首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In proliferating cells, mTOR is active and promotes cell growth. When the cell cycle is arrested, then mTOR converts reversible arrest to senescence (geroconversion). Rapamycin and other rapalogs suppress geroconversion, maintaining quiescence instead. Here we showed that ATP-competitive kinase inhibitors (Torin1 and PP242), which inhibit both mTORC1 and TORC2, also suppressed geroconversion. Despite inhibition of proliferation (in proliferating cells), mTOR inhibitors preserved re-proliferative potential (RP) in arrested cells. In p21-arrested cells, Torin 1 and PP242 detectably suppressed geroconversion at concentrations as low as 1-3 nM and 10-30 nM, reaching maximal gerosuppression at 30 nM and 300 nM, respectively. Near-maximal gerosuppression coincided with inhibition of p-S6K(T389) and p-S6(S235/236). Dual mTOR inhibitors prevented senescent morphology and hypertrophy. Our study warrants investigation into whether low doses of dual mTOR inhibitors will prolong animal life span and delay age-related diseases. A new class of potential anti-aging drugs can be envisioned.  相似文献   

2.
Current knowledge indicates that the mammalian target of rapamycin (mTOR) functions as two complexes, mTORC1 and mTORC2, regulating cell growth, proliferation, survival, differentiation, and motility. Recently mSin1 has been identified as a critical component of mTORC2, which is essential for phosphorylation of Akt and other signaling molecules. Studies have shown that rapamycin inhibits phosphorylation of mSin1. However, the underlying mechanism is unknown. Here we found that rapamycin inhibited phosphorylation of mSin1 potently and rapidly. Expression of rapamycin-resistant mutant of mTOR (mTOR-T), but not rapamycin-resistant and kinase dead mutant of mTOR (mTOR-TE), prevented rapamycin from inhibiting mSin1 phosphorylation, suggesting that rapamycin-induced dephosphorylation of mSin1 is mTOR-dependent. Surprisingly, ectopic expression of rapamycin-resistant and constitutively active p70 S6 kinase 1 (S6K1) did not confer resistance to rapamycin-induced dephosphorylation of mSin1. Furthermore, disruption of mTORC1 and mTORC2 by silencing raptor and rictor, respectively, or downregulation of S6K1 or Akt did not induce the dephosphorylation of mSin1 as rapamycin did. However, silencing mTOR or mLST8 mimicked the effect of rapamycin, inhibiting mSin1 phosphorylation. Our findings suggest that rapamycin inhibits mSin1 phosphorylation, which is independent of mTORC1 and mTORC2, but is possibly dependent on a new mTOR complex, which at least contains mTOR and mLST8.  相似文献   

3.
Diffuse large B cell lymphoma is generally treated by chemotherapy and there is an unmet medical need for novel targeted therapies or combination therapies. Using in vitro screening, we have identified the combination of ibrutinib, an inhibitor of the tyrosine kinase BTK, and AZD2014, an mTOR catalytic inhibitor, as being highly synergistic in killing ABC-subtype DLBCL cell lines. Simultaneous inhibition of BTK and mTOR causes apoptosis both in vitro and in vivo and results in tumor regression in a xenograft model. We identify two parallel mechanisms that underlie apoptosis in this setting: cooperative inhibition of cap-dependent translation, and the inhibition of an NF-κB/IL10/STAT3 autocrine loop. Combined disruption of these pathways is required for apoptosis. These data represent a rational basis for the dual inhibition of BTK and mTOR as a potential treatment for ABC-subtype DLBCL.  相似文献   

4.
The natural aging of multicellular organisms is marked by a progressive decline in the function of cells and tissues. The accumulation of senescent cells in tissues seems to eventually cause aging of the host. Nevertheless, gene expression that influences aging is unlikely to be conserved between tissues, and age-related loss of function seems to depend on a variety of mechanisms. This is a concern when developing anti-aging drugs in geriatric clinical pharmacology. We have sought a universal agent to redundantly cover gene expression despite the variation in differentially expressed genes between tissues. Using a minimally modified connectivity map, the poly (ADP-ribose) polymerase (PARP) inhibitor 1,5-isoquinolinediol was selected as a potent candidate, simultaneously applicable to various tissues. This choice was validated in vitro. Treatment of murine embryonic fibroblasts with 1,5-isoquinolinediol appeared to efficiently suppress the rate of replicative senescence at a concentration of 0.1 μM without resulting in cell death. The appearance of abnormal nuclei and accumulation of β-galactosidase in the cytoplasm were inhibited by daily treatment with the agent. When the aging process was accelerated by hydroxyurea-induced oxidative stress, the effect was even more noticeable. Thus, 1,5-isoquinolinediol may potentially be developed as an agent to prolong life.  相似文献   

5.

