptake over control cells. Our data revealed that hOAT2 is a bidirectional facilitative transporter that can control both intracellular and extracellular levels of cGMP. In addition, we observed that a common alternatively spliced variant of hOAT2 demonstrated a complete loss of transport function as a result of a low expression level on the plasma membrane. We conclude that hOAT2 is a highly efficient, facilitative transporter of cGMP and may be involved in cGMP signaling in many tissues. Our study suggests that hOAT2 represents a potential new drug target for regulating cGMP levels.  相似文献   

13.
The aim of this investigation was to determine if the human proton-coupled amino-acid transporter 1 (hPAT1 or SLC36A1) is responsible for the intestinal uptake of the orally-administered antiepileptic agent 4-amino-5-hexanoic acid (vigabatrin). The Caco-2 cell line was used as a model of the human small intestinal epithelium. Competition experiments demonstrate that [3H]GABA uptake across the apical membrane was inhibited by vigabatrin and the GABA analogues trans-4-aminocrotonic acid (TACA) and guvacine, whereas 1-(aminomethyl)cyclohexaneacetic acid (gabapentin) had no affect. Experiments with 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)-loaded Caco-2 cells demonstrate that apical exposure to vigabatrin and TACA induce comparable levels of intracellular acidification (due to H+/amino-acid symport) to that generated by GABA, suggesting that they are substrates for a H+ -coupled absorptive transporter such as hPAT1. In hPAT1 and mPAT1-expressing Xenopus laevis oocytes [3H]GABA uptake was inhibited by vigabatrin, TACA and guvacine, whereas gabapentin failed to inhibit [3H]GABA uptake. In Na+ -free conditions, vigabatrin and TACA evoked similar current responses (due to H+/amino-acid symport) in hPAT1-expressing oocytes under voltage-clamp conditions to that induced by GABA (whereas no current was observed in water-injected oocytes) consistent with the ability of these GABA analogues to inhibit [3H]GABA uptake. This study demonstrates that hPAT1 is the carrier responsible for the uptake of vigabatrin across the brush-border membrane of the small intestine and emphasises the therapeutic potential of hPAT1 as a delivery route for orally administered, clinically significant GABA-related compounds.  相似文献   

14.
Cisplatin is an effective anticancer drug, but has its severe adverse effects, especially nephrotoxicity. The molecular mechanism of cisplatin-induced nephrotoxicity is still not clear. In the present study, we examined the role of rat (r)OCT2, an organic cation transporter predominantly expressed in the kidney, in the tubular toxicity of cisplatin. Using HEK293 cells stably expressing rOCT2 (HEK-rOCT2), we evaluated the cisplatin-induced release of lactate dehydrogenase and the uptake of cisplatin. The release of lactate dehydrogenase and the accumulation of platinum were greater in HEK-rOCT2 cells treated with cisplatin than in mock-transfected cells. Moreover, cimetidine and corticosterone, OCT2 inhibitors, inhibited the cytotoxicity and the transport of cisplatin in HEK-rOCT2 cells. Pharmacokinetics of cisplatin was investigated in male and female rats because the renal expression level of rOCT2 was higher in male than female rats. The renal uptake clearance of cisplatin was greater in male than female rats, while the hepatic uptake clearance was similar between the sexes. In addition, glomerular filtration rate and liver function were unchanged, but N-acetyl-β-d-glucosaminidase activity in the bladder urine and the urine volume were markedly increased 2 days after the administration of 2 mg/kg of cisplatin in male rats. Moreover, cisplatin did not induce the elevation of urinary N-acetyl-β-d-glucosaminidase activity in the castrated male rats whose renal rOCT2 level was lower than that of the sham-operated rats. In conclusion, the present results indicated that renal rOCT2 expression was the major determinant of cisplatin-induced tubular toxicity.  相似文献   

15.
16.
17.
1. Transintestinal absorption of gamma-aminobutyric acid (GABA) via a pH-dependent mechanism is demonstrated in the model human intestinal epithelial cell line Caco-2. 2. Experiments with BCECF [2',7',-bis(2-carboxyethyl)-5(6)- carboxyfluorescein]-loaded Caco-2 cells demonstrate that GABA transport across the apical membrane is coupled to proton flow into the cell. 3. Short-circuit current (ISC) measurements using Caco-2 cell monolayers under voltage-clamped conditions demonstrate that pH-dependent GABA transport is a rheogenic process even in the absence of extracellular Na+, consistent with H+/GABA symport. 4. A range of GABA analogues were tested for their abilities to: (a) inhibit pH-dependent [3H]GABA uptake across the apical membrane; (b) stimulate H+ flow across the apical surface of BCECF-loaded Caco-2 cell monolayers; (c) increase inward ISC across voltage-clamped Caco-2 cell monolayers. 5. Nipecotic acid, isonipecotic acid, D,L-beta-aminobutyric acid, and 3-amino-1-propanesulphonic acid each caused a marked acidification of intracellular pH and an increase in ISC when superfused at the apical surface of Caco-2 cell monolayers. In contrast L-alpha-amino-n-butyric acid failed to induce proton flow or ISC. The ability of these compounds to induce proton or current flow across the apical surface of this intestinal epithelium was closely related to the relative inhibitory effects on [3H]GABA uptake. 6. These observations demonstrate H+/GABA symport and suggest that this transport mechanism may be accessible as a route for oral absorption of therapeutically-useful GABA analogues.  相似文献   

