首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Genetics in medicine》2023,25(2):100332
PurposeThis study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities.MethodsWe performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells.ResultsIn the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells.ConclusionWe established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities.  相似文献   

2.
3.
Defects in the motor domain of kinesin family member 1A (KIF1A), a neuron‐specific ATP‐dependent anterograde axonal transporter of synaptic cargo, are well‐recognized to cause a spectrum of neurological conditions, commonly known as KIF1A‐associated neurological disorders (KAND). Here, we report one mutation‐negative female with classic Rett syndrome (RTT) harboring a de novo heterozygous novel variant [NP_001230937.1:p.(Asp248Glu)] in the highly conserved motor domain of KIF1A. In addition, three individuals with severe neurodevelopmental disorder along with clinical features overlapping with KAND are also reported carrying de novo heterozygous novel [NP_001230937.1:p.(Cys92Arg) and p.(Pro305Leu)] or previously reported [NP_001230937.1:p.(Thr99Met)] variants in KIF1A. In silico tools predicted these variants to be likely pathogenic, and 3D molecular modeling predicted defective ATP hydrolysis and/or microtubule binding. Using the neurite tip accumulation assay, we demonstrated that all novel KIF1A variants significantly reduced the ability of the motor domain of KIF1A to accumulate along the neurite lengths of differentiated SH‐SY5Y cells. In vitro microtubule gliding assays showed significantly reduced velocities for the variant p.(Asp248Glu) and reduced microtubule binding for the p.(Cys92Arg) and p.(Pro305Leu) variants, suggesting a decreased ability of KIF1A to move along microtubules. Thus, this study further expanded the phenotypic characteristics of KAND individuals with pathogenic variants in the KIF1A motor domain to include clinical features commonly seen in RTT individuals.  相似文献   

4.
《Genetics in medicine》2023,25(11):100922
PurposeRPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders.MethodsBy using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants.ResultsFour cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology.ConclusionOverall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.  相似文献   

5.
《Genetics in medicine》2020,22(11):1759-1767
PurposeCongenital hypogonadotropic hypogonadism (CHH) is a rare disorder resulting in absent puberty and infertility. The genetic architecture is complex with multiple loci involved, variable expressivity, and incomplete penetrance. The majority of cases are sporadic, consistent with a disease affecting fertility. The current study aims to investigate mosaicism as a genetic mechanism for CHH, focusing on de novo rare variants in CHH genes.MethodsWe evaluated 60 trios for de novo rare sequencing variants (RSV) in known CHH genes using exome sequencing. Potential mosaicism was suspected among RSVs with altered allelic ratios and confirmed using customized ultradeep sequencing (UDS) in multiple tissues.ResultsAmong the 60 trios, 10 probands harbored de novo pathogenic variants in CHH genes. Custom UDS demonstrated that three of these de novo variants were in fact postzygotic mosaicism—two in FGFR1 (p.Leu630Pro and p.Gly348Arg), and one in CHD7 (p.Arg2428*). Statistically significant variation across multiple tissues (DNA from blood, buccal, hair follicle, urine) confirmed their mosaic nature.ConclusionsWe identified a significant number of de novo pathogenic variants in CHH of which a notable number (3/10) exhibited mosaicism. This report of postzygotic mosaicism in CHH patients provides valuable information for accurate genetic counseling.  相似文献   

6.
《Genetics in medicine》2021,23(10):1922-1932
PurposeCACNA1C encodes the alpha-1-subunit of a voltage-dependent L-type calcium channel expressed in human heart and brain. Heterozygous variants in CACNA1C have previously been reported in association with Timothy syndrome and long QT syndrome. Several case reports have suggested that CACNA1C variation may also be associated with a primarily neurological phenotype.MethodsWe describe 25 individuals from 22 families with heterozygous variants in CACNA1C, who present with predominantly neurological manifestations.ResultsFourteen individuals have de novo, nontruncating variants and present variably with developmental delays, intellectual disability, autism, hypotonia, ataxia, and epilepsy. Functional studies of a subgroup of missense variants via patch clamp experiments demonstrated differential effects on channel function in vitro, including loss of function (p.Leu1408Val), neutral effect (p.Leu614Arg), and gain of function (p.Leu657Phe, p.Leu614Pro). The remaining 11 individuals from eight families have truncating variants in CACNA1C. The majority of these individuals have expressive language deficits, and half have autism.ConclusionWe expand the phenotype associated with CACNA1C variants to include neurodevelopmental abnormalities and epilepsy, in the absence of classic features of Timothy syndrome or long QT syndrome.  相似文献   

