首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supervised deep learning-based methods yield accurate results for medical image segmentation. However, they require large labeled datasets for this, and obtaining them is a laborious task that requires clinical expertise. Semi/self-supervised learning-based approaches address this limitation by exploiting unlabeled data along with limited annotated data. Recent self-supervised learning methods use contrastive loss to learn good global level representations from unlabeled images and achieve high performance in classification tasks on popular natural image datasets like ImageNet. In pixel-level prediction tasks such as segmentation, it is crucial to also learn good local level representations along with global representations to achieve better accuracy. However, the impact of the existing local contrastive loss-based methods remains limited for learning good local representations because similar and dissimilar local regions are defined based on random augmentations and spatial proximity; not based on the semantic label of local regions due to lack of large-scale expert annotations in the semi/self-supervised setting. In this paper, we propose a local contrastive loss to learn good pixel level features useful for segmentation by exploiting semantic label information obtained from pseudo-labels of unlabeled images alongside limited annotated images with ground truth (GT) labels. In particular, we define the proposed contrastive loss to encourage similar representations for the pixels that have the same pseudo-label/GT label while being dissimilar to the representation of pixels with different pseudo-label/GT label in the dataset. We perform pseudo-label based self-training and train the network by jointly optimizing the proposed contrastive loss on both labeled and unlabeled sets and segmentation loss on only the limited labeled set. We evaluated the proposed approach on three public medical datasets of cardiac and prostate anatomies, and obtain high segmentation performance with a limited labeled set of one or two 3D volumes. Extensive comparisons with the state-of-the-art semi-supervised and data augmentation methods and concurrent contrastive learning methods demonstrate the substantial improvement achieved by the proposed method. The code is made publicly available at https://github.com/krishnabits001/pseudo_label_contrastive_training.  相似文献   

2.
A large-scale and well-annotated dataset is a key factor for the success of deep learning in medical image analysis. However, assembling such large annotations is very challenging, especially for histopathological images with unique characteristics (e.g., gigapixel image size, multiple cancer types, and wide staining variations). To alleviate this issue, self-supervised learning (SSL) could be a promising solution that relies only on unlabeled data to generate informative representations and generalizes well to various downstream tasks even with limited annotations. In this work, we propose a novel SSL strategy called semantically-relevant contrastive learning (SRCL), which compares relevance between instances to mine more positive pairs. Compared to the two views from an instance in traditional contrastive learning, our SRCL aligns multiple positive instances with similar visual concepts, which increases the diversity of positives and then results in more informative representations. We employ a hybrid model (CTransPath) as the backbone, which is designed by integrating a convolutional neural network (CNN) and a multi-scale Swin Transformer architecture. The CTransPath is pretrained on massively unlabeled histopathological images that could serve as a collaborative local–global feature extractor to learn universal feature representations more suitable for tasks in the histopathology image domain. The effectiveness of our SRCL-pretrained CTransPath is investigated on five types of downstream tasks (patch retrieval, patch classification, weakly-supervised whole-slide image classification, mitosis detection, and colorectal adenocarcinoma gland segmentation), covering nine public datasets. The results show that our SRCL-based visual representations not only achieve state-of-the-art performance in each dataset, but are also more robust and transferable than other SSL methods and ImageNet pretraining (both supervised and self-supervised methods). Our code and pretrained model are available at https://github.com/Xiyue-Wang/TransPath.  相似文献   

3.
Deep convolutional neural networks have been highly effective in segmentation tasks. However, segmentation becomes more difficult when training images include many complex instances to segment, such as the task of nuclei segmentation in histopathology images. Weakly supervised learning can reduce the need for large-scale, high-quality ground truth annotations by involving non-expert annotators or algorithms to generate supervision information for segmentation. However, there is still a significant performance gap between weakly supervised learning and fully supervised learning approaches. In this work, we propose a weakly-supervised nuclei segmentation method in a two-stage training manner that only requires annotation of the nuclear centroids. First, we generate boundary and superpixel-based masks as pseudo ground truth labels to train our SAC-Net, which is a segmentation network enhanced by a constraint network and an attention network to effectively address the problems caused by noisy labels. Then, we refine the pseudo labels at the pixel level based on Confident Learning to train the network again. Our method shows highly competitive performance of cell nuclei segmentation in histopathology images on three public datasets. Code will be available at: https://github.com/RuoyuGuo/MaskGA_Net.  相似文献   