Background

The mammalian target of rapamycin (mTOR) has been suggested as a target for radiosensitization. Given that radiotherapy is a primary treatment modality for glioblastoma (GBM) and that mTOR is often dysregulated in GBM, the goal of this study was to determine the effects of AZD2014, a dual mTORC1/2 inhibitor, on the radiosensitivity of GBM stem-like cells (GSCs).

Methods

mTORC1 and mTORC2 activities were defined by immunoblot analysis. The effects of this mTOR inhibitor on the in vitro radiosensitivity of GSCs were determined using a clonogenic assay. DNA double strand breaks were evaluated according to γH2AX foci. Orthotopic xenografts initiated from GSCs were used to define the in vivo response to AZD2014 and radiation.

Results

Exposure of GSCs to AZD2014 resulted in the inhibition of mTORC1 and 2 activities. Based on clonogenic survival analysis, addition of AZD2014 to culture media 1 hour before irradiation enhanced the radiosensitivity of CD133+ and CD15+ GSC cell lines. Whereas AZD2014 treatment had no effect on the initial level of γH2AX foci, the dispersal of radiation-induced γH2AX foci was significantly delayed. Finally, the combination of AZD2014 and radiation delivered to mice bearing GSC-initiated orthotopic xenografts significantly prolonged survival as compared with the individual treatments.

Conclusions

These data indicate that AZD2014 enhances the radiosensitivity of GSCs both in vitro and under orthotopic in vivo conditions and suggest that this effect involves an inhibition of DNA repair. Moreover, these results suggest that this dual mTORC1/2 inhibitor may be a radiosensitizer applicable to GBM therapy.  相似文献   

6.
The colorectal cancer is the leading contributor of cancer-related mortality. Mammalian target of rapamycin (mTOR), existing in 2 complexes (mTORC1/2), is frequently dysregulated and constitutively activated in colorectal cancers. It represents an important drug target. Here we found that INK-128, the novel ATP-competitive kinase inhibitor of mTOR, blocked both mTORC1 and mTORC2 activation in colorectal cancer cells (both primary and transformed cells). The immunoprecipitation results showed that the assembly of mTORC1 (mTOR-Raptor association) and mTORC2 (mTOR-Rictor-Sin1 association) was also disrupted by INK-128. INK-128 inhibited colorectal cancer cell growth and survival, and induced both apoptotic and non-apoptotic cancer cell death. Further, INK-128 showed no effect on Erk/MAPK activation, while MEK/Erk inhibition by MEK-162 enhanced INK-128-induced cytotoxicity in colorectal cancer cells. Meanwhile, INK-128 downregulated Fascin1 (FSCN1)/E-Cadherin expressions and inhibited HT-29 cell in vitro migration. In vivo, daily INK-128 oral administration inhibited HT-29 xenograft growth in mice, which was further enhanced by MEK-162 administration. Finally, we found that INK-128 sensitized 5-fluorouracil-(5-FU)-mediated anti-HT-29 activity in vivo and in vitro. Thus, our preclinical studies strongly suggest that INK-128 might be investigated for colorectal cancer treatment in clinical trials.  相似文献   

