首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The compound IBI-P-01028, or R,S-cis-6-(6'-carboxyhexyl)-7-trans-n-hexyl-1,3-diazaspiro-[4-4]-nona n-2,4- dione, is a new cytoprotective agent under development. To study the metabolites of this compound in laboratory animals, we administered it to dogs and rats, and analyzed extracts from dog and rat urine, and from dog plasma, by GC-MS. The metabolic profiles were different in the rat and dog. In the dog (plasma and urine), one metabolite was found, and in the rat urine two other metabolites were found. The unmetabolized drug was found only in the dog plasma and urine.  相似文献   

2.
The metabolism of 14C-loprazolam has been studied in rat, dog and man in vivo. In rat, the major metabolic pathways were hydroxylation on the benzodiazepine ring, and reduction and acetylation of the nitro group. Both metabolites were identified by co-chromatography with standards, and were present in urine and bile conjugated with glucuronic acid. In both dog and human urine and bile significant amounts of the piperazine-N-oxide were found. This N-oxide was identified by co-chromatography with authentic compound and by mass spectroscopy. Both loprazolam and the dog biliary metabolites were hydrolysed spontaneously to polar material. Neither treatment with beta-glucuronidase nor incubation with gut microflora had any further effect. Only polar metabolites were found in dog and human faeces. The principal non-polar material found in rat plasma was the diazepine-hydroxy compound, and little loprazolam was present. Significant levels of loprazolam and lower levels of an unidentified metabolite were found in ether extracts of dog and human plasma. Both the piperazine-N-oxide and loprazolam were found in similar quantities in chloroform extracts of human plasma, and at two hours after dosage, the N-oxide and loprazolam accounted for greater than 90% of the radioactivity present in the plasma.  相似文献   

3.
Omapatrilat, a novel vasopeptidase inhibitor, is under development for the treatment of hypertension and congestive heart failure. This study describes the comparative biotransformation of radiolabeled [(14)C]- and stable-labeled [(13)C(2)]omapatrilat after administration of single oral doses to rats, dogs, and humans. The metabolites were identified by a combination of methods including reduction, hydrolysis, and comparison of high performance liquid chromatography retention times with those of the synthetic standards. Urinary metabolites were further characterized by liquid chromatography tandem mass spectrometry analysis. Prominent metabolites identified in human plasma, which were also present in rat and dog plasma, were S-methyl omapatrilat and S-2-thiomethyl-3-phenylpropionic acid. Omapatrilat accounted for only a small portion of the extractable radioactivity in plasma in all three species. A portion of the plasma radioactivity was unextractable in all three species (27-53%). The majority of unextractable radioactivity in plasma was characterized after dithiothreitol reduction to be omapatrilat and (S)-2-thio-3-phenylpropionic acid, both apparently bound to plasma proteins by reversible disulfide bonds. The major human urinary metabolites were the amine hydrolysis product, diasteromeric sulfoxide of (S)-2-thiomethyl-3-phenylpropionic acid, acyl glucuronide of S-methyl omapatrilat, and S-methyl omapatrilat. The minor metabolites were acyl glucuronide of (S)-2-thiomethyl-3-phenylpropionic acid, L-cysteine mixed disulfide of omapatrilat, diastereomers of S-methyl sulfoxide of omapatrilat, and S-methyl omapatrilat ring sulfoxide. The metabolic profiles of dog and human urine were qualitatively similar whereas rat urine showed only metabolites arising from hydrolysis of omapatrilat. Unchanged omapatrilat was not found in rat, dog, or human urine samples indicating extensive metabolism in vivo.  相似文献   