4.
Deep convolutional neural networks (CNNs) have been widely used for medical image segmentation. In most studies, only the output layer is exploited to compute the final segmentation results and the hidden representations of the deep learned features have not been well understood. In this paper, we propose a prototype segmentation (ProtoSeg) method to compute a binary segmentation map based on deep features. We measure the segmentation abilities of the features by computing the Dice between the feature segmentation map and ground-truth, named as the segmentation ability score (SA score for short). The corresponding SA score can quantify the segmentation abilities of deep features in different layers and units to understand the deep neural networks for segmentation. In addition, our method can provide a mean SA score which can give a performance estimation of the output on the test images without ground-truth. Finally, we use the proposed ProtoSeg method to compute the segmentation map directly on input images to further understand the segmentation ability of each input image. Results are presented on segmenting tumors in brain MRI, lesions in skin images, COVID-related abnormality in CT images, prostate segmentation in abdominal MRI, and pancreatic mass segmentation in CT images. Our method can provide new insights for interpreting and explainable AI systems for medical image segmentation. Our code is available on: https://github.com/shengfly/ProtoSeg.  相似文献   

5.
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094.  相似文献   

6.
Visual representation extraction is a fundamental problem in the field of computational histopathology. Considering the powerful representation capacity of deep learning and the scarcity of annotations, self-supervised learning has emerged as a promising approach to extract effective visual representations from unlabeled histopathological images. Although a few self-supervised learning methods have been specifically proposed for histopathological images, most of them suffer from certain defects that may hurt the versatility or representation capacity. In this work, we propose CS-CO, a hybrid self-supervised visual representation learning method tailored for H&E-stained histopathological images, which integrates advantages of both generative and discriminative approaches. The proposed method consists of two self-supervised learning stages: cross-stain prediction (CS) and contrastive learning (CO). In addition, a novel data augmentation approach named stain vector perturbation is specifically proposed to facilitate contrastive learning. Our CS-CO makes good use of domain-specific knowledge and requires no side information, which means good rationality and versatility. We evaluate and analyze the proposed CS-CO on three H&E-stained histopathological image datasets with downstream tasks of patch-level tissue classification and slide-level cancer prognosis and subtyping. Experimental results demonstrate the effectiveness and robustness of the proposed CS-CO on common computational histopathology tasks. Furthermore, we also conduct ablation studies and prove that cross-staining prediction and contrastive learning in our CS-CO can complement and enhance each other. Our code is made available at https://github.com/easonyang1996/CS-CO.  相似文献   

7.
Mitosis counting of biopsies is an important biomarker for breast cancer patients, which supports disease prognostication and treatment planning. Developing a robust mitotic cell detection model is highly challenging due to its complex growth pattern and high similarities with non-mitotic cells. Most mitosis detection algorithms have poor generalizability across image domains and lack reproducibility and validation in multicenter settings. To overcome these issues, we propose a generalizable and robust mitosis detection algorithm (called FMDet), which is independently tested on multicenter breast histopathological images. To capture more refined morphological features of cells, we convert the object detection task as a semantic segmentation problem. The pixel-level annotations for mitotic nuclei are obtained by taking the intersection of the masks generated from a well-trained nuclear segmentation model and the bounding boxes provided by the MIDOG 2021 challenge. In our segmentation framework, a robust feature extractor is developed to capture the appearance variations of mitotic cells, which is constructed by integrating a channel-wise multi-scale attention mechanism into a fully convolutional network structure. Benefiting from the fact that the changes in the low-level spectrum do not affect the high-level semantic perception, we employ a Fourier-based data augmentation method to reduce domain discrepancies by exchanging the low-frequency spectrum between two domains. Our FMDet algorithm has been tested in the MIDOG 2021 challenge and ranked first place. Further, our algorithm is also externally validated on four independent datasets for mitosis detection, which exhibits state-of-the-art performance in comparison with previously published results. These results demonstrate that our algorithm has the potential to be deployed as an assistant decision support tool in clinical practice. Our code has been released at https://github.com/Xiyue-Wang/1st-in-MICCAI-MIDOG-2021-challenge.  相似文献   

