首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K+ channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K+ channel motif coupled to a cytoplasmic domain that mediates subfamily-exclusive assembly (T1). We traced the origin of this unique Shaker subunit structure to a common ancestor of ctenophores and parahoxozoans (cnidarians, bilaterians, and placozoans). Thus, the Shaker family is metazoan specific but is likely to have evolved in a basal metazoan. Phylogenetic analysis suggested that the Shaker subfamily could predate the divergence of ctenophores and parahoxozoans, but that the Shab, Shal, and Shaw subfamilies are parahoxozoan specific. In support of this, putative ctenophore Shaker subfamily channel subunits coassembled with cnidarian and mouse Shaker subunits, but not with cnidarian Shab, Shal, or Shaw subunits. The KCNQ family, which has a distinct subunit structure, also appears solely within the parahoxozoan lineage. Functional analysis indicated that the characteristic properties of Shaker, Shab, Shal, Shaw, and KCNQ currents evolved before the divergence of cnidarians and bilaterians. These results show that a major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans and imply that many fundamental mechanisms for the regulation of action potential propagation evolved at this time. Our results further suggest that there are likely to be substantial differences in the regulation of neuronal excitability between ctenophores and parahoxozoans.Voltage-gated K+ channels are highly conserved among bilaterian metazoans and play a central role in the regulation of excitation in neurons and muscle. Understanding the functional evolution of these channels may therefore provide important insights into how neuromuscular excitation evolved within the Metazoa. Three major gene families, Shaker, KCNQ, and Ether-a-go-go (EAG) encode all voltage-gated K+ channels in bilaterians (1, 2). In this study, we examine the functional evolution and origins of the Shaker and KCNQ gene families. Shaker family channels can be definitively identified by a unique subunit structure that includes both a voltage-gated K+ channel core and a family-specific cytoplasmic domain within the N terminus known as the T1 domain. T1 mediates assembly of Shaker family subunits into functional tetrameric channels (3, 4). KCNQ channels are also tetrameric but lack a T1 domain and use a distinct coiled-coil assembly domain in the C terminus (5, 6). KCNQ channels can be identified by the presence of this family-specific assembly motif and high amino acid conservation within the K+ channel core. Both channel families are found in cnidarians (1, 7) and thus predate the divergence of cnidarians and bilaterians, but their ultimate evolutionary origins have not yet been defined.Shaker family K+ channels serve diverse roles in the regulation of neuronal firing and can be divided into four gene subfamilies based on function and sequence homology: Shaker, Shab, Shal, and Shaw (8, 9). The T1 assembly domain is only compatible between subunits from the same gene subfamily (4, 10) and thus serves to keep the subfamilies functionally segregated. Shaker subfamily channels activate rapidly near action potential threshold and range from rapidly inactivating to noninactivating. Multiple roles for Shaker channels in neurons and muscles have been described, but their most unique and fundamental role may be that of axonal action potential repolarization. Shaker channels are clustered to the axon initial segment and nodes of Ranvier in vertebrate neurons (1113) and underlie the delayed rectifier in squid giant axons (14). The Shaker subfamily is diverse in cnidarians (15, 16), and the starlet sea anemone Nematostella vectensis has functional orthologs of most identified Shaker current types observed in bilaterians (16).The Shab and Shal gene subfamilies encode somatodendritic delayed rectifiers and A currents, respectively (1720). Shab channels are important for maintaining sustained firing (21, 22), whereas the Kv4-based A current modulates spike threshold and frequency (17). Shab and Shal channels are present in cnidarians, but cnidarian Shab channels have not been functionally characterized, and the only cnidarian Shal channels expressed to date display atypical voltage dependence and kinetics compared with bilaterian channels (23). Shaw channels are rapid, high-threshold channels specialized for sustaining fast firing in vertebrates (24, 25) but have a low activation threshold and may contribute to resting potential in Drosophila (19, 26, 27). A Caenorhabditis elegans Shaw has slow kinetics but a high activation threshold (28), and a single expressed cnidarian Shaw channel has the opposite: a low activation threshold but relatively fast kinetics (29). Thus, the ancestral properties and function of Shaw channels is not yet understood. Further functional characterization of cnidarian Shab, Shal, and Shaw channels would provide a better understanding of the evolutionary status of the Shaker family in early parahoxozoans.KCNQ family channels underlie the M current in vertebrate neurons (30) that regulates subthreshold excitability (31). The M current provides a fundamental mechanism for regulation of firing threshold through the Gq G-protein pathway because KCNQ channels require phosphatidylinositol 4,5-bisphosphate (PIP2) for activation (32, 33). PIP2 hydrolysis and subsequent KCNQ channel closure initiated by Gq-coupled receptors produces slow excitatory postsynaptic potentials, during which the probability of firing is greatly increased (32, 33). The key functional adaptations of KCNQ channels for this physiological role that can be observed in vitro are (i) a requirement for PIP2 to couple voltage-sensor activation to pore opening (34, 35), and (ii) a hyperpolarized voltage–activation curve that allows channels to open below typical action potential thresholds. Both key features are found in vertebrate (30, 34, 3638), Drosophila (39), and C. elegans (40) KCNQ channels, suggesting they may have been present in KCNQ channels in a bilaterian ancestor. Evolution of the M current likely represented a major advance in the ability to modulate the activity of neuronal circuits, but it is not yet clear when PIP2-dependent KCNQ channels first evolved.Here, we examine the origins and functional evolution of the Shaker and KCNQ gene families. If we assume the evolution of neuronal signaling provided a major selective pressure for the functional diversification of voltage-gated K+ channels, then we can hypothesize that the appearance of these gene families might accompany the emergence of the first nervous systems or a major event in nervous system evolution. Recent phylogenies that place the divergence of ctenophores near the root of the metazoan tree suggest that the first nervous systems, or at least the capacity to make neurons, may have been present in a basal metazoan ancestor (4143) (Fig. S1). One hypothesis then is that much of the diversity of metazoan voltage-gated channels should be shared between ctenophores and parahoxozoans [cnidarians, bilaterians, and placozoans (44)]. However, genome analysis indicates that many “typical” neuronal genes are missing in ctenophores and the sponges lack a nervous system, leading to the suggestion that extant nervous systems may have evolved independently in ctenophores and parahoxozoans (42, 45). Thus, a second hypothesis is that important steps in voltage-gated K+ channel evolution might have occurred separately in ctenophores and parahoxozoans. We tested these hypotheses by carefully examining the phylogenetic distribution and functional evolution of Shaker and KCNQ family K+ channels. Our results support a model in which major innovations in neuromuscular excitability occurred specifically within the parahoxozoan lineage.  相似文献   

2.