4.
The excretion and metabolism of (+/-) [6-(3,4-dihydro-3-oxo-1,4[2H]-benzoxazine-yl)-2,3,4,5-tetrahydro-5-methylpyridazin-3-one] (bemoradan; RWJ-22867) have been investigated in male Long-Evans rats and female beagle dogs. Radiolabeled [14C] bemoradan was administered to rats as a singkle 1 mg/kg suspension dose while the dogs received 0.1 mg/kg suspension dose. Plasma (0-24 h; rat and dog), urine (0-72 h; rat and dog) and fecal (0-72 h; rat and dog) samples were collected and analyzed. The terminal half-life of the total radioactivity for rats from plasma was estimate to be 4.3 +/- 0.1 h while for dogs it was 7.5 +/- 1.3 h. Recoveries of total radioactivity in urine and feces for rats were 49.1 +/- 2.4% and 51.1 +/- 4.9% of th dose, respectively. Recoveries of total radioactivity in urine and feces for dogs were 56.2 +/- 12.0% and 42.7 V 9.9% of the dose, respectively. Bemoradan and a total of nine metabolites were isolated and tentatively identified in rat and dog plasma, urine, and fecal extracts. Unchanged bemoradan accounted for approimately < 2% of the dose in rat urine and 20% in rat feces. Unchanged bemoradan accounted for approximately 5% of the dose in urine and 16% in feces in dog. Six proposed pathways were used to describe the metabolites found in rats and dogs: pyridazinyl oxidations, methyl hydroxylation, hydration, N-oxidation, dehydration and phase II conjugations.  相似文献   

5.
1. The comparative metabolism of fenfluramine was investigated in mouse, rat, dog and man following a single oral dose of 14C-(+/-)-fenfluramine hydrochloride (1 mg/kg), and also in rat after eight consecutive 12-h subcutaneous doses (24 mg/kg). 2. Main route of excretion of radioactivity in all species and at all doses was into urine (> 80%), with only minor amounts of radioactivity found in faeces. 3. From all species examined a total of 11 metabolites were observed in urine and plasma by t.l.c. and h.p.l.c. analysis and no metabolite was present in the plasma which was not present in urine. 4. All species dealkylate fenfluramine to the active metabolite norfenfluramine, to a relative greater or lesser extent, with plasma metabolic ratios (norfenfluramine/fenfluramine) showing inter-animal variation (rat > dog > mouse = man). 5. These differences are due to the efficient deamination of both compounds to polar inactive metabolites in man, with less dealkylation and lower plasma levels of norfenfluramine compared with the other species studied. 6. In conclusion, major species differences in the metabolism of (+/-)-fenfluramine, both qualitative and quantitative were observed, and no one species had a similar metabolic profile to that found in man.  相似文献   

6.
The in vivo biotransformation of metoprolol tartrate in the thoroughbred racehorse was studied after administration of a single oral dose. Metoprolol and its basic and bifunctional phase I metabolites were isolated from urine and plasma using mixed mode solid phase extraction (SPE) cartridges. The isolates were derivatised as trimethylsilyl ethers and analysed by capillary column gas chromatography--positive ion electron ionisation and ammonia chemical ionisation mass spectrometry. Metabolism was primarily confined to the oxidative transformations of the p-(2-methoxy)ethyl substituent. Metoprolol and five phase I metabolites were detected in horse urine. In common with man, rat and dog, the zwitterionic compound (+/-)-4-(2-hydroxy-3-isopropylaminopropoxy)-phenylacetic acid (H117/04), was the principle metabolite in the horse. This compound was readily isolated from both plasma and urine samples by SPE and, in addition, an unusual on-column esterification of the carboxylic acid moiety by alcohols was observed. Metoprolol and the major aliphatic acid metabolite were detected for about 10 and 40 h, respectively in unhydrolysed urine. After enzymatic hydrolysis, the detection period increased to 15 and 60 h, respectively indicating some phase II metabolism of metoprolol and its metabolites in the horse.  相似文献   

7.
The disposition and metabolism of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), a new agent with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties, was studied in rats, dogs, and rhesus monkeys. [3H]benzene-MK-801 was administered orally at a dose of 1 mg/kg. MK-801 was measured in plasma by GLC using a nitrogen detector; the overall sensitivity of the method was 3 ng/ml. Radioactivity was excreted mainly in urine of dogs and monkeys but fecal excretion in rats was also extensive. The apparent plasma t1/2 of MK-801 in the rat and dog was approximately 1 hr. Maximal plasma levels of MK-801 in the rat, dog, and monkey were 46 (0.5 hr), 16 (0.25 hr), and 10 (2 hr) ng/ml, respectively. Radioactivity was extensively excreted in rat bile and was widely distributed among various tissues. Major metabolites of the drug in rat and dog urine were the 2- and 8-hydroxy analogs (rat) and the N-hydroxy derivative (dog).  相似文献   