8.
Medical image segmentation methods based on deep learning have made remarkable progress. However, such existing methods are sensitive to data distribution. Therefore, slight domain shifts will cause a decline of performance in practical applications. To relieve this problem, many domain adaptation methods learn domain-invariant representations by alignment or adversarial training whereas ignoring domain-specific representations. In response to this issue, this paper rethinks the traditional domain adaptation framework and proposes a novel orthogonal decomposition adversarial domain adaptation (ODADA) architecture for medical image segmentation. The main idea behind our proposed ODADA model is to decompose the input features into domain-invariant and domain-specific representations and then use the newly designed orthogonal loss function to encourage their independence. Furthermore, we propose a two-step optimization strategy to extract domain-invariant representations by separating domain-specific representations, fighting the performance degradation caused by domain shifts. Encouragingly, the proposed ODADA framework is plug-and-play and can replace the traditional adversarial domain adaptation module. The proposed method has consistently demonstrated effectiveness through comprehensive experiments on three publicly available datasets, including cross-site prostate segmentation dataset, cross-site COVID-19 lesion segmentation dataset, and cross-modality cardiac segmentation dataset. The source code is available at https://github.com/YonghengSun1997/ODADA.  相似文献   

9.
Most image segmentation algorithms are trained on binary masks formulated as a classification task per pixel. However, in applications such as medical imaging, this “black-and-white” approach is too constraining because the contrast between two tissues is often ill-defined, i.e., the voxels located on objects’ edges contain a mixture of tissues (a partial volume effect). Consequently, assigning a single “hard” label can result in a detrimental approximation. Instead, a soft prediction containing non-binary values would overcome that limitation. In this study, we introduce SoftSeg, a deep learning training approach that takes advantage of soft ground truth labels, and is not bound to binary predictions. SoftSeg aims at solving a regression instead of a classification problem. This is achieved by using (i) no binarization after preprocessing and data augmentation, (ii) a normalized ReLU final activation layer (instead of sigmoid), and (iii) a regression loss function (instead of the traditional Dice loss). We assess the impact of these three features on three open-source MRI segmentation datasets from the spinal cord gray matter, the multiple sclerosis brain lesion, and the multimodal brain tumor segmentation challenges. Across multiple random dataset splittings, SoftSeg outperformed the conventional approach, leading to an increase in Dice score of 2.0% on the gray matter dataset (p=0.001), 3.3% for the brain lesions, and 6.5% for the brain tumors. SoftSeg produces consistent soft predictions at tissues’ interfaces and shows an increased sensitivity for small objects (e.g., multiple sclerosis lesions). The richness of soft labels could represent the inter-expert variability, the partial volume effect, and complement the model uncertainty estimation, which is typically unclear with binary predictions. The developed training pipeline can easily be incorporated into most of the existing deep learning architectures. SoftSeg is implemented in the freely-available deep learning toolbox ivadomed (https://ivadomed.org).  相似文献   

10.
We propose a novel deep neural network architecture to learn interpretable representation for medical image analysis. Our architecture generates a global attention for region of interest, and then learns bag of words style deep feature embeddings with local attention. The global, and local feature maps are combined using a contemporary transformer architecture for highly accurate Gallbladder Cancer (GBC) detection from Ultrasound (USG) images. Our experiments indicate that the detection accuracy of our model beats even human radiologists, and advocates its use as the second reader for GBC diagnosis. Bag of words embeddings allow our model to be probed for generating interpretable explanations for GBC detection consistent with the ones reported in medical literature. We show that the proposed model not only helps understand decisions of neural network models but also aids in discovery of new visual features relevant to the diagnosis of GBC. Source-code is available at https://github.com/sbasu276/RadFormer.  相似文献   

