首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Phosphate-activated glutaminase (PAG) is the major enzyme involved in the synthesis of the excitatory neurotransmitter glutamate in cortical neurons of the mammalian cerebral cortex. In this study, the distribution and morphology of glutamatergic neurons in cat visual cortex was monitored through immunocytochemistry for PAG. We first determined the specificity of the anti-rat brain PAG polyclonal antibody for cat brain PAG. We then examined the laminar expression profile and the phenotype of PAG-immunopositive neurons in area 17 and 18 of cat visual cortex. Neuronal cell bodies with moderate to intense PAG immunoreactivity were distributed throughout cortical layers II-VI and near the border with the white matter of both visual areas. The largest and most intensely labeled cells were mainly restricted to cortical layers III and V. Careful examination of the typology of PAG-immunoreactive cells based on the size and shape of the cell body together with the dendritic pattern indicated that the vast majority of these cells were pyramidal neurons. However, PAG immunoreactivity was also observed in a paucity of non-pyramidal neurons in cortical layers IV and VI of both visual areas. To further characterize the PAG-immunopositive neuronal population we performed double-stainings between PAG and three calcium-binding proteins, parvalbumin, calbindin and calretinin, to determine whether GABAergic non-pyramidal cells can express PAG, and neurofilament protein, a marker for a subset of pyramidal neurons in mammalian neocortex. We here present PAG as a neurochemical marker to map excitatory cortical neurons that use the amino acid glutamate as their neurotransmitter in cat visual cortex.  相似文献   

2.
Most previous immunocytochemical studies have indicated that the calcium-binding protein parvalbumin is present only in non-pyramidal neurons of the adult cerebral cortex. Using nickel and cobalt to enhance the diaminobenzidine reaction product, we observed large layer V pyramidal cells with parvalbumin-like immunoreactivity in the primary motor cortex (area 4) and somatosensory cortex of adult macaque monkeys and galagos, including giant Betz cells in area 4.  相似文献   

3.
The mammalian visual cortex contains morphologically diverse populations of interneurons whose neurochemical properties are believed to be regulated by neurotrophic factors. This requires the expression of neurotrophin receptors. We have analysed whether brain-derived neurotrophic factor (BDNF), its receptor trkB and the NT-3 receptor trkC are expressed in interneurons of rat visual cortex in vivo, and in organotypic visual cortex cultures, paying particular attention to the subsets of neuropeptidergic neurons. In situ hybridization in combination with immunofluorescence for calcium-binding proteins and neuropeptides revealed that BDNF is not expressed in interneurons in vivo or in vitro. For the neurotrophin receptors we found in vivo at postnatal day 70 (P70) that approximately 80% of the parvalbumin-immunoreactive (-ir), but only 50% of the intensely calbindin-ir, and only 20% of the calretinin-ir neurons express trkB. Double labelling with neuropeptides revealed that approximately 50% of the neuropeptide Y-ir and approximately 50% of the somatostatin-ir neurons express trkB in a laminar-specific way. Only 25% of the vasoactive intestinal polypeptide (VIP)-ir neurons coexpress trkB. The coexpression of neuropeptide Y with trkB, but not with BDNF or trkC, was confirmed with a double in situ hybridization. In contrast, the percentages differed in the immature cortex; at P14 70% of the NPY-ir neurons and 46% of the calretinin-ir neurons revealed trkB expression, while the ratio for calbindin-ir cells was fairly constant (59%). From the interneuron populations studied, only 12% of the parvalbumin-ir neurons expressed trkC. A triple labelling revealed that some neurons coexpressed both trk mRNAs, while others had only trkC. The analysis of interneurons in organotypic cultures yielded very similar results. The results indicate that trkB ligands synthesized by pyramidal neurons influence neuropeptide or calcium-binding protein expression in a paracrine or transsynaptic manner. However, in contrast to current belief, in the adult only about half of all interneurons appear responsive to trkB ligands. Although the proportion is higher in the immature cortex, not all of the interneurons appear neurotrophin-receptive. With regard to the presence or absence of neurotrophin receptors, the molecular heterogeneity of GABAergic interneurons in the visual cortex is higher than currently assumed, and the responsiveness to neurotrophins changes with development in a cell type-specific way.  相似文献   