7.
《Genetics in medicine》2022,24(12):2464-2474
PurposeKLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20.MethodsPatients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed.ResultsWe studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type β-propeller domain of the KLHL20 protein, which shapes the substrate binding surface.ConclusionOur findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.  相似文献   

8.
9.
Pontocerebellar Hypoplasia type 1 is a rare heterogeneous neurodegenerative disorder with multiple subtypes linked to dysfunction of the exosome complex. Patients with mutations in exosome subunits exhibit a generally lethal phenotype characterized by cerebellar and pontine hypoplasia in association with spinal motor neuropathy and multiple systemic and neurologic features. Recently, two variants in the novel PCH1 associated protein EXOSC9 p.(Leu14Pro) and p.(Arg161*) have been identified in 4 unrelated patients exhibiting a severe phenotype involving cerebellar hypoplasia, axonal motor neuropathy, hypotonia, feeding difficulties, and respiratory insufficiency (PCH1D). We report clinical and molecular characterization of 2 unrelated patients exhibiting a relatively milder phenotype involving hypotonia, brachycephaly, cerebellar atrophy, psychomotor delay, as well as lactic acidosis and aberrant CNS myelination, resulting from the recurring homozygous missense mutation NM_001034194.1: c.41T>C; p.(Leu14Pro) in the EXOSC9 gene. We review the clinical picture of the EXOSC9-related PCH disorder.  相似文献   

10.
PRICKLE2 encodes a member of a highly conserved family of proteins that are involved in the non-canonical Wnt and planar cell polarity signaling pathway. Prickle2 localizes to the post-synaptic density, and interacts with post-synaptic density protein 95 and the NMDA receptor. Loss-of-function variants in prickle2 orthologs cause seizures in flies and mice but evidence for the role of PRICKLE2 in human disease is conflicting. Our goal is to provide further evidence for the role of this gene in humans and define the phenotypic spectrum of PRICKLE2-related disorders. We report a cohort of six subjects from four unrelated families with heterozygous rare PRICKLE2 variants (NM_198859.4). Subjects were identified through an international collaboration. Detailed phenotypic and genetic assessment of the subjects were carried out and in addition, we assessed the variant pathogenicity using bioinformatic approaches. We identified two missense variants (c.122 C > T; p.(Pro41Leu), c.680 C > G; p.(Thr227Arg)), one nonsense variant (c.214 C > T; p.(Arg72*) and one frameshift variant (c.1286_1287delGT; p.(Ser429Thrfs*56)). While the p.(Ser429Thrfs*56) variant segregated with disease in a family with three affected females, the three remaining variants occurred de novo. Subjects shared a mild phenotype characterized by global developmental delay, behavioral difficulties ± epilepsy, autistic features, and attention deficit hyperactive disorder. Computational analysis of the missense variants suggest that the altered amino acid residues are likely to be located in protein regions important for function. This paper demonstrates that PRICKLE2 is involved in human neuronal development and that pathogenic variants in PRICKLE2 cause neurodevelopmental delay, behavioral difficulties and epilepsy in humans.Subject terms: Autism spectrum disorders, Genetics of the nervous system, Paediatric neurological disorders  相似文献   

11.
Cantú syndrome (CS) is a rare developmental disorder characterized by a coarse facial appearance, macrocephaly, hypertrichosis, skeletal and cardiovascular anomalies and caused by heterozygous gain-of-function variants in ABCC9 and KCNJ8, encoding subunits of heterooctameric ATP-sensitive potassium (KATP) channels. CS shows considerable clinical overlap with Zimmermann-Laband syndrome (ZLS), a rare condition with coarse facial features, hypertrichosis, gingival overgrowth, intellectual disability of variable degree, and hypoplasia or aplasia of terminal phalanges and/or nails. ZLS is caused by heterozygous gain-of-function variants in KCNH1 or KCNN3, and gain-of-function KCNK4 variants underlie the clinically similar FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual disability/developmental delay, and gingival overgrowth) syndrome; KCNH1, KCNN3 and KCNK4 encode potassium channels. Within our research project on ZLS, we performed targeted Sanger sequencing of ABCC9 in 15 individuals tested negative for a mutation in the ZLS-associated genes and found two individuals harboring a heterozygous pathogenic ABCC9 missense variant. Through a collaborative effort, we identified a total of nine individuals carrying a monoallelic ABCC9 variant: five sporadic patients and four members of two unrelated families. Among the six detected ABCC9 missense variants, four [p.(Pro252Leu), p.(Thr259Lys), p.(Ala1064Pro), and p.(Arg1197His)] were novel. Systematic assessment of the clinical features in the nine cases with an ABCC9 variant highlights the significant clinical overlap between ZLS and CS that includes early developmental delay, hypertrichosis, gingival overgrowth, joint laxity, and hypoplasia of terminal phalanges and nails. Gain of K+ channel activity possibly accounts for significant clinical similarities of CS, ZLS and FHEIG syndrome and defines a new subgroup of potassium channelopathies.  相似文献   

