首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubule-associated protein 1A/1B-light chain 3 (LC3)-II is essential for autophagosome formation and is widely used to monitor autophagic activity. We show that CGK733 induces LC3 II and LC3-puncta accumulation, which are not involved in the activation of autophagy. The treatment of CGK733 did not alter the autophagic flux and was unrelated to p62 degradation. Treatment with CGK733 activated the AMP-activated protein kinase (AMPK) and protein kinase RNA-like endoplasmic reticulum kinase/CCAAT-enhancer-binding protein homologous protein (PERK/CHOP) pathways and elevated the expression of p21Waf1/Cip1. Inhibition of both AMPK and PERK/CHOP pathways by siRNA or chemical inhibitor could block CGK733-induced p21Waf1/Cip1 expression as well as caspase-3 cleavage. Knockdown of LC3 B (but not LC3 A) abolished CGK733-triggered LC3 II accumulation and consequently diminished AMPK and PERK/CHOP activity as well as p21Waf1/Cip1 expression. Our results demonstrate that CGK733-triggered LC3 II formation is an initial event upstream of the AMPK and PERK/CHOP pathways, both of which control p21Waf1/Cip1 expression.  相似文献   

2.
5-Fluorouracil (5-FU) is a commonly used chemotherapeutic agent for various cancers. However, the drug resistance developed by tumor cells hinders the therapeutic effect. Konjac glucomannan (KGM) is indicated to sensitize 5-FU-resistant hepatocellular carcinoma (HCC) cells to 5-FU. In our study, we found that KGM or 5-FU treatment alone did not affect the malignant cell behaviors and endoplasmic reticulum (ER) stress of 5-FU-resistant HCC cells or HepG2/5-FU and Bel-7402/5-FU cells, while cotreatment with KGM and 5-FU significantly facilitated HCC cell apoptosis and ER stress and suppressed cell proliferation potential and migration abilities. Moreover, we explored the underlying mechanism by which KGM induces 5-FU cytotoxicity in HCC cells. We found that Toll-like receptor 4 (TLR4) was downregulated in KGM- and 5-FU-treated HCC cells. TLR4 overexpression reversed the KGM and 5-FU cotreatment-induced inhibition of the malignant behaviors of 5-FU-resistant HCC cells. Furthermore, KGM enhanced 5-FU-induced ER stress by inhibiting TLR4 to activate PERK/ATF4/CHOP signaling. Xenograft mouse models were established using HepG2/5-FU cells, and KGM was demonstrated to reverse 5-FU resistance in HCC tumors in vivo by suppressing TLR4 to enhance ER stress and activate PERK/ATF4/CHOP signaling. In conclusion, KGM combined with 5-FU treatment significantly promoted apoptosis and reduced cell proliferation, migration and ER stress in 5-FU-resistant HCC cells compared with KGM or 5-FU treatment alone by downregulating TLR4 to activate PERK/ATF4/CHOP signaling.  相似文献   

3.
Development of resistance to TNF‐related apoptosis‐inducing ligand (TRAIL) in tumor cells is one of the important problems in cancer treatment. Despite the previous report demonstrating that oligomycin suppressed TNF‐induced apoptosis, in our screening of small molecules enhancing cancer cell death to TRAIL, oligomycin A (OMA) was found to enhance TRAIL‐induced apoptosis in HeLa cells. CCAAT/enhancer‐binding protein homologous protein (CHOP) was found to directly bind to death receptor 5 (DR5) promoter through endoplasmic reticulum stress (ER‐stress) signaling and sensitize the cells to TRAIL. Among ER‐stress associated proteins, OMA triggered the inositol‐requiring enzyme 1 (IRE1) signaling pathway, leading to X‐binding protein 1 (XBP1) splicing, CHOP expression and DR5 upregulation. In contrast, small‐interfering RNA (siRNA) of CHOP reduced the number of apoptotic cells in response to the co‐treatment of TRAIL and OMA. Collectively, our data suggest that OMA enhances apoptotic death of cervical cancer cells to TRAIL through upregulation of CHOP‐mediated DR5 expression following ER‐stress. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Hepatocellular carcinoma (HCC) is one of the most aggressive malignant diseases and is highly resistant to conventional chemotherapy. Therefore, HCC requires more effective prevention and treatment strategies. 5-fluorouracil (5-FU) remains the most widely used chemotherapeutic drug for the treatment of gastrointestinal, breast, head and neck, and ovarian cancers. In pursuit of a novel effective strategy, we have evaluated the potential of 5-FU to promote endoplasmic reticulum (ER) stress and autophagy in Sk-Hep1 HCC cells. We found that 5-FU profoundly induces ER stress in Sk-Hep1 cells and upregulates p53 and activates CHOP/GADD153 and caspase-12. Activation of CHOP/GADD153 and caspase-12 promotes mitochondrial cell death in Sk-Hep1 cells followed by ER stress. Changes in calcium homeostasis and the protein folding machinery cause stress in the ER, leading to apoptotic cell death. Stress in the ER activates autophagy to remove the misfolded protein aggregates and recover from the stress environment. Our study demonstrates that 5-FU-induced ER stress suppresses autophagy and also downregulates GRP78 expression. Activation of autophagy followed by ER stress facilitates the cell survival response. Therefore, the inhibition of protective autophagy may provide a useful pharmacological target. Taken together, these results indicate that 5-FU-induced ER stress activates the mitochondrial apoptotic cell death pathway by downregulating GRP78 and protective autophagy proteins in Sk-Hep1 cells, raising the possibility of using 5-FU as a therapeutic agent to target human HCC.  相似文献   