4.
Inhibitory interneurons expressing parvalbumin (PV) are central to cortical network dynamics, generation of γ oscillations, and cognition. Dysfunction of PV interneurons disrupts cortical information processing and cognitive behavior. Brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (trkB) signaling regulates the maturation of cortical PV interneurons but is also implicated in their adult multidimensional functions. Using a novel viral strategy for cell-type-specific and spatially restricted expression of a dominant-negative trkB (trkB.DN), we show that BDNF/trkB signaling is essential to the integrity and maintenance of prefrontal PV interneurons in adult male and female mice. Reduced BDNF/trkB signaling in PV interneurons in the medial prefrontal cortex (mPFC) resulted in deficient PV inhibition and increased baseline local field potential (LFP) activity in a broad frequency band. The altered network activity was particularly pronounced during increased activation of the prefrontal network and was associated with changed dynamics of local excitatory neurons, as well as decreased modulation of the LFP, abnormalities that appeared to generalize across stimuli and brain states. In addition, our findings link reduced BDNF/trkB signaling in prefrontal PV interneurons to increased aggression. Together our investigations demonstrate that BDNF/trkB signaling in PV interneurons in the adult mPFC is essential to local network dynamics and cognitive behavior. Our data provide direct support for the suggested association between decreased trkB signaling, deficient PV inhibition, and altered prefrontal circuitry.SIGNIFICANCE STATEMENT Brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (trkB) signaling promotes the maturation of inhibitory parvalbumin (PV) interneurons, neurons central to local cortical dynamics, γ rhythms, and cognition. Here, we used a novel viral approach for reduced BDNF/trkB signaling in PV interneurons in the medial prefrontal cortex (mPFC) to establish the role of BDNF/trkB signaling in adult prefrontal network activities. Reduced BDNF/trkB signaling caused pronounced morphologic alterations, reduced PV inhibition, and deficient prefrontal network dynamics. The altered network activity appeared to manifest across stimuli and brain states and was associated with aberrant local field potential (LFP) activities and increased aggression. The results demonstrate that adult BDNF/trkB signaling is essential to PV inhibition and prefrontal circuit function and directly links BDNF/trkB signaling to network integrity in the adult brain.  相似文献   

5.
We investigated the localization of trkB mRNA, which encodes a putative component of high-affinity brain-derived neurotrophic factor (BDNF) or the neurotrophin-3 (NT-3) receptor, in the postnatal rat brain by in situ hybridization histochemistry. At birth, trkB mRNA was strongly expressed in various regions with the thalamus and cerebral cortex showing the strongest expression. As the rat grows, expression generally persisted or declined in most regions with the exception of the hippocampus where trkB mRNA expression increased during postnatal development. In the adult brain, trkB mRNA was detected in the olfactory system, cerebral cortex, hippocampal formation, amygdala, and cerebellar cortex. These findings, together with the developmental profiles of BDNF and NT-3 mRNA expressions, suggest that trkB product (gp145trkB) mainly transduces NT-3 signals early in the postnatal period, and BDNF signals later in the period. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Changes in neurotransmitter receptor density at the synapse have been proposed as a mechanism underlying synaptic plasticity. Neurotrophic factors are known to influence synaptic strength rapidly. In the present study, we found that brain-derived neurotrophic factor (BDNF) acts postsynaptically to reduce gamma-aminobutyric acid (GABA)-ergic function. Using primary cultures of rat hippocampal neurons, we investigated the effects of BDNF on GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and on the localization of GABAA receptors. Application of BDNF (100 ng/mL) led within minutes to a marked reduction (33.5%) of mIPSC amplitudes in 50% of neurons, recorded in the whole-cell patch-clamp mode, leaving frequency and decay kinetics unaffected. This effect was blocked by the protein kinase inhibitor K252a, which binds with high affinity to trkB receptors. Immunofluorescence staining with an antibody against trkB revealed that about 70% of cultured hippocampal pyramidal cells express trkB. In dual labelling experiments, use of neurobiotin injections to label the recorded cells revealed that all cells responsive to BDNF were immunopositive for trkB. Treatment of cultures with BDNF reduced the immunoreactivity for the GABAA receptor subunits-alpha2, -beta2,3 and -gamma2 in the majority of neurons. This effect was detectable after 15 min and lasted at least 12 h. Neurotrophin-4 (NT-4), but not neurotrophin-3 (NT-3), also reduced GABAA receptor immunoreactivity, supporting the proposal that this effect is mediated by trkB. Altogether the results suggest that exposure to BDNF induces a rapid reduction in postsynaptic GABAA receptor number that is responsible for the decline in GABAergic mIPSC amplitudes.  相似文献   