18.
The variety of physiologic and biologic functions of zinc is fascinating and could be applicable to medicine. Our previous studies demonstrated that the absorption of zinc after oral administration to rats is dose-dependent. In order to clarify the detailed mechanism of the dose-dependent in vivo absorption, the transport of zinc across intestinal epithelial cells was investigated using Caco-2 monolayers and isolated rat intestinal membranes. The permeation of zinc across Caco-2 monolayers is concentration-dependent, and both saturable and nonsaturable components are involved. The Michaelis constant and maximum transport rate for saturable transport are 11.7 μM and 31.8 pmol min(-1) cm(-2), respectively; the permeability coefficient for nonsaturable trasnport is 2.37×10(-6) cm s(-1). These parameters for permeation across membranes isolated from duodenum, ileum, and jejunum of rats are similar with those of Caco-2 cells. The comparison of the parameters for permeation across isolated intestinal membrane suggests that the major site of intestinal zinc absorption in rats is the duodenum. The maximum rate of zinc transport across the isolated intestinal membrane (V(max)) shows no correlation with mRNA expression of ZIP4, ZIP5 or ZnT1 in rats, but shows an inverse correlation with that of metallothioneins (MTs). This finding may be partly explained by the buffering role of metallothionein in intestinal absorption. The saturable transport of zinc is not simply determined only by the influx transporter, ZIP4, since three influx and efflux transporters are involved in the transport of zinc.  相似文献   

19.
Multispecific organic anion transporters play an important role in the excretion and the elimination of a wide variety of endogenous and exogenous substrates. To date, five murine OAT homologs such as mouse organic anion transporters 1-3, 5, and 6 (mOAT1-3, 5 and 6) have been isolated and well characterized. With the exception of mOAT6, other mOAT isoforms are predominantly expressed in the kidney. The aim of this study was to examine whether mOAT2/3, as well as hOAT2/3, transports the diuretic bumetanide using a Xenopus laevis oocyte expression system. When expressed in Xenopus oocytes, mOAT2/3 mediated the high affinity transport of bumetanide. The apparent K(m) values for the uptake of bumetanide via mOAT2 and mOAT3 were 9.12 +/- 2.42 microM and 1.01 +/- 0.27 microM, respectively. Immunohistochemical analysis revealed that mOAT2 is expressed on the luminal membrane site of the proximal tubule. Our results indicate that mOAT2 and 3, as well as human homologs, are molecules for the transport of bumetanide on the luminal membranes of kidney proximal tubules.  相似文献   

20.

Background:

Solute carriers (SLCs), in particular organic cation transporters (OCTs), have been implicated in the cellular uptake of platinum-containing anticancer compounds. The activity of these carriers may determine the pharmacokinetics and the severity of side effects, including neuro- and nephrotoxicity of platinum-based chemotherapy. As decreased drug accumulation is a key mechanism of platinum resistance, SLCs may also contribute to the development of resistance. Here, we define the role of hSLC22A2 (OCT2) in the cellular uptake of platinum compounds.

Experimental approach:

Human embryonic kidney (HEK) 293 cells stably expressing the hSLC22A2 gene (HEK293/hSLC22A2) were used in platinum accumulation studies. Following a 2 h exposure to various platinum compounds (100 µM), intracellular platinum levels were determined by flameless atomic absorption spectrometry.

Key results:

HEK293/hSLC22A2 cells, compared with HEK293/Neo control cells, displayed significant increases in oxaliplatin (28.6-fold), Pt[DACH]Cl2 (20.6-fold), ormaplatin (8.1-fold), tetraplatin (4.5-fold), transplatin (3.7-fold) and cisplatin (1.3-fold), but not carboplatin. SLC22A2-mediated transport could be inhibited by 1-methyl-4-phenylpyridinium. Furthermore, hSLC22A2-mediated oxaliplatin and cisplatin accumulation was time- and concentration-dependent, but non-saturable. Expression of hSLC22A2 in HEK293 cells resulted in enhanced sensitivity to oxaliplatin (12-fold) and cisplatin (1.8-fold). Although, hSLC22A2 mRNA expression was frequently found in ovarian cancer cell lines, its expression in clinical ovarian cancer specimens (n= 80) was low and did not correlate with the treatment outcome of platinum-based regimens.

Conclusions and implications:

The hSLC22A2 drug transporter is a critical determinant in the uptake and cytotoxicity of various platinum compounds, particularly oxaliplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号