8.
The urinary metabolites of tracazolate [4-n-butylamino-1-ethyl-6-methyl-1H-pyrazolo (3,4-b) pyridine-5-carboxylic acid ethyl ester], an anxiolytic agent, obtained from rats and dogs dosed with 14C-labeled tracazolate have been characterized. No unchanged tracazolate was detected. Fifteen metabolites were identified in dog urine, seven of which had not previously been found in rat blood and tissue. Eleven of these metabolites were also found in rat urine. The metabolites were formed by deesterification to the 5-carboxylic acid; N-deethylation of the pyrazole ring: oxidation at the gamma-position of the n-butylamino side chain; oxidation of the terminal carbon of this side chain; loss of the n-butylamino group; and hydroxylation of the 6-methyl group followed by condensation with the 5-carboxylic acid to form gamma-lactones. The major metabolites in dog urine were the desethyl-desbutyl-deesterified compound, the desbutyl-deesterified compound, and the desbutyl-desethyl-lactone. Loss of the butyl side chain and, also, lactone formation, appeared to occur to a lesser extent in the rat than in the dog.  相似文献   

9.
A study of the disposition and metabolism of premazepam, 3,7-dihydro-5-phenyl-6,7-dimethyl-pyrrole[3,4-e][1,4]diazepin-2-(1 H) -one, a new anti-anxiety agent, was carried out in rats and dogs given the 14C-labeled compound iv and po. In both species, after oral administration, both total radioactivity and the unchanged drug are rapidly absorbed and peak plasma levels are reached within 0.5-1 hr in rats and 2 hr in dogs. Unchanged premazepam is cleared faster in rats than in dogs, with half-lives about 1.7 and 2.7 hr, respectively. Following oral dosage, two-thirds of the dose is eliminated in urine. From the urine of the two species, eight metabolites and unchanged premazepam were identified. N-7-Desmethyl premazepam (l) is the major metabolite in rat urine (18% of the dose) but is not present in dog urine, while 6-hydroxymethyl premazepam is the most abundant metabolite in dog urine (25% of the dose) but is absent in rat urine. Metabolites III and IV from rat and dog urine are stable derivatives of the intermediate formed by the cleavage of the imine bond of the diazepine ring. A successive hydrolysis of the amidic bond of the same intermediate originates metabolites V-VIII, which are quantitatively minor ones.  相似文献   

10.
The fate of (+-)-7-(3-amino-1-pyrrolidinyl)-6-fluoro-1-(2,4-difluorophenyl-1,4- dihyro-4-oxo-1,8-naphthyridine-3-carboxylic acid p-toluenesulfonate hydrate (T-3262) was studied using T-3262 and 14C-T-3262 in various animals. 1. Metabolites in serum and urine were assayed for mouse, rat, rabbit, dog and monkey following oral administration of T-3262. In serum, besides unchanged T-3262 base, T-3262A (N-acetylated) was detected in rat, rabbit and monkey; T-3262B (deamino-hydroxylated) was detected in monkey. In urine, unchanged T-3262 base was excreted mainly. But a few of metabolites (T-3262A, T-3262B, T-3262 glucuronide, T-3262A glucuronide, T-3262B glucuronide, and unknown compound M-1) were detected, and species difference existed in types of metabolites. 2. Metabolites in bile and feces were assayed for mouse and rat following oral administration of T-3262 and 14C-T-3262. Metabolites in bile were similar to the urine, but the volume of T-3262A and T-3262A glucuronide was larger than in urine. In feces, the excreted compounds mainly consisted of unchanged T-3262 base. 3. p-Toluenesulfonic acid, which is the counter acid for T-3262 base, was absorbed following the oral administration of T-3262, and excreted in urine in the unchanged form.  相似文献   