3.
What are the implications for the existence of subthreshold ion channels, their localization profiles, and plasticity on local field potentials (LFPs)? Here, we assessed the role of hyperpolarization-activated cyclic-nucleotide–gated (HCN) channels in altering hippocampal theta-frequency LFPs and the associated spike phase. We presented spatiotemporally randomized, balanced theta-modulated excitatory and inhibitory inputs to somatically aligned, morphologically realistic pyramidal neuron models spread across a cylindrical neuropil. We computed LFPs from seven electrode sites and found that the insertion of an experimentally constrained HCN-conductance gradient into these neurons introduced a location-dependent lead in the LFP phase without significantly altering its amplitude. Further, neurons fired action potentials at a specific theta phase of the LFP, and the insertion of HCN channels introduced large lags in this spike phase and a striking enhancement in neuronal spike-phase coherence. Importantly, graded changes in either HCN conductance or its half-maximal activation voltage resulted in graded changes in LFP and spike phases. Our conclusions on the impact of HCN channels on LFPs and spike phase were invariant to changes in neuropil size, to morphological heterogeneity, to excitatory or inhibitory synaptic scaling, and to shifts in the onset phase of inhibitory inputs. Finally, we selectively abolished the inductive lead in the impedance phase introduced by HCN channels without altering neuronal excitability and found that this inductive phase lead contributed significantly to changes in LFP and spike phase. Our results uncover specific roles for HCN channels and their plasticity in phase-coding schemas and in the formation and dynamic reconfiguration of neuronal cell assemblies.Local field potentials (LFPs) have been largely believed to be a reflection of the synaptic drive that impinges on a neuron. In recent experimental and modeling studies, there has been a lot of debate on the source and spatial extent of LFPs (19). However, most of these studies have used neurons with passive dendrites in their models and/or have largely focused on the contribution of spike-generating conductances to LFPs (7, 8, 10, 11). Despite the widely acknowledged regulatory roles of subthreshold-activated ion channels and their somatodendritic gradients in the physiology and pathophysiology of synapses and neurons (1217), the implications for their existence on LFPs and neuronal spike phase have surprisingly remained unexplored. This lacuna in LFP analysis is especially striking because local and widespread plasticity of these channels has been observed across several physiological and pathological conditions, translating to putative roles for these channels in neural coding, homeostasis, disease etiology and remedies, learning, and memory (16, 1823).In this study, we focus on the role of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that mediate the h current (Ih) in regulating LFPs and theta-frequency spike phase. From a single-neuron perspective, HCN channels in CA1 pyramidal neurons play a critical role in regulating neuronal integration and excitability (14, 2427) and importantly introduce an inductive phase lead in the voltage response to theta-frequency oscillatory inputs (28), thereby enabling intraneuronal synchrony of incoming theta-frequency inputs (29). Given these and their predominant dendritic expression (25), we hypothesized HCN channels as regulators of LFPs through their ability to alter the amplitude and phase of the intracellular voltage response, thereby altering several somatodendritic transmembrane currents that contribute to LFPs. The CA1 region of the hippocampus offers an ideal setup to test this hypothesis, given the regular, open-field organization (4, 6, 7) of the pyramidal neurons endowed with well-established somatodendritic gradients in ion channel densities (16). As this organization enables us to assess the role of location-dependent channel expression profiles on LFPs across different strata, we tested our hypothesis, using a computational scheme involving morphologically realistic, physiologically constrained conductance-based model neurons. Our results positively test our hypothesis and provide specific evidence for novel roles for HCN channels and their inductive component in regulating LFP and spike phases, apart from enhancing spike-phase coherence. These results identify definite roles for HCN channels in phase-coding schemas and in the formation and dynamic reconfiguration of neuronal cell assemblies and argue for the incorporation of subthreshold-activated ion channels, their gradients, and their plasticity into the computation of LFPs.  相似文献   

4.