7.
《Cancer science》2018,109(1):103-111
Adult T‐cell leukemia (ATL) has a poor prognosis as a result of severe immunosuppression and rapid tumor progression with resistance to conventional chemotherapy. Recent integrated‐genome analysis has revealed mutations in many genes involved in the T‐cell signaling pathway, suggesting that the aberration of this pathway is an important factor in ATL pathogenesis and ATL‐cell proliferation. We screened a siRNA library to examine signaling‐pathway functionality and found that the PI3K/Akt/mTOR pathway is critical to ATL‐cell proliferation. We therefore investigated the effect of mammalian target of rapamycin (mTOR) inhibitors, including the dual inhibitors PP242 and AZD8055 and the mTORC1 inhibitors rapamycin and everolimus, on human T‐cell leukemia virus type 1 (HTLV‐1)‐infected‐cell and ATL‐cell lines. Both dual inhibitors inhibited the proliferation of all tested cell lines by inducing G1‐phase cell‐cycle arrest and subsequent cell apoptosis, whereas the effects of the 2 mTORC1 inhibitors were limited, as they did not induce cell apoptosis. In the ATL‐cell lines and in the primary ATL samples, both dual inhibitors inhibited phosphorylation of AKT at serine‐473, a target of mTORC2, as well as that of S6K, whereas the mTORC1 inhibitors only inhibited mTORC1. Furthermore, AZD8055 more significantly inhibited the in vivo growth of the ATL‐cell xenografts than did everolimus. These results indicate that the PI3K/mTOR pathway is critical to ATL‐cell proliferation and might thus be a new therapeutic target in ATL.  相似文献   

8.
mTOR is a central controller for cell growth/proliferation and survival. Recent studies have shown that mTOR also regulates cell adhesion, yet the underlying mechanism is not known. Here we found that inhibition of mTOR by rapamycin reduced the basal or type I insulin-like growth factor (IGF-1)-stimulated adhesion of cancer cells. Further research revealed that both mTORC1 and mTORC2 were involved in the regulation of cell adhesion, as silencing expression of raptor or rictor inhibited cell adhesion. Also, PP242, an mTORC1/2 kinase inhibitor, inhibited cell adhesion more potently than rapamycin (mTORC1 inhibitor). Of interest, ectopic expression of constitutively active and rapamycin-resistant mutant of p70 kinase 1 (S6K1) or downregulation of eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) conferred resistance to rapamycin inhibition of cell adhesion, whereas expression of constitutively hypophosphorylated 4E-BP1 (4EBP1-5A) or downregulation of S6K1 suppressed cell adhesion. In contrast, neither genetic manipulation of Akt activity nor pharmacological inhibition of Akt affected cell adhesion. The results suggest that both mTORC1 and mTORC2 are involved in the regulation of cell adhesion; and mTORC1 regulates cell adhesion through S6K1 and 4E-BP1 pathways, but mTORC2 regulates cell adhesion via Akt-independent mechanism.  相似文献   

9.

Background

Previous studies support a role for mitogen-activated protein kinase pathway signaling, and more recently Akt/mammalian target of rapamycin (mTOR), in pediatric low-grade glioma (PLGG), including pilocytic astrocytoma (PA). Here we further evaluate the role of the mTORC1/mTORC2 pathway in order to better direct pharmacologic blockade in these common childhood tumors.

Methods

We studied 177 PLGGs and PAs using immunohistochemistry and tested the effect of mTOR blockade on 2 PLGG cell lines (Res186 and Res259) in vitro.

Results

Moderate (2+) to strong (3+) immunostaining was observed for pS6 in 107/177 (59%) PAs and other PLGGs, while p4EBP1 was observed in 35/115 (30%), pElF4G in 66/112 (59%), mTOR (total) in 53/113 (47%), RAPTOR (mTORC1 component) in 64/102 (63%), RICTOR (mTORC2 component) in 48/101 (48%), and pAkt (S473) in 63/103 (61%). Complete phosphatase and tensin homolog protein loss was identified in only 7/101 (7%) of cases. In PA of the optic pathways, compared with other anatomic sites, there was increased immunoreactivity for pS6, pElF4G, mTOR (total), RICTOR, and pAkt (P < .05). We also observed increased pS6 (P = .01), p4EBP1 (P = .029), and RICTOR (P = .05) in neurofibromatosis type 1 compared with sporadic tumors. Treatment of the PLGG cell lines Res186 (PA derived) and Res259 (diffuse astrocytoma derived) with the rapalog MK8669 (ridaforolimus) led to decreased mTOR pathway activation and growth.

