首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Genetics in medicine》2023,25(7):100859
PurposeThe study aimed to clinically and molecularly characterize the neurodevelopmental disorder associated with heterozygous de novo variants in CNOT9.MethodsIndividuals were clinically examined. Variants were identified using exome or genome sequencing. These variants were evaluated using in silico predictions, and their functional relevance was further assessed by molecular models and research in the literature. The variants have been classified according to the criteria of the American College of Medical Genetics.ResultsWe report on 7 individuals carrying de novo missense variants in CNOT9, p.(Arg46Gly), p.(Pro131Leu), and p.(Arg227His), and, recurrent in 4 unrelated individuals, p.(Arg292Trp). All affected persons have developmental delay/intellectual disability, with 5 of them showing seizures. Other symptoms include muscular hypotonia, facial dysmorphism, and behavioral abnormalities. Molecular modeling predicted that the variants are damaging and would lead to reduced protein stability or impaired recognition of interaction partners. Functional analyses in previous studies showed a pathogenic effect of p.(Pro131Leu) and p.(Arg227His).ConclusionWe propose CNOT9 as a novel gene for neurodevelopmental disorder and epilepsy.  相似文献   

2.
IntroductionBiallelic variants in the SLC1A4 gene have been so far identified as a very rare cause of neurodevelopmental disorders with or without epilepsy and almost exclusively described in the Ashkenazi-Jewish population.Patients and methodsHere we present Czech patient with microcephaly, severe global developmental delay and intractable seizures whose condition remained undiagnosed despite access to clinical experience and standard diagnostic methods including examination with an epilepsy targeted NGS gene panel.ResultsWhole exome sequencing revealed a novel variant NM_003038.4:c.1370G > A p.(Arg457Gln) of the SLC1A4 gene in a homozygous state in the patient, and afterwards Sanger sequencing in both parents confirmed the biallelic origin of the variant. A variant in the same codon, but with a different amino acid exchange, was described previously in a patient that had a very similar phenotype, however, without epilepsy.ConclusionOur data suggest that the SLC1A4 gene should be considered in the diagnosis of patients with severe, early onset neurodevelopmental impairment with epilepsy and encourage the analysis of SLC1A4 gene variants via targeted NGS gene panel or whole exome sequencing.  相似文献   

3.
4.
PurposeThis study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants.MethodsIndividuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope.ResultsWe reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies.ConclusionSOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.  相似文献   

5.
《Genetics in medicine》2022,24(10):2065-2078
PurposeNonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10.MethodsAn international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis.ResultsWe identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length.ConclusionThese data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.  相似文献   

6.
Exome and genome sequencing were used to identify the genetic etiology of a severe neurodevelopmental disorder in two unrelated Ashkenazi Jewish families with three affected individuals. The clinical findings included a prenatal presentation of microcephaly, polyhydramnios and clenched hands while postnatal findings included microcephaly, severe developmental delay, dysmorphism, neurologic deficits, and death in infancy. A shared rare homozygous, missense variant (c.274A > G; p.Ser92Gly, NM_024516.4) was identified in PAGR1, a gene currently not associated with a Mendelian disease. PAGR1 encodes a component of the histone methyltransferase MLL2/MLL3 complex and may function in the DNA damage response pathway. Complete knockout of the murine Pagr1a is embryonic-lethal. Given the available evidence, PAGR1 is a strong candidate gene for a novel autosomal recessive severe syndromic neurodevelopmental disorder.  相似文献   

7.
PurposeCommon diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed.MethodsWe characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome.ResultsComputational facial and Human Phenotype Ontology–based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted.ConclusionOur results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.  相似文献   