7.
Summary. We investigated the expression of BDNF and its high affinity receptor trkB in fetal dopaminergic grafts in a rat model of Parkinson's disease. Grafts were allowed to differentiate for 7, 14, 28, or 56 days, respectively and were analyzed immunocytochemically thereafter with antibodies directed against tyrosine hydroxylase, BDNF and trkB. At all time points investigated, grafts contained tyrosine hydroxylase immunoreactive neurons. Immature grafts (7 days) displayed no immunoreactivity for BDNF which was restricted to glial cells at the graft-host interface. After longer differentiation periods BDNF-immunoreactivity was detectable in neurons and astrocytes within the grafts. No trkB immunoreactivity was found in immature grafts but a strong signal for trkB emerged in grafted neurons older than 14 days whereas glial cells remained unlabeled at all time points investigated. Expression of BDNF and trkB in grafted neurons and of BDNF in sourrounding glial cells suggests an autocrine or paracrine action of BDNF on dopaminergic neurons possibly mediated by activated glia. Accepted December 15, 1997; received October 28, 1997  相似文献   

8.
Summary We examined patterns of neuronal degeneration in the motor cortex of amyotrophic lateral selerosis (ALS) patients using traditional cell stains and several histochemical markers including neurofilament, parvalbumin, NADPH-diaphorase, ubiquitin, Alz-50 and tau. Three grades of ALS (mild, moderate, severe) were defined based on the extent of Betz cell depletion. Non-phosphorylated neurofilament immunoreactive cortical pyramidal neurons and non-pyramidal parvalbumin local circuit neurons were significantly depleted in all grades of ALS. In contrast, NADPH-diaphorase neurons and Alz-50-positive neurons were quantitatively preserved despite reduced NADPH-diaphorase cellular staining and dendritic pruning. The density of ubiquitin-positive structures in the middle and deep layers of the motor cortex was increased in all cases. Axonal tau immunoreactivity was not altered. These histochemical results suggest that cortical degeneration in ALS is distinctive from other neurodegenerative diseases affecting cerebral cortex. Unlike Huntington's disease, both pyramidal and local cortical neurons are affected in ALS; unlike Alzheimer's disease, alteration of the neuronal cytoskeleton is not prominent. The unique pattern of neuronal degeneration found in ALS motor cortex is consistent with non-N-methyl-Dxxx-aspartate glutamate receptor-mediated cytotoxicity.Supported in part by a Muscular Dystrophy Association Research Development grant  相似文献   

9.
In this study we used immunocytochemistry to investigate the distribution of brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase (trkB) in retina and optic tectum of the frog Rana pipiens during regeneration after axotomy. We also measured changes in BDNF mRNA in retina and tectum. Retrograde labeling was used to identify retinal ganglion cells (RGCs) prior to quantification of the BDNF immunoreactivity. In control animals, BDNF was found in the majority of RGCs and displaced amacrine cells and in some cells in the inner nuclear layer (INL). After axotomy, BDNF immunoreactivity was reduced in RGCs but increased in the INL. BDNF mRNA levels in the retina remained high before and after axotomy. Three months after axotomy, after reconnection to the target, the staining intensity of many of the surviving RGCs had partially recovered. In the control tectum, BDNF staining was present in ependymoglial cells and in neurons throughout layers 4, 6, 8, and 9. After axotomy, BDNF staining in tectal neurons became more intense, even though mRNA synthesis was transiently down-regulated. In control retinas, trkB receptor immunostaining was present in most RGCs; no significant changes were observed after axotomy. In control tectum, trkB was detected only in ependymoglial cells. After axotomy, many neuronal cell bodies were transiently labeled. Our data are consistent with the hypothesis that a considerable fraction of the BDNF normally present in RGCs is acquired from their targets in the tectum. However, there are also intraretinal sources of BDNF that could contribute to the survival of RGCs.  相似文献   