5.
6.
7.
8.
9.
In neuroblastoma LAN‐1 cells harboring an amplified MycN gene, disruption of cooperation between Ras and MycN proteins by the Ras inhibitor farnesylthiosalicylic acid (FTS, Salirasib) reportedly arrests cell growth. Our aim was to establish whether this is a general phenomenon. We examined the effects of FTS on gene‐expression profiles, growth and death of NCIH929 myeloma cells and K562 leukemia cells, which—like LAN‐1 cells—exhibit Myc gene amplification and harbor active Ras. Under specified conditions, FTS reduced Ras and Myc and induced cell growth arrest and death in all Myc‐amplified cell lines but not in SHEP, a neuroblastoma cell line without Myc gene amplification. Gene‐expression analysis revealed a common pattern of FTS‐induced endoplasmic reticulum (ER) stress, known as the unfolded protein response (UPR), in Myc‐amplified cells, but not in SHEP. Thus, Ras negatively regulates ER stress in cells with amplified Myc. ER stress was also inducible by dominant‐negative (DN)‐Ras or shRNA to Ras isoforms, all of which induced an increase in BIP (the master regulator of ER stress) and its downstream targets Nrf2 and eIF2α, both regulated by active p‐PERK. FTS also induced an increase in p‐PERK, while small interfering RNA to PERK reduced Nrf2 and ATF4 and rescued cells from FTS‐induced death. BIP and its downstream targets were also increased by inhibitors of MAPK p38 and MEK. Ras, acting through MAPK p38 and MEK, negatively regulates the ER stress cascades BIP/PERK/Nrf2 and eIF2α/ATF4/ATF3. These findings can explain the Ras‐dependent protection of Myc‐amplified cells from ER stress‐associated death.  相似文献   

10.
Fatty acid synthase (FAS), the cellular enzyme that synthesizes palmitate, is expressed at high levels in tumor cells and is vital for their survival. Through the synthesis of palmitate, FAS primarily drives the synthesis of phospholipids in tumor cells. In this study, we tested the hypothesis that the FAS inhibitors induce endoplasmic reticulum (ER) stress in tumor cells. Treatment of tumor cells with FAS inhibitors induces robust PERK-dependent phosphorylation of the translation initiation factor eIF2alpha and concomitant inhibition of protein synthesis. PERK-deficient transformed mouse embryonic fibroblasts and HT-29 colon carcinoma cells that express a dominant negative PERK (DeltaC-PERK) are hypersensitive to FAS inhibitor-induced cell death. Pharmacologic inhibition of FAS also induces the processing of X-box binding protein-1, indicating that the IRE1 arm of the ER stress response is activated when FAS is inhibited. Induction of ER stress is further confirmed by the increased expression of the ER stress-regulated genes CHOP, ATF4, and GRP78. FAS inhibitor-induced ER stress is activated prior to the detection of caspase 3 and PARP cleavage, primary indicators of cell death, whereas orlistat-induced cell death is rescued by coincubation with the global translation inhibitor cycloheximide. Lastly, FAS inhibitors cooperate with the ER stress inducer thapsigargin to enhance tumor cell killing. These results provide the first evidence that FAS inhibitors induce ER stress and establish an important mechanistic link between FAS activity and ER function.  相似文献   