12.
《Genetics in medicine》2021,23(8):1465-1473
PurposeWe characterize the clinical and molecular phenotypes of six unrelated individuals with intellectual disability and autism spectrum disorder who carry heterozygous missense variants of the PRKAR1B gene, which encodes the R1β subunit of the cyclic AMP-dependent protein kinase A (PKA).MethodsVariants of PRKAR1B were identified by single- or trio-exome analysis. We contacted the families and physicians of the six individuals to collect phenotypic information, performed in vitro analyses of the identified PRKAR1B-variants, and investigated PRKAR1B expression during embryonic development.ResultsRecent studies of large patient cohorts with neurodevelopmental disorders found significant enrichment of de novo missense variants in PRKAR1B. In our cohort, de novo origin of the PRKAR1B variants could be confirmed in five of six individuals, and four carried the same heterozygous de novo variant c.1003C>T (p.Arg335Trp; NM_001164760). Global developmental delay, autism spectrum disorder, and apraxia/dyspraxia have been reported in all six, and reduced pain sensitivity was found in three individuals carrying the c.1003C>T variant. PRKAR1B expression in the brain was demonstrated during human embryonal development. Additionally, in vitro analyses revealed altered basal PKA activity in cells transfected with variant-harboring PRKAR1B expression constructs.ConclusionOur study provides strong evidence for a PRKAR1B-related neurodevelopmental disorder.  相似文献   

13.
Noonan syndrome (NS) is a developmental disorder characterized by short stature, facial dysmorphisms and congenital heart defects. To date, all mutations known to cause NS are dominant, activating mutations in signal transducers of the RAS/mitogen-activated protein kinase (MAPK) pathway. In 25% of cases, however, the genetic cause of NS remains elusive, suggesting that factors other than those involved in the canonical RAS/MAPK pathway may also have a role. Here, we used family-based whole exome sequencing of a case–parent trio and identified a de novo mutation, p.(Arg802His), in A2ML1, which encodes the secreted protease inhibitor α-2-macroglobulin (A2M)-like-1. Subsequent resequencing of A2ML1 in 155 cases with a clinical diagnosis of NS led to the identification of additional mutations in two families, p.(Arg802Leu) and p.(Arg592Leu). Functional characterization of these human A2ML1 mutations in zebrafish showed NS-like developmental defects, including a broad head, blunted face and cardiac malformations. Using the crystal structure of A2M, which is highly homologous to A2ML1, we identified the intramolecular interaction partner of p.Arg802. Mutation of this residue, p.Glu906, induced similar developmental defects in zebrafish, strengthening our conclusion that mutations in A2ML1 cause a disorder clinically related to NS. This is the first report of the involvement of an extracellular factor in a disorder clinically related to RASopathies, providing potential new leads for better understanding of the molecular basis of this family of developmental diseases.  相似文献   

14.
DExH-box helicases are involved in unwinding of RNA and DNA. Among the 16 DExH-box genes, monoallelic variants of DHX16, DHX30, DHX34, and DHX37 are known to be associated with neurodevelopmental disorders. In particular, DHX30 is well established as a causative gene for neurodevelopmental disorders. Germline variants of DHX9, the closest homolog of DHX30, have not been reported until now as being associated with congenital disorders in humans, except that one de novo heterozygous variant, p.(Arg1052Gln) of the gene was identified during comprehensive screening in a patient with autism; unfortunately, the phenotypic details of this individual are unknown. Herein, we report a patients with a heterozygous de novo missense variant, p.(Gly414Arg) of DHX9 who presented with a short stature, intellectual disability, and ventricular non-compaction cardiomyopathy. The variant was located in the glycine codon of the ATP-binding site, G-C-G-K-T. To assess the pathogenicity of these variants, we generated transgenic Drosophila lines expressing human wild-type and mutant DHX9 proteins: 1) the mutant proteins showed aberrant localization both in the nucleus and the cytoplasm; 2) ectopic expression of wild-type protein in the visual system led to the rough eye phenotype, whereas expression of the mutant proteins had minimal effect; 3) overexpression of the wild-type protein in the retina led to a reduction in axonal numbers, whereas expression of the mutant proteins had a less pronounced effect. Furthermore, in a gene-editing experiment of Dhx9 G416 to R416, corresponding to p.(Gly414Arg) in humans, heterozygous mice showed a reduced body size, reduced emotionality, and cardiac conduction abnormality. In conclusion, we established that heterozygosity for a loss-of-function variant of DHX9 can lead to a new neurodevelopmental disorder.  相似文献   