10.
The calcium-binding protein calretinin was localized in the basolateral amygdala (BLA) of the rat and monkey using immunohistochemical techniques. In both species the predominant cell type exhibiting calretinin-like immunoreactivity (CR-ir) was a small non-pyramidal neuron with a bipolar or bitufted dendritic arborization pattern. Some pyramidal neurons also exhibited light CR-ir. In the monkey there was an additional population of large moderately-stained neurons with well-stained dendrites. These results indicates that calretinin is found in specific cell types in BLA. The small non-pyramidal CR-ir neurons are morphologically similar to BLA neurons that exhibit immunoreactivity for vasoactive intestinal polypeptide (VIP). These CR-ir neurons in BLA closely resemble the small bipolar CR-ir neurons of the cerebral cortex.  相似文献   

11.
To evaluate the potential role of endogenous zinc in the pathophysiology of epilepsy, we injected kainic acid into the medial septum, which evokes seizure activity and delayed hippocampal degeneration. Different approaches were used. In the hippocampus, we found a movement of zinc from the synaptic compartment to CA1 pyramidal neurons and astrocytes after kainate. The same was true in the amygdala. We found that in those areas showing intense zinc bleaching there was also a loss of reactive astrocytes, which supports the view that release of synaptic zinc induces astrocytic cell death. We have also tested whether the kainate-induced zinc movement from the synaptic compartment to neuronal or glial cells alters the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, trkB. There was a prominent loss of expression of trkB mRNA in areas that coincided precisely with those displaying astrocyte loss and zinc bleaching. In the amygdala, these events were accompanied by a high upregulation of BDNF mRNA. To demonstrate further a role of synaptic zinc in hippocampal pathology, we used two different approaches. We first injected different doses of zinc chloride in the CA1 area. At lower doses (0.1-10 nmol), zinc chloride selectively induced apoptosis in CA1 pyramidal neurons and dentate granular neurons. In a second approach, we found that hippocampal zinc chelation was effective in protecting CA1 pyramidal neurons against kainate-induced cell death.  相似文献   

12.
13.
14.
15.
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family, which is important for the growth, differentiation, and survival of neurons during development. We have performed a detailed mapping of BDNF mRNA in the neonatal rat brain using a quantitative in situ hybridization technique. At postnatal day (PND) 4, hypothalamic structures showed only modest expression of BDNF mRNA, with the exception of the ventromedial nucleus (VMN), where expression was higher than that detected in the hippocampus. Abundant BDNF mRNA was also found in the bed nucleus of the anterior commissure, retrosplenial granular cortex, and the posteroventral part of the medial amygdaloid nucleus. Messenger RNAs encoding other neurotrophins, including nerve growth factor (NGF) and neurotrophin-3 (NT-3) and the BDNF receptor trkB, were not selectively localized in neonatal VMN. During subsequent developmental stages, BDNF mRNA expression in the VMN changed dynamically, peaking at PND 4 and falling to minimal levels in the adult brain. In contrast, the low levels of BDNF mRNA observed in the CA3 region of the hippocampus increased to adult levels following PND 10. As the VMN undergoes sexual differentiation, we compared BDNF, NGF, NT-3, and trkB mRNA expression in the VMN in males and females at embryonic day 20 and PND 4, but found no differences between them. These results suggest that localized and high level expression of BDNF mRNA in the neonatal VMN plays an important role in its neural organization and functional development.  相似文献   

16.
Brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) expression in the rat visual cortex of young and postnatal day 90 (P90) animals is developmentally regulated and influenced by visual experience. In the present paper we compared the expression of BDNF mRNA to the actual changes of BDNF protein occurring during postnatal development and verified whether BDNF protein distribution is controlled by visual activity. To achieve this aim we analysed BDNF mRNA and/or BDNF protein cellular distribution in the rat visual cortex at different postnatal ages by using immunohistochemistry and highly sensitive in situ hybridization. We found that before eye opening (P13), in all cortical layers a large number of visual cortical neurons contain BDNF mRNA with no detectable amount of BDNF protein. At later ages (P23 and P90), the number of BDNF-immunostained cells increases; most neurons are double labelled for BDNF mRNA and protein, and a small group of neurons is labelled only for BDNF protein. The cellular increase of BDNF immunolabelling is blocked in animals deprived of visual experience from birth (dark rearing), with a large population of neurons containing BDNF mRNA but not BDNF protein. This is similar to what is observed before eye opening. Exposure of dark-reared rats to a brief period (2 h) of light restores a good match between BDNF mRNA and BDNF protein cellular expression. We propose that visual experience controls the neuronal content of BDNF mRNA and BDNF protein in developing visual cortex.  相似文献   