11.
Endo H  Murata K  Mukai M  Ishikawa O  Inoue M 《Cancer research》2007,67(17):8095-8103
Malignant cells in solid tumors survive under prolonged hypoxia and can be a source of resistance to current cancer therapies. Mammalian target of rapamycin (mTOR), one of the downstream molecules of the insulin-like growth factor (IGF) pathway, is a key regulator of translation, integrating multiple environmental and nutritional cues. The activity of mTOR is known to be suppressed under hypoxic conditions in cancer cells, whereas the contribution of this suppression to cell survival has not yet been clarified. We show that stimulating IGF signaling provoked caspase-dependent apoptosis under low oxygen tension in two cancer cell lines, COLO 320 and AsPC-1. In concurrence with increased levels of BAD phosphorylation, cell death was not accompanied by cytochrome c release from mitochondria. The cells were rescued from apoptosis when phosphatidylinositol 3-kinase (PI3K) or mTOR activity was inhibited, suggesting that these signals are critical in the observed cell death. IGFs and insulin enhanced the endoplasmic reticulum (ER) stress response as monitored by induction of the CCAAT/enhancer binding protein homologous protein (CHOP) proteins and the X box protein-1 splicing under hypoxic conditions, and this response was suppressed by inhibiting PI3K and mTOR activity. IGF-induced cell death under hypoxic conditions was prevented by treatment with cycloheximide, suggesting that de novo protein synthesis is required. Indeed, suppression of CHOP protein levels with small hairpin RNA reduced cell death. Taken together, the data suggest that stimulating IGF signaling under hypoxic conditions provokes apoptosis by enhancing the ER stress response.  相似文献   

12.
Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP signaling pathway. PL selectively killed HCC cells but not normal hepatocytes with an IC50 of 10-20 μM while PL at much lower concentrations only suppressed HCC cell migration/invasion. PL selectively elevated reactive oxygen species (ROS) in HCC cells, which activated or up-regulated downstream PERK/Ire 1α/Grp78, p38/JNK/Erk and CHOP subsequently. Administration of antioxidants completely abolished PL''s effects on cell death and migration/invasion. However, pharmacological inhibition of ER stress-responses or MAPKs signaling pathways with corresponding specific inhibitors only reversed PL''s effect on cell migration/invasion but not on cell death. Consistently, knocking-down of CHOP by RNA interference only reversed PL-suppressed HCC cell migration. Finally, PL significantly suppressed HCC development and activated the ER-MAPKs-CHOP signaling pathway in HCC xenografts in vivo. Taken together, PL selectively killed HCC cells and preferentially inhibited HCC cell migration/invasion via ROS-ER-MAPKs-CHOP axis, suggesting a novel therapeutic strategy for the highly malignant and aggressive HCC clinically.  相似文献   

13.
14.
Autophagy has dual functions in cell survival and death. However, the effects of autophagy on cancer cell survival or death remain controversial. In this study, we show that Autophagy can mediate programmed cell death (PCD) of cancer cells in responding to cobalt chloride (CoCl2)-induced hypoxia in a Beclin-1-independent but autophagy protein 5 (ATG5)-dependent manner. Although ATG5 is not directly induced by CoCl2, its constitutive expression is essential for CoCl2-induced PCD. The ATG5-mediated autophagic PCD requires interplays with endoplasmic reticulum (ER) and/or mitochondria. In this process, ATG5 plays a central role in regulating ER stress protein CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) and mitochondrial protein second mitochondria derived activator of caspases (Smac). Two pathways for autophagic PCD in cancer cells responding to hypoxia have been identified: ATG5/CHOP/Smac pathway and ATG5/Smac pathway, which are probably dependent on the context of cell lines. The former is more potent than the latter for the induction of PCD at the early stage of hypoxia, although the ultimate efficiency of both pathways is comparable. In addition, both pathways may require ATG5-mediated conversion of LC3-I into LC3-II. Therefore, we have defined two autophagy-mediated pathways for the PCD of cancer cells in hypoxia, which are dependent on ATG5, interplayed with ER and mitochondria and tightly regulated by hypoxic status. The findings provide a new evidence that autophagy may inhibit tumor cell proliferation through trigger of PCD, facilitating the development of novel anti-cancer drugs.  相似文献   