15.
《Genetics in medicine》2023,25(1):90-102
PurposeBrain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype–phenotype correlations in individuals with biallelic SLC18A2 variants.MethodsA total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype–phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies.ResultsA total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities.ConclusionThese data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.  相似文献   

16.
17.
Gross deletions involving the MEIS2 gene have been described in a small number of patients with overlapping phenotypes of atrial or ventricular septal defects, cleft palate, and variable developmental delays and intellectual disability. Non‐specific dysmorphic features were noted in some patients, including broad forehead with high anterior hairline, arched eyebrows, thin or tented upper lip, and short philtrum. Recently, a patient with a de novo single amino acid deletion, c.998_1000delGAA (p.Arg333del), and a patient with a de novo nonsense variant, (c.611C>G, p.Ser204*), were reported with a similar, but apparently more severe phenotypes. Clinical whole exome sequencing (WES) performed at our clinical molecular diagnostic laboratory identified four additional patients with predicted damaging de novo MEIS2 missense variants. Our patients’ features closely resembled those previously reported in patients with gross deletions, but also included some less commonly reported features, such as autism spectrum disorder, hearing loss, and short stature, as well as features that may be unique to nucleotide‐level variants, such as hypotonia, failure to thrive, gastrointestinal, skeletal, limb, and skin abnormalities. All of the observed missense variants, Pro302Leu, Gln322Leu, Arg331Lys, and Val335Ala, are located in the functionally important MEIS2 homeodomain. Pro302Leu is found in the region between helix 1 and helix 2, while the other three are located in the DNA‐binding helix 3. To our knowledge, these are the first described de novo missense variants in MEIS2, expanding the known mutation spectrum of the newly recognized human disorder caused by aberrations in this gene.  相似文献   

18.
《Genetics in medicine》2023,25(8):100885
PurposeMissense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability.MethodsBy international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro.ResultsIn accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well.ConclusionBy identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.  相似文献   

19.
Encoding the slow skeletal muscle isoform of myosin binding protein‐C, MYBPC1 is associated with autosomal dominant and recessive forms of arthrogryposis. The authors describe a novel association for MYBPC1 in four patients from three independent families with skeletal muscle weakness, myogenic tremors, and hypotonia with gradual clinical improvement. The patients carried one of two de novo heterozygous variants in MYBPC1, with the p.Leu263Arg variant seen in three individuals and the p.Leu259Pro variant in one individual. Both variants are absent from controls, well conserved across vertebrate species, predicted to be damaging, and located in the M‐motif. Protein modeling studies suggested that the p.Leu263Arg variant affects the stability of the M‐motif, whereas the p.Leu259Pro variant alters its structure. In vitro biochemical and kinetic studies demonstrated that the p.Leu263Arg variant results in decreased binding of the M‐motif to myosin, which likely impairs the formation of actomyosin cross‐bridges during muscle contraction. Collectively, our data substantiate that damaging variants in MYBPC1 are associated with a new form of an early‐onset myopathy with tremor, which is a defining and consistent characteristic in all affected individuals, with no contractures. Recognition of this expanded myopathic phenotype can enable identification of individuals with MYBPC1 variants without arthrogryposis.  相似文献   

20.
Mutations in LMNA gene produce a wide spectrum of disorders called laminopathies. In this article, the first cases of laminopathies from Russia are reported. In 10 unrelated families, 9 different mutations were identified: Asp47His, Gly232Arg, c.[781_783delAAG, 781insGTGGAGCAGTATAAGAAA], Arg249Gln (in two families), Arg377His, Arg541His, Ala350Pro, Leu52Pro, and Gly635Asp. Mutations Arg249Gln, Arg377His, and Arg541His were reported previously, others are novel. Four cases present de novo mutations, among them two cases with Arg249Gln are found. Because this mutation occurred de novo also in other reported cases, a mutational 'hot spot' was supposed. Three phenotypes were observed: autosomal dominant (AD) Emery–Dreifuss muscular dystrophy (EDMD), limb-girdle MD type 1B, and AD dilated cardiomyopathy with conduction defect type 1A (DCM1A). Atypical clinical presentations were a very severe EDMD and an infantile DCM1A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号