17.
Patients with schizophrenia have reduced neurotrophin levels in their dorsolateral prefrontal cortex (DLPFC) compared to normal unaffected individuals. The tyrosine kinase-containing receptors, trkB and trkC, mediate the growth-promoting effects of neurotrophins and respond to changes in growth factor availability. We hypothesized that trkB and/or trkC expression would be altered in the DLPFC of patients with schizophrenia. We measured mRNA encoding the tyrosine kinase domain (TK+)-containing form of trkB and measured pan trkC mRNA in schizophrenics (N=14) and controls (N=15) using in situ hybridization. TrkB and trkC mRNAs were detected in large and small neurons in multiple cortical layers of the human DLPFC. We found significantly diminished expression of trkB(TK+) mRNA in large neurons in multiple cortical layers of patients as compared to controls, while small neurons also showed reductions in trkB(TK+) mRNA that did not reach statistical significance. In normals, strong positive correlations were found between trkB(TK+) mRNA levels and brain-derived neurotrophic factor (BDNF) mRNA levels among various neurons, while no correlation between BDNF and trkB(TK+) was found in patients with schizophrenia. TrkC mRNA was also reduced in the DLPFC of schizophrenics in large neurons in layers II, III, V and VI and in small neurons in layer IV. Since neurons in the DLPFC integrate and communicate signals to various cortical and subcortical regions, these reductions in growth factor receptors may compromise the function and plasticity of the DLPFC in schizophrenia.  相似文献   

18.
Here we have studied the distribution of mRNA for tyrosine kinase B (trkB), the high-affinity receptor for brain-derived neurotrophic factor (BDNF) amongst serotonergic cell bodies of the raphe nuclei and their ascending projections into the dorsal hippocampus in the rat brain. Previous studies have shown that BDNF has got trophic action on serotonergic neurons. In the present study, we provide evidence that serotonergic neurons express mRNA for the functional receptor of BDNF, trkB. Intracerebro-ventricular (i.c.v.) injection of the 5-HT-specific neurotoxin, 5,7-dihydroxytryptamine, which lesions serotonergic cell bodies in the raphe nuclei as well as their ascending projections into the dorsal hippocampus, caused a dramatic loss of trkB mRNA from serotonergic cell bodies of the dorsal raphe nucleus. In contrast, there was no change in the abundance of trkB mRNA within the dorsal hippocampus. These findings provide direct evidence for the expression of trkB mRNA by serotonergic neurons and suggest distinct mechanisms of action of BDNF upon serotonergic neurons at the levels of their cell bodies and terminal projection sites.  相似文献   

19.
In the rat piriform cortex, double-fluorescence immunocytochemistry was used to study the coexistence of two calcium binding proteins, parvalbumin and calbindinD28k, and GABA. Layer I cells were immunoreactive only for GABA. In layer II a small number of cells were immunoreactive for all three substances. A few other cells contained only parvalbumin and GABA immunoreactivity. In layer III a subpopulation of calbindinD28k immunoreactive cells (about 60%) were also immunoreactive for both parvalbumin and GABA. The remainder showed only calbindinD28k and GABA immunoreactivity. Many immunoreactive terminals, which surrounded non-immunoreactive cell somata to form basket endings in layers II and III, were immunoreactive for all three substances. Their major source may be the non-pyramidal neurons in layer III, which contained the three chemical substances.  相似文献   

20.
We investigated the changes of brain-derived neurotrophic factor (BDNF)-immunoreactive structures in the hippocampal formation of aged macaques (Macaca fuscata fuscata). At adult stages (10 and 12 years), BDNF immunoreactivity occurred in the neurons of the dentate gyrus, the pyramidal neurons in the CA1, CA2, CA3 subfields and the subiculum, and the neurons in the CA4 subfield and the entorhinal cortex. The apical dendrites were also BDNF immunopositive. In aged monkeys (26, 30 and 32 years), the intensity of the BDNF-immunoreactivity declined significantly in cell bodies and dendrites of the neurons in the hippocampal formation except the CA2 pyramidal neurons. These findings indicate that BDNF is one of the vulnerable signal molecules during the aging process of the primate hippocampal formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号