8.
9.
CDC42BPB encodes MRCKβ (myotonic dystrophy‐related Cdc42‐binding kinase beta), a serine/threonine protein kinase, and a downstream effector of CDC42, which has recently been associated with Takenouchi‐Kosaki syndrome, an autosomal dominant neurodevelopmental disorder. We identified 12 heterozygous predicted deleterious variants in CDC42BPB (9 missense, 2 frameshift, and 1 nonsense) in 14 unrelated individuals (confirmed de novo in 11/14) with neurodevelopmental disorders including developmental delay/intellectual disability, autism, hypotonia, and structural brain abnormalities including cerebellar vermis hypoplasia and agenesis/hypoplasia of the corpus callosum. The frameshift and nonsense variants in CDC42BPB are expected to be gene‐disrupting and lead to haploinsufficiency via nonsense‐mediated decay. All missense variants are located in highly conserved and functionally important protein domains/regions: 3 are found in the protein kinase domain, 2 are in the citron homology domain, and 4 in a 20‐amino acid sequence between 2 coiled‐coil regions, 2 of which are recurrent. Future studies will help to delineate the natural history and to elucidate the underlying biological mechanisms of the missense variants leading to the neurodevelopmental and behavioral phenotypes.  相似文献   

10.
11.
12.
《Genetics in medicine》2023,25(1):135-142
PurposeProtein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder.MethodsWe assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature.ResultsThe main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss.ConclusionThis study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.  相似文献   

13.
《Genetics in medicine》2021,23(9):1715-1725
PurposeTo investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development.MethodsWe assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype–phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b.ResultsShared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye.ConclusionWe propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.  相似文献   

14.
The dysbindin gene (DTNBP1) has been associated with schizophrenia in several populations. Because the clinical characteristics of schizophrenia and bipolar disorder overlap in many respects and findings from genetic studies have suggested common genes between them, we conducted a case control association study of bipolar disorder in Korea to investigate the genetic association between DTNBP1 and bipolar disorder. In total, 163 patients with bipolar disorder and 350 controls were evaluated. We genotyped three single nucleotide polymorphisms of DTNBP1 (SNP A, P1763, and P1320) and analyzed the allele, genotype, and haplotype associations with bipolar disorder. We found significant genotypic associations with P1763 and P1320, but no association with SNP A in the bipolar I group. When we included bipolar II and schizoaffective disorder in the affected phenotype, the significance decreased. A positive association was observed between the SNP A-P1763 haplotype and the bipolar I phenotype. This haplotype association was lost when we either broadened our phenotype or included P1320 in a haplotype. The positive results of the present study lost significance after a Bonferroni correction for multiple testing. These findings are consistent with previous findings that showed a positive association of DTNBP1 with bipolar disorders. Moreover, our results suggest that DTNBP1 may contribute more to bipolar I disorder than bipolar II disorder or schizoaffective disorder. Further comprehensive studies will be required to clarify these association, however, it seems likely that DTNBP1 is a susceptibility gene for bipolar disorder.  相似文献   

15.
《Genetics in medicine》2022,24(12):2464-2474
PurposeKLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20.MethodsPatients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed.ResultsWe studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type β-propeller domain of the KLHL20 protein, which shapes the substrate binding surface.ConclusionOur findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.  相似文献   

16.
《Genetics in medicine》2023,25(7):100835
PurposeMiller-Dieker syndrome is caused by a multiple gene deletion, including PAFAH1B1 and YWHAE. Although deletion of PAFAH1B1 causes lissencephaly unambiguously, deletion of YWHAE alone has not clearly been linked to a human disorder.MethodsCases with YWHAE variants were collected through international data sharing networks. To address the specific impact of YWHAE loss of function, we phenotyped a mouse knockout of Ywhae.ResultsWe report a series of 10 individuals with heterozygous loss-of-function YWHAE variants (3 single-nucleotide variants and 7 deletions <1 Mb encompassing YWHAE but not PAFAH1B1), including 8 new cases and 2 follow-ups, added with 5 cases (copy number variants) from literature review. Although, until now, only 1 intragenic deletion has been described in YWHAE, we report 4 new variants specifically in YWHAE (3 splice variants and 1 intragenic deletion). The most frequent manifestations are developmental delay, delayed speech, seizures, and brain malformations, including corpus callosum hypoplasia, delayed myelination, and ventricular dilatation. Individuals with variants affecting YWHAE alone have milder features than those with larger deletions. Neuroanatomical studies in Ywhae−/− mice revealed brain structural defects, including thin cerebral cortex, corpus callosum dysgenesis, and hydrocephalus paralleling those seen in humans.ConclusionThis study further demonstrates that YWHAE loss-of-function variants cause a neurodevelopmental disease with brain abnormalities.  相似文献   