Conclusions

These findings suggest that the mTOR pathway is active in PLGG but varies by clinicopathologic subtype. Additionally, our data suggest that mTORC2 is differentially active in optic pathway and neurofibromatosis type 1–associated gliomas. MTOR represents a potential therapeutic target in PLGG that merits further investigation.  相似文献   

10.
Reduced dietary protein intake and intermittent fasting (IF) are both linked to healthy longevity in rodents, and are effective in inhibiting cancer growth. The molecular mechanisms underlying the beneficial effects of chronic protein restriction (PR) and IF are unclear, but may be mediated in part by a down-regulation of the IGF/mTOR pathway. In this study we compared the effects of PR and IF on tumor growth in a xenograft mouse model of breast cancer. We also investigated the effects of PR and IF on the mechanistic Target Of Rapamycin (mTOR) pathway, inhibition of which extends lifespan in model organisms including mice. The mTOR protein kinase is found in two distinct complexes, of which mTOR complex 1 (mTORC1) is responsive to acute treatment with amino acids in cell culture and in vivo. We found that both PR and IF inhibit tumor growth and mTORC1 phosphorylation in tumor xenografts. In somatic tissues, we found that PR, but not IF, selectively inhibits the activity of the amino acid sensitive mTORC1, while the activity of the second mTOR complex, mTORC2, was relatively unaffected by PR. In contrast, IF resulted in increased S6 phosphorylation in multiple metabolic tissues. Our work represents the first finding that PR may reduce mTORC1 activity in tumors and multiple somatic tissues, and suggest that PR may represent a highly translatable option for the treatment not only of cancer, but also other age-related diseases.  相似文献   

11.
The mammalian target of rapamycin (mTOR) has emerged as a critical effector in cell growth, proliferation, survival, angiogenesis, and autophagy through direct interaction with mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2). The mTOR axis is aberrantly activated in about 50% of human hepatocellular carcinoma (HCC) cases and thus has become an attractive target for drug development in this disease. Allosteric inhibitors of mTORC1, rapamycin and its derivatives have been used to study in patients with HCC but have not shown significant clinical utility, likely because of the lack of inhibition of mTORC2. In the present study, we describe that AZD2014, a small molecular ATP-competitive inhibitor of mTOR, was a highly potent inhibitor of mTORC1 and mTORC2 in human HCC cells, which led to a more thorough inhibition of mTORC1 than rapamycin, and the inhibition of mTORC2 prevented the feedback activation of AKT signaling. Compared with rapamycin, AZD2014 resulted in more profound proliferation suppression, apoptosis, cell cycle arrest, and autophagy in HCC cells. Notably, we found blockage of both mTORC1 and mTORC2 by AZD2014 to be more efficacious than blockage of mTORC1 alone by rapamycin in inhibiting the migration, invasion and EMT progression of HCC cells. In conclusion, our current results highlight mechanistic differentiation between rapamycin and AZD2014 in targeting cancer cell proliferation, cell cycle, apoptosis, autophagy, migration, invasion and EMT progression, and provide support for further investigation of AZD2014 as an antitumor agent for the treatment of HCC in clinic.  相似文献   

12.
13.
14.
15.
The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway.  相似文献   

16.
The mammalian target of rapamycin (mTOR) signaling pathway is upregulated in the pathogenesis of manycancers, including colorectal cancer (CRC). DEPTOR is an mTOR inhibitor whose expression is negativelyregulated by mTOR. However, the role of DEPTOR in the development of CRC is not known. The aim of thisstudy was to investigate the expression of DEPTOR and mTORC1 activity (P-S6) in a subset of CRC patientsand determine their relation to tumor differentiation, invasion, nodal metastasis and disease-free survival. Here,Immunohistochemical expression of P-S6 (S235/236) and DEPTOR were evaluated in 1.5 mm tumor cores from90 CRC patients and in 90 samples of adjacent normal mucosa by tissue microarray. The expression of P-S6(S235/236) was upregulated in CRC, with the positive rate of P-S6 (S235/236) in CRC (63.3%) significantly higherthan that in control tissues (36.7%, 30%) (p<0.05). P-S6 (S235/236) also correlated with high tumor histologicgrade (p=0.002), and positive nodal metastasis (p=0.002). In contrast, the expression level of DEPTOR wascorrelated with low tumor histological grade (p=0.006), and negative nodal metastasis (p=0.001). Interestingly,P-S6 (S235/236) expression showed a significant negative association with the expression of DEPTOR in CRC(p=0.011, R= -0.279). However, upregulation of P-S6 (S235/236) (p=0.693) and downregulation of DEPTOR(p=0.331) in CRC were not significantly associated with overall survival. Thus, we conclude that expression ofDEPTOR negatively correlates with mTORC1 activity and tumor progression in CRC. DEPTOR is a potentialmarker for prognostic evaluation and a target for the treatment of CRC.  相似文献   