11.
Two major and one minor metabolite of felbamate (FBM) as well as unchanged drug were isolated and identified by electron impact and chemical ionization mass spectrometry from rat and dog urine after dosing with [14C]FBM. The metabolites were 2-(4-hydroxyphenyl)-1,3-propanediol dicarbamate (p-OHF), 2-hydroxy-2-phenyl-1,3-propanediol dicarbamate, and 2-phenyl-1,3-propanediol monocarbamate. The metabolites and FBM were excreted mainly in urine, where their sum accounted to 81-94% of the radioactivity in hydrolyzed rat urine samples, 71-82% in rabbit urine samples, and 69-83% in dog urine samples. The amount of metabolites in the conjugated form was estimated to be 20-35% in rat, 20-30% in rabbit, and 10-20% in dog urine. The major biliary metabolite in all three species was p-OHF, whereas the amount of FBM was small. Metabolites found in dog feces were the same as those in the urine.  相似文献   

12.
1. The pharmacokinetics, metabolic fate and excretion of 3-[-2(phenylcarbamoyl) ethenyl-4,6-dichloroindole-2-carboxylic acid (GV150526), a novel glycine antagonist for stroke, in rat and dog following intravenous administration of [C14]-GV150526A were investigated. 2. Studies were also performed in bile duct-cannulated animals to confirm the route of elimination and to obtain more information on metabolite identity. 3. Metabolites in plasma, urine and bile were identified by HPLC-MS/MS and NMR spectroscopy. 4. GV150526A was predominantly excreted in the faeces via the bile, with only trace metabolites of radioactivity in urine (< 5%). Radioactivity in rat bile was predominantly due to metabolites, whereas approximately 50% of the radioactivity in dog bile was due to parent GV150526. 5. The principal metabolites in bile were identified as glucuronide conjugates of the carboxylic acid, whereas in rat urine the main metabolite was a sulphate conjugate of an aromatic oxidation metabolite. Multiple glucuronide peaks were observed and identified as isomeric glucuronides and their anomers arising from acyl migration and muta-rotation.  相似文献   

13.
1. The pharmacokinetics, metabolic fate and excretion of 3-[-2(phenylcarbamoyl) ethenyl-4,6-dichloroindole-2-carboxylic acid (GV150526), a novel glycine antagonist for stroke, in rat and dog following intravenous administration of [C14]-GV150526A were investigated. 2. Studies were also performed in bile duct-cannulated animals to confirm the route of elimination and to obtain more information on metabolite identity. 3. Metabolites in plasma, urine and bile were identified by HPLC-MS/MS and NMR spectroscopy. 4. GV150526A was predominantly excreted in the faeces via the bile, with only trace metabolites of radioactivity in urine (< 5%). Radioactivity in rat bile was predominantly due to metabolites, whereas approximately 50% of the radioactivity in dog bile was due to parent GV150526. 5. The principal metabolites in bile were identified as glucuronide conjugates of the carboxylic acid, whereas in rat urine the main metabolite was a sulphate conjugate of an aromatic oxidation metabolite. Multiple glucuronide peaks were observed and identified as isomeric glucuronides and their anomers arising from acyl migration and muta-rotation.  相似文献   

14.
1. A number of metabolites of oxapadol were isolated from urine of rat, dog and man after administration of a single dose of 14C-labelled compound. They were identified by direct inlet mass spectrometry and chromatographic comparison with reference compounds.

2. Oxapadol was extensively metabolized and the unchanged drug was undetectable in rat or human urine; only traces were found in dog urine. Nine metabolites were identified in rat and dog urine, and six in man.

3. The routes of biotransformation were: (a) aromatic hydroxylation, mainly in the benzimidazole ring, (b) scission of the heterocyclic ring following two different pathways, and (c) a combination of the two. Regioselectivity was observed for aromatic hydroxylation, as only three of the four possible monohydroxy oxazepinobenzimidazoles could be detected.  相似文献   

15.
1. An oral dose of the coronary dilator 4-(3,4,5-trimethoxycinnamoyl)-1- (N-isopropylcarbamoylmethyl)-piperazine was readily absorbed and more than 75% of the dose was excreted within 24 h by the rat, dog and man. In 4 days, rat, dog and man excreted in the urine and faeces respectively 32.5 and 62.3%, 43.9 and 49.1%, and 57.8 and 43.3%. Faecal radioactivity was mainly excreted via the bile.

2. Plasma concentrations of radioactivity reached a maximum within 1 h in rats and dogs and within 2 h in man. For several h, more than 50% of the radioactivity circulating in the plasma of rats and more than 80% in man was due to unchanged drug.