In flowering plants, pollen tubes are guided into ovules by multiple attractants from female gametophytes to release paired sperm cells for double fertilization. It has been well-established that Ca2+ gradients in the pollen tube tips are essential for pollen tube guidance and that plasma membrane Ca2+ channels in pollen tube tips are core components that regulate Ca2+ gradients by mediating and regulating external Ca2+ influx. Therefore, Ca2+ channels are the core components for pollen tube guidance. However, there is still no genetic evidence for the identification of the putative Ca2+ channels essential for pollen tube guidance. Here, we report that the point mutations R491Q or R578K in cyclic nucleotide-gated channel 18 (CNGC18) resulted in abnormal Ca2+ gradients and strong pollen tube guidance defects by impairing the activation of CNGC18 in Arabidopsis. The pollen tube guidance defects of cngc18-17 (R491Q) and of the transfer DNA (T-DNA) insertion mutant cngc18-1 (+/−) were completely rescued by CNGC18. Furthermore, domain-swapping experiments showed that CNGC18’s transmembrane domains are indispensable for pollen tube guidance. Additionally, we found that, among eight Ca2+ channels (including six CNGCs and two glutamate receptor-like channels), CNGC18 was the only one essential for pollen tube guidance. Thus, CNGC18 is the long-sought essential Ca2+ channel for pollen tube guidance in Arabidopsis.Pollen tubes deliver paired sperm cells into ovules for double fertilization, and signaling communication between pollen tubes and female reproductive tissues is required to ensure the delivery of sperm cells into the ovules (1). Pollen tube guidance is governed by both female sporophytic and gametophytic tissues (2, 3) and can be separated into two categories: preovular guidance and ovular guidance (1). For preovular guidance, diverse signaling molecules from female sporophytic tissues have been identified, including the transmitting tissue-specific (TTS) glycoprotein in tobacco (4), γ-amino butyric acid (GABA) in Arabidopsis (5), and chemocyanin and the lipid transfer protein SCA in Lilium longiflorum (6, 7). For ovular pollen tube guidance, female gametophytes secrete small peptides as attractants, including LUREs in Torenia fournieri (8) and Arabidopsis (9) and ZmEA1 in maize (10, 11). Synergid cells, central cells, egg cells, and egg apparatus are all involved in pollen tube guidance, probably by secreting different attractants (915). Additionally, nitric oxide (NO) and phytosulfokine peptides have also been implicated in both preovular and ovular pollen tube guidance (1618). Thus, pollen tubes could be guided by diverse attractants in a single plant species.Ca2+ gradients at pollen tube tips are essential for both tip growth and pollen tube guidance (1927). Spatial modification of the Ca2+ gradients leads to the reorientation of pollen tube growth in vitro (28, 29). The Ca2+ gradients were significantly increased in pollen tubes attracted to the micropyles by synergid cells in vivo, compared with those not attracted by ovules (30). Therefore, the Ca2+ gradients in pollen tube tips are essential for pollen tube guidance. The Ca2+ gradients result from external Ca2+ influx, which is mainly mediated by plasma membrane Ca2+ channels in pollen tube tips. Thus, the Ca2+ channels are the key components for regulating the Ca2+ gradients and are consequently essential for pollen tube guidance. Using electrophysiological techniques, inward Ca2+ currents were observed in both pollen grain and pollen tube protoplasts (3136), supporting the presence of plasma membrane Ca2+ channels in pollen tube tips. Recently, a number of candidate Ca2+ channels were identified in pollen tubes, including six cyclic nucleotide-gated channels (CNGCs) and two glutamate receptor-like channels (GLRs) in Arabidopsis (3740). Three of these eight channels, namely CNGC18, GLR1.2, and GLR3.7, were characterized as Ca2+-permeable channels (40, 41) whereas the ion selectivity of the other five CNGCs has not been characterized. We hypothesized that the Ca2+ channel essential for pollen tube guidance could be among these eight channels.In this research, we first characterized the remaining five CNGCs as Ca2+ channels. We further found that CNGC18, out of the eight Ca2+ channels, was the only one essential for pollen tube guidance in Arabidopsis and that its transmembrane domains were indispensable for pollen tube guidance.  相似文献   

5.
6.
Cyclic nucleotide-modulated ion channels are molecular pores that mediate the passage of ions across the cell membrane in response to cAMP or GMP. Structural insight into this class of ion channels currently comes from a related homolog, MloK1, that contains six transmembrane domains and a cytoplasmic cyclic nucleotide binding domain. However, unlike eukaryote hyperpolarization-activated cyclic nucleotide-modulated (HCN) and cyclic nucleotide-gated (CNG) channels, MloK1 lacks a C-linker region, which critically contributes to the molecular coupling between ligand binding and channel opening. In this study, we report the identification and characterization of five previously unidentified prokaryote homologs with high sequence similarity (24–32%) to eukaryote HCN and CNG channels and that contain a C-linker region. Biochemical characterization shows that two homologs, termed AmaK and SthK, can be expressed and purified as detergent-solubilized protein from Escherichia coli membranes. Expression of SthK channels in Xenopus laevis oocytes and functional characterization using the patch-clamp technique revealed that the channels are gated by cAMP, but not cGMP, are highly selective for K+ ions over Na+ ions, generate a large unitary conductance, and are only weakly voltage dependent. These properties resemble essential properties of various eukaryote HCN or CNG channels. Our results contribute to an understanding of the evolutionary origin of cyclic nucleotide-modulated ion channels and pave the way for future structural and functional studies.Hyperpolarization-activated cyclic nucleotide-modulated (HCN) and cyclic nucleotide-gated (CNG) channels belong to the superfamily of voltage-gated K+ channels. Both types of channels share a similar domain topology with six transmembrane domains, a C-linker region, and a cyclic nucleotide binding domain (CNBD). The S5–S6 segment forms the channel pore, including the selectivity filter for cations. The S4 segment contains several positively charged amino acids, suggesting that it acts as voltage sensor. Despite these similarities in sequence, the function of HCN and CNG channels is noticeably different: HCN channels activate upon membrane hyperpolarization and can be modulated by cyclic nucleotides. They are weakly selective for K+ over Na+ ions (for reviews, see refs. 13). In contrast, CNG channels are activated by the binding of cyclic nucleotides solely and their activity depends only weakly on voltage. The ionic current is carried by both monovalent and divalent cations (for reviews, see refs. 4 and 5).Insight into the structure of HCN channels has been gained only from crystal structures of the isolated intracellular C-linker and CNBD