17.
《Genetics in medicine》2023,25(2):100332
PurposeThis study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities.MethodsWe performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells.ResultsIn the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells.ConclusionWe established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities.  相似文献   

18.
PurposeDysregulation of RAS or its major effector pathway is the molecular mechanism of RASopathies, a group of multisystemic congenital disorders. Neurologic complications are especially challenging in the management of the rare RASopathy cardiofaciocutaneous (CFC) syndrome. This study evaluated clinical neurologic and neurodevelopmental features and their associations with CFC syndrome gene variants.MethodsA multinational cohort of 138 individuals with CFC syndrome (BRAF = 90, MAP2K1 = 36, MAP2K2 = 10, KRAS = 2) was recruited. Neurologic presentation was captured via clinician review of medical records and caregiver-completed electronic surveys. Validated measures of seizure severity, adaptive function, and gross motor function were obtained.ResultsThe overall frequency of intellectual disability and seizures was 82% and 55%, respectively. The frequency and severity of seizures was higher among individuals with BRAF or MAP2K1 variants than in those with MAP2K2 variants. A disproportionate incidence of severe, treatment-resistant seizures was observed in patients with variants in the catalytic protein kinase domain of BRAF and at the common p.Y130 site of MAP2K1. Neurodevelopmental outcomes were associated with genotype as well as seizure severity.ConclusionMolecular genetic testing can aid in prediction of epilepsy and neurodevelopmental phenotypes in CFC syndrome. Study results identified potential CFC syndrome-associated variants in the development of relevant animal models for neurologic, neurocognitive, and motor function impairment.  相似文献   

19.
The family of Tre2‐Bub2‐Cdc16 (TBC)‐domain containing GTPase activating proteins (RABGAPs) is not only known as key regulatorof RAB GTPase activity but also has GAP‐independent functions. Rab GTPases are implicated in membrane trafficking pathways, such as vesicular trafficking. We report biallelic loss‐of‐function variants in TBC1D2B, encoding a member of the TBC/RABGAP family with yet unknown function, as the underlying cause of cognitive impairment, seizures, and/or gingival overgrowth in three individuals from unrelated families. TBC1D2B messenger RNA amount was drastically reduced, and the protein was absent in fibroblasts of two patients. In immunofluorescence analysis, ectopically expressed TBC1D2B colocalized with vesicles positive for RAB5, a small GTPase orchestrating early endocytic vesicle trafficking. In two independent TBC1D2B CRISPR/Cas9 knockout HeLa cell lines that serve as cellular model of TBC1D2B deficiency, epidermal growth factor internalization was significantly reduced compared with the parental HeLa cell line suggesting a role of TBC1D2B in early endocytosis. Serum deprivation of TBC1D2B‐deficient HeLa cell lines caused a decrease in cell viability and an increase in apoptosis. Our data reveal that loss of TBC1D2B causes a neurodevelopmental disorder with gingival overgrowth, possibly by deficits in vesicle trafficking and/or cell survival.  相似文献   

20.
《Genetics in medicine》2019,21(8):1797-1807
PurposeHaploinsufficiency of USP7, located at chromosome 16p13.2, has recently been reported in seven individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), autism spectrum disorder (ASD), seizures, and hypogonadism. Further, USP7 was identified to critically incorporate into the MAGEL2-USP7-TRIM27 (MUST), such that pathogenic variants in USP7 lead to altered endosomal F-actin polymerization and dysregulated protein recycling.MethodsWe report 16 newly identified individuals with heterozygous USP7 variants, identified by genome or exome sequencing or by chromosome microarray analysis. Clinical features were evaluated by review of medical records. Additional clinical information was obtained on the seven previously reported individuals to fully elucidate the phenotypic expression associated with USP7 haploinsufficiency.ResultsThe clinical manifestations of these 23 individuals suggest a syndrome characterized by DD/ID, hypotonia, eye anomalies,feeding difficulties, GERD, behavioral anomalies, and ASD, and more specific phenotypes of speech delays including a nonverbal phenotype and abnormal brain magnetic resonance image findings including white matter changes based on neuroradiologic examination.ConclusionThe consistency of clinical features among all individuals presented regardless of de novo USP7 variant type supports haploinsufficiency as a mechanism for pathogenesis and refines the clinical impact faced by affected individuals and caregivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号