3. Sequential whole-body autoradiography of the rat indicated that much of the radioactivity was distributed in the liver, kidneys and gastrointestinal tract and that there was significant uptake into the heart and lungs.

4. Although similar metabolites were excreted by the rat, dog and man, the relative proportions differed. 11.7, 2.3 and 28.8% respectively of the unchanged drug were excreted in the urine and 13.1, 19.5 and 10.4% respectively of the principal metabolite a glucuronide whose exact structure was not determined. Other metabolites included 4-(3,4,5-trimethoxycinnamoyl)-1-carbamoylmethyl piperazine and N-(3,4,5-trimethoxycinnamoyl)-piperazine.  相似文献   

16.
The excretory pathway for the elimination of 14C-cefotaxime (14C-HR 756) was found to be the same for rat, dog and man with elimination into the urine being the most important route, accounting for greater than 80% of the dosed radioactivity. The amounts of unchanged cefotaxime eliminated in the urine ranged from 20-32% in rat and dog to 56% in man. The major metabolite in each species was the microbiologically active desacetyl cefotaxime, which was present in both plasma and urine. Two further metabolites, recently identified as the stereoisomeric forms of the opened beta-lactam ring form of desacetyl cefotaxime lactone were also found in the urine of dog and man.  相似文献   

17.
Plasma pharmacokinetics, excretion balance and urinary metabolites of methoxymorpholino doxorubicin (MMDX) were investigated in male and female rats and in female dogs after i.v. administration of the(14)C-labelled drug. The mean total recovery of radioactivity in 96 h (urine plus faeces) was approximately 74 and 60% dose in male and female rats, respectively, while in female dogs approximately 72% dose was recovered in 336 h. Most of the radioactivity was present in faeces, with the urinary elimination accounting for only 3-4% dose in rats and dogs. These data suggest that biliary excretion is an important route of elimination of MMDX and/or its metabolites in both species. No differences were observed in the urinary metabolic profile of male and female rats. Two main peaks were present in radiochromatograms of urine from rats and dogs, i.e. MMDX and its 13-dihydro metabolite (MMDX-ol), accounting for approximately 25 and 20% of total radioactivity in 0-24-h urine in rats and 30 and 36% in dogs. The MMDX-ol/MMDX ratio in dog urine was higher than that observed in rat urine. No aglycones were detected in the urine samples from either species. In the rat, the plasma concentration-time profile suggested that the disposition of MMDX, MMDX-ol and total radioactivity is not sex-dependent. MMDX was the major species present in the systemic circulation; its AUC (0-96 h) accounted for 70% of total plasma radioactivity with the sum of AUC (MMDX) plus AUC (MMDX-ol) accounting for 77% of total radioactivity. In the dog, the sum of AUC (MMDX) plus AUC (MMDX-ol) amounted to 8% of radioactivity AUC(0-t(z) indicating that an important proportion of other(s) unknown metabolite(s) is present in dog plasma. Plasma levels of MMDX-ol in the rat were approximately 10-fold lower than those of the parent compound, whereas they were three times higher than those of MMDX in the dog. These data show that the reduction of the 13-keto group of MMDX is species-dependent, and occurs preferentially in the dog compared to the rat.  相似文献   

18.
The study objectives were to characterize the metabolism of nevirapine (NVP) in mouse, rat, rabbit, dog, monkey, and chimpanzee after oral administration of carbon-14-labeled or -unlabeled NVP. Liquid scintillation counting quantitated radioactivity and bile, plasma, urine, and feces were profiled by HPLC/UV diode array and radioactivity detection. Metabolite structures were confirmed by UV spectral and chromatographic retention time comparisons with synthetic metabolite standards, by beta-glucuronidase incubations, and in one case, by direct probe electron impact ionization/mass spectroscopy, chemical ionization/mass spectroscopy, and NMR. NVP was completely absorbed in both sexes of all species except male and female dogs. Parent compound accounted for <6% of total urinary radioactivity and <5.1% of total fecal radioactivity, except in dogs where 41 to 46% of the radioactivity was excreted as parent compound. The drug was extensively metabolized in both sexes of all animal species studied. Oxidation to hydroxylated metabolites occurred before glucuronide conjugation and excretion in urine and feces. Hydroxylated metabolites were 2-, 3-, 8-, and 12-hydroxynevirapine (2-, 3-, 8-, and 12-OHNVP). 4-carboxynevirapine, formed by secondary oxidation of 12-OHNVP, was a major urinary metabolite in all species except the female rat. Glucuronides of the hydroxylated metabolites were major or minor metabolites, depending on the species. Rat plasma profiles differed from urinary profiles with NVP and 12-OHNVP accounting for the majority of the total radioactivity. Dog plasma profiles, however, were similar to the urinary profiles with 12-OHNVP, its glucuronide conjugate, 4-carboxynevirapine, and 3-OHNVP glucuronide being the major metabolites. Overall, the same metabolites are formed in animals as are formed in humans.  相似文献   