of mammalian HCN1, HCN2, HCN4, and invertebrate spHCN1. These parts of the channel assemble into tetramers (69). Further structural information comes from prokaryote ion channels that are homologous to HCN and CNG channels, such as the bacterial cyclic nucleotide-regulated K+ channel MloK1 (1013). MloK1 lacks a C-linker region, but has a CNBD with an overall structure that is remarkably similar to the CNBD of eukaryote HCN channels (10). Based on the dimer assembly of the MloK1 CNBD in the crystal structure, a gating mechanism has been proposed in which the pore opening in the tetrameric channel arises from the action of the four CNBDs as a dimer of dimers (10). The crystal structure of the MloK1 transmembrane domain (11) reveals a domain topology that resembles that of the voltage-gated K+ channel Kv1.2 (14), but with important differences. The MloK1 structure suggests that the S1–S4 domain and its associated linker in MloK1 can serve as a clamp to constrain the gate and possibly function in concert with the CNBD to regulate channel opening (11). Additionally, crystal structures have also been determined for the C-linker and cyclic nucleotide binding homology domain (CNBHD) of related ion channels, including the zebrafish EAG-like (ELK) K+ channel (15), the mosquito ERG K+ channel (16), and the mouse EAG1 K+ channel (17). Structural insight into the mechanism of ion permeation has been derived from a prokaryote ion channel NaK (18), which was mutated to mimic the CNG channel pore region (19). Collectively, these structural data have brought valuable information about the determinants of ion permeation, domain assembly, ligand recognition, channel gating and regulation, as well as effects of disease-causing mutations (20).Despite this tremendous progress, crystal structures for whole-eukaryote HCN and CNG channels are still not available at present, and structural insight into fundamental aspects of ion channel function is still lacking, such as the inverse voltage sensitivity in HCN channels and the coupling between cyclic nucleotide binding and channel opening by the C-linker domain, which is, as mentioned, absent in the MloK1 channel (10). In contrast, a putative voltage-gated K+ channel containing a C-linker region and CNBD similar to eukaryote channels was identified in the genome of the cyanobacterium Trichodesmium erythraeum (21), here termed TerK, and it was suggested to possibly represent an ancestral HCN or CNG channel (21). However, neither structure nor function of this prokaryote homolog is known. In this study, we report the characterization of TerK and four additional prokaryote ion channels, which all contain six putative transmembrane domains, a C-linker region, and a CNBD, and apparently form a family of prokaryote ion channels with close similarity to eukaryote HCN and CNG channels. We describe the expression in Escherichia coli, detergent screening and biochemical purification of these different homologs. Moreover, we identified two homologs, SthK (from Spirochaeta thermophila) and AmaK (from Arthrospira maxima), which can be stably extracted with detergents and purified in sufficiently high amounts for biochemical and structural studies. Using confocal fluorescence microscopy and electrophysiological recordings, we describe essential functional properties of one homolog, SthK. We find that SthK has electrophysiological properties that closely resemble those of eukaryote CNG channels as it is gated by intracellular cAMP and produces large unitary currents, whereas its activity is relatively insensitive to voltage. However, unlike CNG channels, SthK contains the selectivity filter sequence -TIGYGD-, which is more similar to HCN channels and other K+ selective channels. We could experimentally demonstrate that SthK channels are highly selective for K+ over Na+ ions. Importantly, SthK has several sequence features that closely resemble eukaryote cyclic nucleotide-modulated channels, including a C-linker region, which is missing in previously studied prokaryote homologs, such as MloK1 (10, 12, 13) and MmaK (22). Together, these data make the SthK channel a promising candidate for future structural analysis to learn more about how mammalian CNG and HCN channels work.  相似文献   

7.
Prochlorococcus is an abundant marine cyanobacterium that grows rapidly in the environment and contributes significantly to global primary production. This cyanobacterium coexists with many cyanophages in the oceans, likely aided by resistance to numerous co-occurring phages. Spontaneous resistance occurs frequently in Prochlorococcus and is often accompanied by a pleiotropic fitness cost manifested as either a reduced growth rate or enhanced infection by other phages. Here, we assessed the fate of a number of phage-resistant Prochlorococcus strains, focusing on those with a high fitness cost. We found that phage-resistant strains continued evolving toward an improved growth rate and a narrower resistance range, resulting in lineages with phenotypes intermediate between those of ancestral susceptible wild-type and initial resistant substrains. Changes in growth rate and resistance range often occurred in independent events, leading to a decoupling of the selection pressures acting on these phenotypes. These changes were largely the result of additional, compensatory mutations in noncore genes located in genomic islands, although genetic reversions were also observed. Additionally, a mutator strain was identified. The similarity of the evolutionary pathway followed by multiple independent resistant cultures and clones suggests they undergo a predictable evolutionary pathway. This process serves to increase both genetic diversity and infection permutations in Prochlorococcus populations, further augmenting the complexity of the interaction network between Prochlorococcus and its phages in nature. Last, our findings provide an explanation for the apparent paradox of a multitude of resistant Prochlorococcus cells in nature that are growing close to their maximal intrinsic growth rates.Large bacterial populations are present in the oceans, playing important roles in primary production and the biogeochemical cycling of matter. These bacterial communities are highly diverse (14) yet form stable and reproducible bacterial assemblages under similar environmental conditions (57).These bacteria are present together with high abundances of viruses (phages) that have the potential to infect and kill them (811). Although studied only rarely in marine organisms (1216), this coexistence is likely to be the result of millions of years of coevolution between these antagonistic interacting partners, as has been well documented for other systems (1720). From the perspective of the bacteria, survival entails the selection of cells that are resistant to infection, preventing viral production and enabling the continuation of the cell lineage. Resistance mechanisms include passively acquired spontaneous mutations in cell surface molecules that prevent phage entry into the cell and other mechanisms that actively terminate phage infection intracellularly, such as restriction–modification systems and acquired