11.
In recent years, several deep learning models recommend first to represent Magnetic Resonance Imaging (MRI) as latent features before performing a downstream task of interest (such as classification or regression). The performance of the downstream task generally improves when these latent representations are explicitly associated with factors of interest. For example, we derived such a representation for capturing brain aging by applying self-supervised learning to longitudinal MRIs and then used the resulting encoding to automatically identify diseases accelerating the aging of the brain. We now propose a refinement of this representation by replacing the linear modeling of brain aging with one that is consistent in local neighborhoods in the latent space. Called Longitudinal Neighborhood Embedding (LNE), we derive an encoding so that neighborhoods are age-consistent (i.e., brain MRIs of different subjects with similar brain ages are in close proximity of each other) and progression-consistent, i.e., the latent space is defined by a smooth trajectory field where each trajectory captures changes in brain ages between a pair of MRIs extracted from a longitudinal sequence. To make the problem computationally tractable, we further propose a strategy for mini-batch sampling so that the resulting local neighborhoods accurately approximate the ones that would be defined based on the whole cohort.We evaluate LNE on three different downstream tasks: (1) to predict chronological age from T1-w MRI of 274 healthy subjects participating in a study at SRI International; (2) to distinguish Normal Control (NC) from Alzheimer’s Disease (AD) and stable Mild Cognitive Impairment (sMCI) from progressive Mild Cognitive Impairment (pMCI) based on T1-w MRI of 632 participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI); and (3) to distinguish no-to-low from moderate-to-heavy alcohol drinkers based on fractional anisotropy derived from diffusion tensor MRIs of 764 adolescents recruited by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA). Across the three data sets, the visualization of the smooth trajectory vector fields and superior accuracy on downstream tasks demonstrate the strength of the proposed method over existing self-supervised methods in extracting information related to brain aging, which could help study the impact of substance use and neurodegenerative disorders. The code is available at https://github.com/ouyangjiahong/longitudinal-neighbourhood-embedding.  相似文献   

12.
We present our novel deep multi-task learning method for medical image segmentation. Existing multi-task methods demand ground truth annotations for both the primary and auxiliary tasks. Contrary to it, we propose to generate the pseudo-labels of an auxiliary task in an unsupervised manner. To generate the pseudo-labels, we leverage Histogram of Oriented Gradients (HOGs), one of the most widely used and powerful hand-crafted features for detection. Together with the ground truth semantic segmentation masks for the primary task and pseudo-labels for the auxiliary task, we learn the parameters of the deep network to minimize the loss of both the primary task and the auxiliary task jointly. We employed our method on two powerful and widely used semantic segmentation networks: UNet and U2Net to train in a multi-task setup. To validate our hypothesis, we performed experiments on two different medical image segmentation data sets. From the extensive quantitative and qualitative results, we observe that our method consistently improves the performance compared to the counter-part method. Moreover, our method is the winner of FetReg Endovis Sub-challenge on Semantic Segmentation organised in conjunction with MICCAI 2021. Code and implementation details are available at:https://github.com/thetna/medical_image_segmentation.  相似文献   

13.
Video feedback provides a wealth of information about surgical procedures and is the main sensory cue for surgeons. Scene understanding is crucial to computer assisted interventions (CAI) and to post-operative analysis of the surgical procedure. A fundamental building block of such capabilities is the identification and localization of surgical instruments and anatomical structures through semantic segmentation. Deep learning has advanced semantic segmentation techniques in the recent years but is inherently reliant on the availability of labelled datasets for model training. This paper introduces a dataset for semantic segmentation of cataract surgery videos complementing the publicly available CATARACTS challenge dataset. In addition, we benchmark the performance of several state-of-the-art deep learning models for semantic segmentation on the presented dataset. The dataset is publicly available at https://cataracts-semantic-segmentation2020.grand-challenge.org/.  相似文献   

14.
Pancreatic cancer is a malignant tumor, and its high recurrence rate after surgery is related to the lymph node metastasis status. In clinical practice, a preoperative imaging prediction method is necessary for prognosis assessment and treatment decision; however, there are two major challenges: insufficient data and difficulty in discriminative feature extraction. This paper proposed a deep learning model to predict lymph node metastasis in pancreatic cancer using multiphase CT, where a dual-transformation with contrastive learning framework is developed to overcome the challenges in fine-grained prediction with small sample sizes. Specifically, we designed a novel dynamic surface projection method to transform 3D data into 2D images for effectively using the 3D information, preserving the spatial correlation of the original texture information and reducing computational resources. Then, this dynamic surface projection was combined with the spiral transformation to establish a dual-transformation method for enhancing the diversity and complementarity of the dataset. A dual-transformation-based data augmentation method was also developed to produce numerous 2D-transformed images to alleviate the effect of insufficient samples. Finally, the dual-transformation-guided contrastive learning scheme based on intra-space-transformation consistency and inter-class specificity was designed to mine additional supervised information, thereby extracting more discriminative features. Extensive experiments have shown the promising performance of the proposed model for predicting lymph node metastasis in pancreatic cancer. Our dual-transformation with contrastive learning scheme was further confirmed on an external public dataset, representing a potential paradigm for the fine-grained classification of oncological images with small sample sizes. The code will be released at https://github.com/SJTUBME-QianLab/Dual-transformation.  相似文献   