19.
14C-Estazolam (2 mg) administered orally to dogs and human subjects was rapidly and completely absorbed with peak plasma levels occurring within one hour. In humans, plasma levels peaked at 103 +/- 18 ng/ml and declined monoexponentially with a half-life of 14 h. The mean concn. of estazolam in dog plasma at 0.5 h was 186 ng/ml. Six metabolites were found in dog plasma at 0.5 and 8 h, whereas only two metabolites were detected in human plasma up to 18 h. Metabolites common to both species were 1-oxo-estazolam (I) and 4-hydroxy-estazolam (IV). Major metabolites in dog and human plasma were free and conjugated 4-hydroxy-estazolam; the concn. were higher in dogs. After five days, 79% and 87% of the administered radioactivity was excreted in dog and human urine, respectively. Faecal excretion accounted for 19% of the dose in dog and 4% in man. Eleven metabolites were found in the 0-72 h urine of dogs and humans; less than 4% dose was excreted unchanged. Four metabolites were identified as: 1-oxo-estazolam (I), 4'-hydroxy-estazolam (II), 4-hydroxy-estazolam (IV) and the benzophenone (VII), as free metabolites and glucuronides. The major metabolite in dog urine was 4-hydroxy-estazolam (20% of the dose), while the predominant metabolite in human urine (17%) has not been identified, but is likely to be a metabolite of 4-hydroxy-estazolam. The metabolism of estazolam is similar in dog and man.  相似文献   

20.
The absorption, excretion and metabolism of N-(2, 6-dichlorophenyl)-beta-[[(1-methylcyclohexyl)methoxylmethyl]-N-(phenylmethyl)-1-pyrrolidineethanamine (RWJ-26899; McN-6497) has been investigated in male and female CR Wistar rats and beagle dogs. Radiolabeled [14C] RWJ-26899 was administered to rats as a single 24 mg/kg suspension dose while the dogs received 15 mg/kg capsules. Plasma (0-36 h; rat and 0-48 h; dog), urine (0-192 h; rat and dog) and fecal (0-192 h; rat and dog) samples were collected and analyzed. There were no significant gender differences observed in the data. The terminal half-life of the total radioactivity for rats from plasma was estimated to be 7.7 +/- 0.6 h while for dogs it was 22.9 +/- 4.4 h. Recoveries of total radioactivity in urine and feces for rats were 8.7 +/- 2.9% and 88.3 +/- 10.4% of the dose, respectively. Recoveries of total radioactivity in urine and feces for dogs were 4.1 +/- 1.4% and 90.0 +/- 4.7% of the dose, respectively. RWJ-26899 and a total of nine metabolites were isolated and tentatively identified in rat urine, and fecal extracts. Unchanged RWJ-26899 accounted for approximately 1% of the dose in rat urine and 8% in rat feces. RWJ-26899 and a total of four metabolites were isolated and identified in dog urine, and fecal extracts. Unchanged RWJ-26899 accounted for approximately 1% of the dose in urine and 63% in feces in dog. Five proposed pathways were used to describe the metabolites found in rats: N-oxidation, oxidative N-debenzylation, pyrrolidinyl ring hydroxylation, phenyl hydroxylation and methyl or cyclohexyl hydroxylation. Two biotransformation pathways in dogs are proposed: N-oxidation and methyl or cyclohexyl ring hydroxylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号