resistance by CRISPR-Cas systems (21, 22). Mutations in the phage can also occur that circumvent these host defenses and enable the phage to infect the recently emerged resistant bacterium (23).Acquisition of resistance by bacteria is often associated with a fitness cost. This cost is frequently, but not always, manifested as a reduction in growth rate (2427). Recently, an additional type of cost of resistance was identified, that of enhanced infection whereby resistance to one phage leads to greater susceptibility to other phages (14, 15, 28).Over the years, a number of models have been developed to explain coexistence in terms of the above coevolutionary processes and their costs (16, 2932). In the arms race model, repeated cycles of host mutation and virus countermutation occur, leading to increasing breadths of host resistance and viral infectivity. However, experimental evidence generally indicates that such directional arms race dynamics do not continue indefinitely (25, 33, 34). Therefore, models of negative density-dependent fluctuations due to selective trade-offs, such as kill-the-winner, are often invoked (20, 33, 35, 36). In these models, fluctuations are generally considered to occur between rapidly growing competition specialists that are susceptible to infection and more slowly growing resistant strains that are considered defense specialists. Such negative density-dependent fluctuations are also likely to occur between strains that have differences in viral susceptibility ranges, such as those that would result from enhanced infection (30).The above coevolutionary processes are considered to be among the major mechanisms that have led to and maintain diversity within bacterial communities (32, 35, 3739). These processes also influence genetic microdiversity within populations of closely related bacteria. This is especially the case for cell surface-related genes that are often localized to genomic islands (14, 40, 41), regions of high gene content, and gene sequence variability among members of a population. As such, populations in nature display an enormous degree of microdiversity in phage susceptibility regions, potentially leading to an assortment of subpopulations with different ranges of susceptibility to coexisting phages (4, 14, 30, 40).Prochlorococcus is a unicellular cyanobacterium that is the numerically dominant photosynthetic organism in vast oligotrophic expanses of the open oceans, where it contributes significantly to primary production (42, 43). Prochlorococcus consists of a number of distinct ecotypes (4446) that form stable and reproducible population structures (7). These populations coexist in the oceans with tailed double-stranded DNA phage populations that infect them (4749).Previously, we found that resistance to phage infection occurs frequently in two high-light–adapted Prochlorococcus ecotypes through spontaneous mutations in cell surface-related genes (14). These genes are primarily localized to genomic island 4 (ISL4) that displays a high degree of genetic diversity in environmental populations (14, 40). Although about a third of Prochlorococcus-resistant strains had no detectable associated cost, the others came with a cost manifested as either a slower growth rate or enhanced infection by other phages (14). In nature, Prochlorococcus seems to be growing close to its intrinsic maximal growth rate (5052). This raises the question as to the fate of emergent resistant Prochlorococcus lineages in the environment, especially when resistance is accompanied with a high growth rate fitness cost.To begin addressing this question, we investigated the phenotype of Prochlorococcus strains with time after the acquisition of resistance. We found that resistant strains evolved toward an improved growth rate and a reduced resistance range. Whole-genome sequencing and PCR screening of many of these strains revealed that these phenotypic changes were largely due to additional, compensatory mutations, leading to increased genetic diversity. These findings suggest that the oceans are populated with rapidly growing Prochlorococcus cells with varying degrees of resistance and provide an explanation for how a multitude of presumably resistant Prochlorococcus cells are growing close to their maximal known growth rate in nature.  相似文献   

8.
Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge development of an effective vaccine targeting Staphylococcus aureus. This study evaluated the efficacy and immunologic mechanisms of a vaccine containing a recombinant glycoprotein antigen (NDV-3) in mouse skin and skin structure infection (SSSI) due to methicillin-resistant S. aureus (MRSA). Compared with adjuvant alone, NDV-3 reduced abscess progression, severity, and MRSA density in skin, as well as hematogenous dissemination to kidney. NDV-3 induced increases in CD3+ T-cell and neutrophil infiltration and IL-17A, IL-22, and host defense peptide expression in local settings of SSSI abscesses. Vaccine induction of IL-22 was necessary for protective mitigation of cutaneous infection. By comparison, protection against hematogenous dissemination required the induction of IL-17A and IL-22 by NDV-3. These findings demonstrate that NDV-3 protective efficacy against MRSA in SSSI involves a robust and complementary response integrating innate and adaptive immune mechanisms. These results support further evaluation of the NDV-3 vaccine to address disease due to S. aureus in humans.The bacterium Staphylococcus aureus is the leading cause of skin and skin structure infections (SSSIs), including cellulitis, furunculosis, and folliculitis (14), and a common etiologic agent of impetigo (5), erysipelas (6), and superinfection in atopic dermatitis (7). This bacterium is a significant cause of surgical or traumatic wound infections (8, 9), as well as decuibitus and diabetic skin lesions (10). Moreover, SSSI is an important risk factor for systemic infection. The skin is a key portal of entry for hematogenous dissemination, particularly in association with i.v. catheters. S. aureus is now the second most common bloodstream isolate in healthcare settings (11), and SSSI is a frequent source of invasive infections such as pneumonia or endocarditis (12, 13). Despite a recent modest decline in rates of methicillin-resistant S. aureus (MRSA) infection in some cohorts (13), infections due to S. aureus remain a significant problem (14, 15). Even with appropriate therapy, up to one-third of patients diagnosed with S. aureus bacteremia succumb—accounting for more attributable annual deaths than HIV, tuberculosis, and viral hepatitis combined (16).The empiric use of antibiotics in healthcare-associated and community-acquired settings has increased S. aureus exposure to these agents, accelerating selection of resistant strains. As a result, resistance to even the most recently developed agents is emerging at an alarming pace (17, 18). The impact of this trend is of special concern in light of high rates of mortality associated with invasive MRSA infection (e.g., 15–40% in bacteremia or endocarditis), even with the most recently developed antistaphylococcal therapeutics (19, 