17.
The mammalian target of rapamycin (mTOR) pathway is implicated widely in cancer pathophysiology. Dual inhibition of the mTOR kinase complexes mTORC1 and mTORC2 decreases tumor xenograft growth in vivo and VEGF secretion in vitro, but the relationship between these two effects are unclear. In this study, we examined the effects of mTORC1/2 dual inhibition on VEGF production, tumor angiogenesis, vascular regression, and vascular regrowth, and we compared the effects of dual inhibition to mTORC1 inhibition alone. ATP-competitive inhibitors OSI-027 and OXA-01 targeted both mTORC1 and mTORC2 signaling in vitro and in vivo, unlike rapamycin that only inhibited mTORC1 signaling. OXA-01 reduced VEGF production in tumors in a manner associated with decreased vessel sprouting but little vascular regression. In contrast, rapamycin exerted less effect on tumoral production of VEGF. Treatment with the selective VEGFR inhibitor OSI-930 reduced vessel sprouting and caused substantial vascular regression in tumors. However, following discontinuation of OSI-930 administration tumor regrowth could be slowed by OXA-01 treatment. Combining dual inhibitors of mTORC1 and mTORC2 with a VEGFR2 inhibitor decreased tumor growth more than either inhibitor alone. Together, these results indicate that dual inhibition of mTORC1/2 exerts antiangiogenic and antitumoral effects that are even more efficacious when combined with a VEGFR antagonist.  相似文献   

18.
19.
Single-agent mammalian target of rapamycin complex 1 (mTORC1) inhibitors have recently been reported as effective salvage treatment in non-Hodgkin lymphoma (NHL). The combined effect of mTORC1 inhibitor, RAD001, with chemotherapeutic agents used for relapsed or refractory NHL was examined. Synergistic interactions were observed for RAD001 plus gemcitabine or paclitaxel in six NHL cell lines; enhanced gemcitabine- and paclitaxel-induced caspase-dependent apoptosis associated with down-regulation of mTOR signaling was detected. Synergistic interactions were also observed with RAD001 plus gemcitabine and paclitaxel. In conclusion, synergistic cytotoxicity was observed with RAD001 plus gemcitabine and paclitaxel in NHL cells. Combination therapy with these three drugs should be examined in patients with refractory or relapsed NHL.  相似文献   

20.
Phorbol ester (PMA or TPA), a tumor promoter, can cause either proliferation or cell cycle arrest, depending on cellular context. For example, in SKBr3 breast cancer cells, PMA hyper-activates the MEK/MAPK pathway, thus inducing p21 and cell cycle arrest. Here we showed that PMA-induced arrest was followed by conversion to cellular senescence (geroconversion). Geroconversion was associated with active mTOR and S6 kinase (S6K). Rapamycin suppressed geroconversion, maintaining quiescence instead. In this model, PMA induced arrest (step one of a senescence program), whereas constitutively active mTOR drove geroconversion (step two). Without affecting Akt phosphorylation, PMA increased phosphorylation of S6K (T389) and S6 (S240/244), and that was completely prevented by rapamycin. Yet, T421/S424 and S235/236 (p-S6K and p-S6, respectively) phosphorylation became rapamycin-insensitive in the presence of PMA. Either MEK or mTOR was sufficient to phosphorylate these PMA-induced rapamycin-resistant sites because co-treatment with U0126 and rapamycin was required to abrogate them. We next tested whether activation of rapamycin-insensitive pathways would shift quiescence towards senescence. In HT-p21 cells, cell cycle arrest was caused by IPTG-inducible p21 and was spontaneously followed by mTOR-dependent geroconversion. Rapamycin suppressed geroconversion, whereas PMA partially counteracted the effect of rapamycin, revealing the involvement of rapamycin-insensitive gerogenic pathways. In normal RPE cells arrested by serum withdrawal, the mTOR/pS6 pathway was inhibited and cells remained quiescent. PMA transiently activated mTOR, enabling partial geroconversion. We conclude that PMA can initiate a senescent program by either inducing arrest or fostering geroconversion or both. Rapamycin can decrease gero-conversion by PMA, without preventing PMA-induced arrest. The tumor promoter PMA is a gero-promoter, which may be useful to study aging in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号