15.
Oridonin has been shown to exhibit therapeutic effects against hepatocellular carcinoma (HCC) in vitro and in vivo. This study aimed to identify the anti-HCC mechanisms of oridonin in HepG2 cells using proteomic and functional analyses. MTT assay showed that oridonin treatment for 24 hours dose-dependently inhibited cell growth with an IC(50) value of 40.4 μM. Treatment with 40 μM oridonin for 24 hours induced apoptosis determined by nuclear morphologic changes of DAPI-stained cells and flow cytometric analysis of annexin V-FITC/PI-stained cells, which was accompanied by Grp78 upregulation and α-CP1 downregulation identified by proteomic analysis. Immunoblot analysis for the endoplasmic reticulum (ER) stress- related proteins demonstrated that the expression levels of phosphorylated PERK (p-PERK) and CHOP were increased, whereas PERK, ATF-6, and IRE-1 expression levels were decreased. Knockdown of α-CP1 expression with siRNA significantly increased cell death and apoptosis in control and oridonin-treated HepG2 cells. Together, these data provide proteomic and functional evidence for the potential involvement of ER stress and α-CP1 in the antiproliferative and apoptotic activities of oridonin in HepG2 cells, which shed new light on the action mechanisms of oridonin in HCC management.  相似文献   

16.
17.

Background and purpose

The unfolded protein response (UPR) is activated in response to hypoxia-induced stress in the endoplasmic reticulum (ER) and consists of three distinct signaling arms. Here we explore the potential of targeting two of these arms with new potent small-molecule inhibitors designed against IRE1α and PERK.

Methods

We utilized shRNAs and small-molecule inhibitors of IRE1α (4μ8c) and PERK (GSK-compound 39). XBP1 splicing and DNAJB9 mRNA was measured by qPCR and was used to monitor IRE1α activity. PERK activity was monitored by immunoblotting eIF2α phosphorylation and qPCR of DDIT3 mRNA. Hypoxia tolerance was measured using proliferation and clonogenic cell survival assays of cells exposed to mild or severe hypoxia in the presence of the inhibitors.

Results

Using knockdown experiments we show that PERK is essential for survival of KP4 cells while knockdown of IRE1α dramatically decreases the proliferation and survival of HCT116 during hypoxia. Further, we show that in response to both hypoxia and other ER stress-inducing agents both 4μ8c and the PERK inhibitor are selective and potent inhibitors of IRE1α and PERK activation, respectively. However, despite potent inhibition of IRE1α activation, 4μ8c had no effect on cell proliferation or clonogenic survival of cells exposed to hypoxia. This was in contrast to the inactivation of PERK signaling with the PERK inhibitor, which reduced tolerance to hypoxia and other ER stress inducing agents.

Conclusions

Our results demonstrate that IRE1α but not its splicing activity is important for hypoxic cell survival. The PERK signaling arm is uniquely important for promoting adaptation and survival during hypoxia-induced ER stress and should be the focus of future therapeutic efforts.  相似文献   

18.
Energetic carbon ions (CI) offer great advantages over conventional radiations such as X- or γ-rays in cancer radiotherapy. High linear energy transfer (LET) CI can induce both endoplasmic reticulum (ER) stress and autophagy in tumor cells under certain circumstances. The molecular connection between ER stress and autophagy in tumor exposed to high-LET radiation and how these two pathways influence the therapeutic effect against tumor remain poorly understood. In this work, we studied the impact of autophagy and apoptosis induced by ER stress following high-LET CI radiation on the radiosensitivity of S180 cells both in vitro and in vivo. In the in vitro experiment, X-rays were also used as a reference radiation. Our results documented that the combination of CI radiation with chloroquine (CQ), a special autophagy inhibitor, produced more pronounced proliferation suppression in S180 cells and xenograft tumors. Co-treatment with CI radiation and CQ could block autophagy through the IRE1/JNK/Beclin-1 axis and enhance apoptotic cell death via the activation of C/EBP homologous protein (CHOP) by the IRE1 pathway rather than PERK in vitro and in vivo. Thus, our study indicates that inhibiting autophagy might be a promising therapeutic strategy in CI radiotherapy via aggravating the ER stress-related apoptosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号