20). Moreover, patients who experience SSSI due to MRSA exhibit high 1-y recurrence rates, often prompting surgical debridement (21) and protracted antibiotic treatment.Infections due to MRSA are a special concern in immune-vulnerable populations, including hemodialysis (22), neutropenic (23, 24), transplantation (25), and otherwise immunosuppressed patients (26, 27), and in patients with inherited immune dysfunctions (2831) or cystic fibrosis (32). Patients having deficient interleukin 17 (IL-17) or IL-22 responses (e.g., signal transduction mediators STAT3, DOCK8, or CARD9 deficiencies) exhibit chronic or “cold” abscesses, despite high densities of pathogens such as S. aureus (33, 34). For example, patients with Chronic Granulomatous Disease (CGD; deficient Th1 and oxidative burst response) have increased risk of disseminated S. aureus infection. In contrast, patients with Job’s Syndrome (deficient Th17 response) typically have increased risk to SSSI and lung infections, but less so for systemic S. aureus bacteremia (35, 36). This pattern contrasts that observed in neutropenic or CGD patients (37). These themes suggest efficacious host defenses against MRSA skin and invasive infections involve complementary but distinct molecular and cellular immune responses.From these perspectives, vaccines or immunotherapeutics that prevent or lessen severity of MRSA infections, or that enhance antibiotic efficacy, would be significant advances in patient care and public health. However, to date, there are no licensed prophylactic or therapeutic vaccine immunotherapies for S. aureus or MRSA infection. Unfortunately, efforts to develop vaccines targeting S. aureus capsular polysaccharide type 5 or 8 conjugates, or the iron-regulated surface determinant B protein, have not been successful thus far (38, 39). Likewise, passive immunization using monoclonal antibodies targeting the S. aureus adhesin clumping factor A (ClfA, tefibazumab) (40) or lipoteichoic acid (pagibaximab) (41) have not shown efficacy against invasive infections in human clinical studies to date. Moreover, the striking recurrence rates of SSSI due to MRSA imply that natural exposure does not induce optimal preventive immunity or durable anamnestic response to infection or reinfection. Thus, significant challenges exist in the development of an efficacious vaccine targeting diseases caused by S. aureus (42) that are perhaps not optimally addressed by conventional approaches.The NDV-3 vaccine reflects a new strategy to induce durable immunity targeting S. aureus. Its immunogen is engineered from the agglutinin-like sequence 3 (Als3) adhesin/invasin of Candida albicans, which we discovered to be a structural homolog of S. aureus adhesins (43). NDV-3 is believed to cross-protect against S. aureus and C. albicans due to sequence (T-cell) and conformational (B-cell) epitopes paralleled in both organisms (44). Our prior data have shown that NDV-3 is efficacious in murine models of hematogenous and mucosal candidiasis (45), as well as S. aureus bacteremia (4648). Recently completed phase I clinical trials demonstrate the safety, tolerability, and immunogenicity of NDV-3 in humans (49).  相似文献   

9.
10.
Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor.Protein toxins from venomous organisms have been invaluable tools for studying the ion channel proteins they target. For example, in the case of voltage-activated potassium (Kv) channels, pore-blocking scorpion toxins were used to identify the pore-forming region of the channel (1, 2), and gating modifier tarantula toxins that bind to S1–S4 voltage-sensing domains have helped to identify structural motifs that move at the protein–lipid interface (35). In many instances, these toxin–channel interactions are highly specific, allowing them to be used in target validation and drug development (68).Tarantula toxins are a particularly interesting class of protein toxins that have been found to target all three families of voltage-activated cation channels (3, 912), stretch-activated cation channels (1315), as well as ligand-gated ion channels as diverse as acid-sensing ion channels (ASIC) (1621) and transient receptor potential (TRP) channels (22, 23). The tarantula toxins targeting these ion channels belong to the inhibitor cystine knot (ICK) family of venom toxins that are stabilized by three disulfide bonds at the core of the molecule (16, 17, 2431). Although conventional tarantula toxins vary in length from 30 to 40 aa and contain one ICK motif, the recently discovered double-knot toxin (DkTx) that specifically targets TRPV1 channels contains two separable lobes, each containing its own ICK motif (22, 23).One unifying feature of all tarantula toxins studied thus far is that they act on ion channels by modifying the gating properties of the channel. The best studied of these are the tarantula toxins targeting voltage-activated cation channels, where the toxins bind to the S3b–S4 voltage sensor paddle motif (5, 3236), a helix-turn-helix motif within S1–S4 voltage-sensing domains that moves in response to changes in membrane voltage (3741). Toxins binding to S3b–S4 motifs can influence voltage sensor activation, opening and closing of the pore, or the process of inactivation (4, 5, 36, 4246). The tarantula toxin PcTx1 can promote opening of ASIC channels at neutral pH (16, 18), and DkTx opens TRPV1 in the absence of other stimuli (22, 23), suggesting that these toxin stabilize open states of their target channels.For many of these tarantula toxins, the lipid membrane plays a key role in the mechanism of inhibition. Strong membrane partitioning has been demonstrated for a range of toxins targeting S1–S4 domains in voltage-activated channels (27, 44, 4750), and for GsMTx4 (14, 50), a tarantula toxin that inhibits opening of stretch-activated cation channels in astrocytes, as well as the cloned stretch-activated Piezo1 channel (13, 15). In experiments on stretch-activated channels, both the d- and l-enantiomers of GsMTx4 are active (14, 50), implying that the toxin may not bind directly to the channel. In addition, both forms of the toxin alter the conductance and lifetimes of gramicidin channels (14), suggesting that the toxin inhibits stretch-activated channels by perturbing the interface between the membrane and the channel. In the case of Kv channels, the S1–S4 domains are embedded in the lipid bilayer and interact intimately with lipids (48, 51, 52) and modification in the lipid composition can dramatically alter gating of the channel (48, 5356). In one study on the gating of the Kv2.1/Kv1.2 paddle chimera (53), the tarantula toxin VSTx1 was proposed to inhibit Kv channels by modifying the forces acting between the channel and the membrane. Although these studies implicate a key role for the membrane in the activity of Kv and stretch-activated channels, and for the action of tarantula toxins, the influence of the toxin on membrane structure and dynamics have not been directly examined. The goal of the present study was to localize a tarantula toxin in membranes using structural approaches and to investigate the influence of the toxin on the structure of the lipid bilayer.  相似文献   

11.
Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β′1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts.Although forgetting commonly has a negative connotation, it is a functional process that shapes memory and cognition (14). Recent studies, including work in relatively simple invertebrate models, have started to reveal basic biological mechanisms underlying forgetting (515). In Drosophila, single-session Pavlovian conditioning by pairing an odor (conditioned stimulus, CS) with electric shock (unconditioned stimulus, US) induces aversive memories that are short-lasting (16). The memory performance of fruit flies is observed to drop to a negligible level within 24 h, decaying rapidly early after training and slowing down thereafter (17). Memory decay or forgetting requires the activation of the small G protein Rac, a signaling protein involved in actin remodeling, in the mushroom body (MB) intrinsic neurons (6). These so-called Kenyon cells (KCs) are the neurons that integrate CS–US information (18, 19) and support aversive memory formation and retrieval (2022). In addition to Rac, forgetting also requires the DAMB dopamine receptor (7), which has highly enriched expression in the MB (23). Evidence suggests that the dopamine-mediated forgetting signal is conveyed to the MB by dopamine neurons (DANs) in the protocerebral posterior lateral 1 (PPL1) cluster (7, 24). Therefore, forgetting of olfactory aversive memory in Drosophila depends on a particular set of intracellular molecular pathways within KCs, involving Rac, DAMB, and possibly others (25), and also receives modulation from extrinsic neurons. Although important cellular evidence supporting the hypothesis that memory traces are erased under these circumstances is still lacking, these findings lend support to the notion that forgetting is an active, biologically regulated process (17, 26).Although existing studies point to the MB circuit as essential for forgetting, several questions remain to be answered. First, whereas the molecular pathways for learning and forgetting of olfactory aversive memory are distinct and separable (6, 7), the neural circuits seem to overlap. Rac-mediated forgetting has been localized to a large population of KCs (6), including the γ-subset, which is also critical for initial memory formation (21, 27). The site of action of DAMB for forgetting has yet to be established; however, the subgroups of PPL1-DANs implicated in forgetting are the same as those that signal aversive reinforcement and are required for learning (2830). It leaves open the question of whether the brain circuitry underlying forgetting and learning is dissociable, or whether forgetting and learning share the same circuit but are driven by distinct activity patterns and molecular machinery (26). Second, shock reinforcement elicits multiple memory traces through at least three dopamine pathways to different subdomains in the MB lobes (28, 29). Functional imaging studies have also revealed Ca2+-based memory traces in different KC populations (31). It is poorly understood how forgetting of these memory traces differs, and it remains unknown whether there are multiple regulatory neural pathways. Notably, when PPL1-DANs are inactivated, forgetting still occurs, albeit at a lower rate (7). This incomplete block suggests the existence of an additional pathway(s) that conveys forgetting signals to the MB. Third, other than memory decay over time, forgetting is also observed through interference (32, 33), when new learning or reversal learning is introduced after training (6, 34, 35). Time-based and interference-based forgetting shares a similar dependence on Rac and DAMB (6, 7). However, it is not known whether distinct circuits underlie forgetting in these different contexts.In the current study, we focus on the diverse set of MB extrinsic neurons (MBENs) that interconnect the MB lobes with other brain regions, which include 34 MB output neurons (MBONs) of 21 types and ∼130 dopaminergic neurons of 20 types in the PPL1 and protocerebral anterior medial (PAM) clusters (36, 37). These neurons have been intensively studied in olfactory memory formation, consolidation, and retrieval in recent years (e.g., 24, 2830, 3848); however, their roles in forgetting have not been characterized except for the aforementioned PPL1-DANs. In a functional screen, we unexpectedly found that several Gal4 driver lines of MBENs showed significantly better 3-h memory retention when the Gal4-expressing cells were inactivated. The screen has thus led us to identify two types of MBENs that are not involved in initial learning but play important and additive roles in mediating memory decay. Furthermore, neither of these MBEN types is required for reversal learning, supporting the notion that there is a diversity of neural circuits that drive different forms of forgetting.  相似文献   

12.
Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual’s recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86–0.93), whereas responses to six antigens accurately estimated an individual’s malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.Many countries have extensive programs to reduce the burden of Plasmodium falciparum (Pf), the parasite responsible for most malaria morbidity and mortality (1). Effectively using limited resources for malaria control or elimination and evaluating interventions require accurate measurements of the risk of being infected with Pf (215). To reflect the rate at which individuals are infected with Pf in a useful way, metrics used to estimate exposure in a community need to account for dynamic changes over space and time, especially in response to control interventions (1618).A variety of metrics can be used to estimate Pf exposure, but tools that are more precise and low cost are needed for population surveillance. Existing metrics have varying intrinsic levels of precision and accuracy and are subject to a variety of extrinsic factors, such as cost, time, and availability of trained personnel (19). For example, entomological measurements provide information on mosquito to human transmission for a community but are expensive, require specially trained staff, and lack standardized procedures, all of which reduce precision and/or make interpretation difficult (1922). Parasite prevalence can be measured by detecting parasites in the blood of individuals from a cross-sectional sample of a community and is, therefore, relatively simple and inexpensive to perform, but results may be imprecise, especially in areas of low transmission (19, 23), and biased by a number of factors, including immunity and access to antimalarial treatment (5, 6, 19, 2325). The burden of symptomatic disease in a community can be estimated from routine health systems data; however, such data are frequently unreliable (5, 2628) and generally underestimate the prevalence of Pf infection in areas of intense transmission. Precise and quantitative information about exposure at an individual level can be reliably obtained from cohort studies by measuring the incidence of asymptomatic and/or symptomatic Pf infection (i.e., by measuring the molecular force of infection) (2935). Unfortunately, the expense of cohort studies limits their use to research settings. The end result is that most malaria-endemic regions lack reliable, timely data on Pf exposure, limiting the capabilities of malaria control programs to guide and evaluate