15.
In the past few years, convolutional neural networks (CNNs) have been proven powerful in extracting image features crucial for medical image registration. However, challenging applications and recent advances in computer vision suggest that CNNs are limited in their ability to understand the spatial correspondence between features, which is at the core of image registration. The issue is further exaggerated when it comes to multi-modal image registration, where the appearances of input images can differ significantly. This paper presents a novel cross-modal attention mechanism for correlating features extracted from the multi-modal input images and mapping such correlation to image registration transformation. To efficiently train the developed network, a contrastive learning-based pre-training method is also proposed to aid the network in extracting high-level features across the input modalities for the following cross-modal attention learning. We validated the proposed method on transrectal ultrasound (TRUS) to magnetic resonance (MR) registration, a clinically important procedure that benefits prostate cancer biopsy. Our experimental results demonstrate that for MR-TRUS registration, a deep neural network embedded with the cross-modal attention block outperforms other advanced CNN-based networks with ten times its size. We also incorporated visualization techniques to improve the interpretability of our network, which helps bring insights into the deep learning based image registration methods. The source code of our work is available at https://github.com/DIAL-RPI/Attention-Reg.  相似文献   

16.
Cells/nuclei deliver massive information of microenvironment. An automatic nuclei segmentation approach can reduce pathologists’ workload and allow precise of the microenvironment for biological and clinical researches. Existing deep learning models have achieved outstanding performance under the supervision of a large amount of labeled data. However, when data from the unseen domain comes, we still have to prepare a certain degree of manual annotations for training for each domain. Unfortunately, obtaining histopathological annotations is extremely difficult. It is high expertise-dependent and time-consuming. In this paper, we attempt to build a generalized nuclei segmentation model with less data dependency and more generalizability. To this end, we propose a meta multi-task learning (Meta-MTL) model for nuclei segmentation which requires fewer training samples. A model-agnostic meta-learning is applied as the outer optimization algorithm for the segmentation model. We introduce a contour-aware multi-task learning model as the inner model. A feature fusion and interaction block (FFIB) is proposed to allow feature communication across both tasks. Extensive experiments prove that our proposed Meta-MTL model can improve the model generalization and obtain a comparable performance with state-of-the-art models with fewer training samples. Our model can also perform fast adaptation on the unseen domain with only a few manual annotations. Code is available at https://github.com/ChuHan89/Meta-MTL4NucleiSegmentation  相似文献   

17.
Traditional medical image segmentation methods based on deep learning require experts to provide extensive manual delineations for model training. Few-shot learning aims to reduce the dependence on the scale of training data but usually shows poor generalizability to the new target. The trained model tends to favor the training classes rather than being absolutely class-agnostic. In this work, we propose a novel two-branch segmentation network based on unique medical prior knowledge to alleviate the above problem. Specifically, we explicitly introduce a spatial branch to provide the spatial information of the target. In addition, we build a segmentation branch based on the classical encoder–decoder structure in supervised learning and integrate prototype similarity and spatial information as prior knowledge. To achieve effective information integration, we propose an attention-based fusion module (AF) that enables the content interaction of decoder features and prior knowledge. Experiments on an echocardiography dataset and an abdominal MRI dataset show that the proposed model achieves substantial improvements over state-of-the-art methods. Moreover, some results are comparable to those of the fully supervised model. The source code is available at github.com/warmestwind/RAPNet.  相似文献   

18.
High throughput nuclear segmentation and classification of whole slide images (WSIs) is crucial to biological analysis, clinical diagnosis and precision medicine. With the advances of CNN algorithms and the continuously growing datasets, considerable progress has been made in nuclear segmentation and classification. However, few works consider how to reasonably deal with nuclear heterogeneity in the following two aspects: imbalanced data distribution and diversified morphology characteristics. The minority classes might be dominated by the majority classes due to the imbalanced data distribution and the diversified morphology characteristics may lead to fragile segmentation results. In this study, a cost-Sensitive MultI-task LEarning (SMILE) framework is conducted to tackle the data heterogeneity problem. Based on the most popular multi-task learning backbone in nuclei segmentation and classification, we propose a multi-task correlation attention (MTCA) to perform feature interaction of multiple high relevant tasks to learn better feature representation. A cost-sensitive learning strategy is proposed to solve the imbalanced data distribution by increasing the penalization for the error classification of the minority classes. Furthermore, we propose a novel post-processing step based on the coarse-to-fine marker-controlled watershed scheme to alleviate fragile segmentation when nuclei are with large size and unclear contour. Extensive experiments show that the proposed method achieves state-of-the-art performances on CoNSeP and MoNuSAC 2020 datasets. The code is available at: https://github.com/panxipeng/nuclear_segandcls.  相似文献   

19.
Deep learning has a huge potential to transform echocardiography in clinical practice and point of care ultrasound testing by providing real-time analysis of cardiac structure and function. Automated echocardiography analysis is benefited through use of machine learning for tasks such as image quality assessment, view classification, cardiac region segmentation, and quantification of diagnostic indices. By taking advantage of high-performing deep neural networks, we propose a novel and eicient real-time system for echocardiography analysis and quantification. Our system uses a self-supervised modality-specific representation trained using a publicly available large-scale dataset. The trained representation is used to enhance the learning of target echo tasks with relatively small datasets. We also present a novel Trilateral Attention Network (TaNet) for real-time cardiac region segmentation. The proposed network uses a module for region localization and three lightweight pathways for encoding rich low-level, textural, and high-level features. Feature embeddings from these individual pathways are then aggregated for cardiac region segmentation. This network is fine-tuned using a joint loss function and training strategy. We extensively evaluate the proposed system and its components, which are echo view retrieval, cardiac segmentation, and quantification, using four echocardiography datasets. Our experimental results show a consistent improvement in the performance of echocardiography analysis tasks with enhanced computational eiciency that charts a path toward its adoption in clinical practice. Specifically, our results show superior real-time performance in retrieving good quality echo from individual cardiac view, segmenting cardiac chambers with complex overlaps, and extracting cardiac indices that highly agree with the experts’ values. The source code of our implementation can be found in the project’s GitHub page.  相似文献   

20.
Post-prostatectomy radiotherapy requires accurate annotation of the prostate bed (PB), i.e., the residual tissue after the operative removal of the prostate gland, to minimize side effects on surrounding organs-at-risk (OARs). However, PB segmentation in computed tomography (CT) images is a challenging task, even for experienced physicians. This is because PB is almost a “virtual” target with non-contrast boundaries and highly variable shapes depending on neighboring OARs. In this work, we propose an asymmetric multi-task attention network (AMTA-Net) for the concurrent segmentation of PB and surrounding OARs. Our AMTA-Net mimics experts in delineating the non-contrast PB by explicitly leveraging its critical dependency on the neighboring OARs (i.e., the bladder and rectum), which are relatively easy to distinguish in CT images. Specifically, we first adopt a U-Net as the backbone network for the low-level (or prerequisite) task of the OAR segmentation. Then, we build an attention sub-network upon the backbone U-Net with a series of cascaded attention modules, which can hierarchically transfer the OAR features and adaptively learn discriminative representations for the high-level (or primary) task of the PB segmentation. We comprehensively evaluate the proposed AMTA-Net on a clinical dataset composed of 186 CT images. According to the experimental results, our AMTA-Net significantly outperforms current clinical state-of-the-arts (i.e., atlas-based segmentation methods), indicating the value of our method in reducing time and labor in the clinical workflow. Our AMTA-Net also presents better performance than the technical state-of-the-arts (i.e., the deep learning-based segmentation methods), especially for the most indistinguishable and clinically critical part of the PB boundaries. Source code is released at https://github.com/superxuang/amta-net.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号