interventions.Serologic assays offer the potential to provide incidence estimates for symptomatic and asymptomatic Pf infection, which are currently obtained from cohort studies, at the cost of cross-sectional studies (3638). Although Pf infections are transient, a record of infection remains detectable in an individual’s antibody profile. Thus, appropriately chosen antibody measurements integrated with age can provide information about an individual’s exposure history. Antibodies can be measured by simple ELISAs and obtained from dried blood spots, which are easy to collect, transport, and store (3941). Serologic responses to Pf antigens have been explored as potential epidemiological tools (4245), and estimated rates of seroconversion to well-characterized Pf antigens accurately reflect stable rates of exposure in a community, whereas distinct changes in these rates are obtained from successful interventions (22, 39, 41, 4653). However, current serologic assays are not designed to detect short-term or gradual changes in Pf exposure or measure exposure to infection at an individual level. The ability to calibrate antibody responses to estimates of exposure in individuals could allow for more flexible sampling of a population (e.g., not requiring age stratification), improve accuracy of exposure estimates from small sample sizes, and better characterize heterogeneity in exposure within a community.Different Pf antigens elicit antibody responses with different magnitudes and kinetics, providing a large and diverse set of potential biomarkers for exposure (38, 5458). We hypothesized that new and more highly informative serologic biomarkers better able to characterize an individual’s recent exposure history could be identified by analyzing antibody responses to a large number of candidate Pf antigens in participants with well-characterized exposure histories. To test this hypothesis, we probed plasma from participants in two cohort studies in Uganda against a protein microarray containing 856 Pf antigens. The primary aim of this analysis was to identify responses to select antigens that were most informative of recent exposure using robust, data-adaptive statistical methods. Each participant’s responses to these selected antigens were used as predictors for two primary outcomes of their recent exposure to Pf: (i) days since last Pf infection and (ii) the incidence of symptomatic malaria in the last year. These individual-level estimates were then aggregated across a population to assess community-level malaria exposure. The selection strategy presented here identified accurate biomarkers of exposure for children living in areas of moderate to high Pf exposure and illustrates the utility of this flexible and broadly applicable approach.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid–bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs.Plasmids serve as extrachromosomal DNA platforms for the reassortment, mobilization, and maintenance of antibiotic resistance genes in bacteria, enabling host cells to colonize environments flooded with antimicrobials and to take advantage of resources freed by the extinction of nonresistant competitors. Fueled by these selective forces and aided by their itinerant nature, plasmids disseminate resistance genes worldwide shortly after new antibiotics are developed, which is a major clinical concern (13). However, in antibiotic-free environments, such genes are dispensable. There, the cost that plasmid carriage imposes on cells constitutes a disadvantage in the face of competition from other cells and, because plasmids depend on their hosts to survive, also a threat to their own existence.Many plasmids keep low copy numbers (CNs) to minimize the problem above, because it reduces burdens to host cells. However, this also decreases their chances to fix in descendant cells, a new survival challenge (4). To counteract this, plasmids have evolved stability functions. Partition systems pull replicated plasmid copies to opposite poles in host cells, facilitating their inheritance by daughter cells (5). Plasmids also bear postsegregational killing (PSK) systems, which encode a stable toxin and a labile antitoxin (TA) pair that eliminates plasmid-free cells produced by occasional replication or partition failures. Regular production of the labile antitoxin protects plasmid-containing cells from the toxin. However, antitoxin replenishment is not possible in cells losing the plasmid, and this triggers their elimination (5).TA pairs are common in plasmids disseminating antibiotic resistance in bacterial pathogens worldwide (2, 610). The link of these systems to PSK and the exiguous list of alternatives in the pipeline have led some to propose that chemicals activating these TA pairs may constitute a powerful antibiotic approach against these organisms (5, 1113). However, the appropriateness of these TA pairs as therapeutic targets requires unequivocal understanding of their function in plasmids. Although PSK systems encode TA pairs, not all TA pairs might function as PSK systems, as suggested by their abundance in bacterial chromosomes, where PSK seems unnecessary (1416). Moreover, the observation that many plasmids bear several TA pairs (610) raises the intriguing question of why they would need more than one PSK system, particularly when they increase the metabolic burden that plasmids impose on host cells (17). Because PSK functions are not infallible, their gathering may provide a mechanism for reciprocal failure compensation, minimizing the number of cells that escape killing upon plasmid loss (5). Alternatively, some TA pairs may stabilize plasmids by mechanisms different from PSK, and their grouping might not necessarily reflect functional redundancy (18).This may be the case in plasmid R1, which encodes TA pairs hok-sok (host killing-suppressor of killing) and kis(pemI)-kid(pemK) (1923). Inconsistent with PSK, we had noticed that activation of toxin Kid occurred in cells that still contained R1, and that this happened when CNs were insufficient to ensure plasmid transmission to descendant cells. We also found that Kid cleaved mRNA at UUACU sites, which appeared well suited to trigger a response that prevented plasmid loss and increased R1 CNs without killing cells, as suggested by our results. In view of all this, we argued that Kid and Kis functioned as a rescue system for plasmid R1, and not as a PSK system (24). This proposal cannot be supported by results elsewhere, suggesting that Kid may cleave mRNA at simpler UAH sites (with H being A, C, or U) (25, 26), a view that has prevailed in the literature (14, 16, 2729). Moreover, other observations indicate that our past experiments may have been inappropriate to conclude that Kid does not kill Escherichia coli cells (30, 31). Importantly, Kid, Kis, and other elements that we found essential for R1 rescue are conserved in plasmids conferring resistance to extended-spectrum β-lactamases, a worrying threat to human health (1, 610, 32). Therapeutic options to fight pathogens carrying these plasmids are limited, and activation of Kid may be perceived as a good antibiotic alternative. Because the potential involvement of this toxin in plasmid rescue advises against such approach, we aimed to ascertain here the mode of action; the effects on cells; and, ultimately, the function of Kid (and Kis) in R1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号