首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In traumatic brain injury, absent in melanoma 2(AIM2) has been demonstrated to be involved in pyroptotic neuronal cell death. Although the pathophysiological mechanism of spinal cord injury is similar to that of brain injury, the expression and cellular localization of AIM2 after spinal cord injury is still not very clear. In the present study, we used a rat model of T9 spinal cord contusive injury, produced using the weight drop method. The rats were randomly divided into 1-hour, 6-hour, 1-day, 3-day and 6-day(post-injury time points) groups. Sham-operated rats only received laminectomy at T9 without contusive injury. Western blot assay revealed that the expression levels of AIM2 were not significantly different among the 1-hour, 6-hour and 1-day groups. The expression levels of AIM2 were markedly higher in the 1-hour, 6-hour and 1-day groups compared with the sham, 3-day and 7-day groups. Double immunofluorescence staining demonstrated that AIM2 was expressed by NeuN+(neurons), GFAP+(astrocytes), CNPase+(oligodendrocytes) and CD11 b+(microglia) cells in the sham-operated spinal cord. In rats with spinal cord injury, AIM2 was also found in CD45+(leukocytes) and CD68+(activated microglia/macrophages) cells in the spinal cord at all time points. These findings indicate that AIM2 is mainly expressed in neurons, astrocytes, microglia and oligodendrocytes in the normal spinal cord, and that after spinal cord injury, its expression increases because of the infiltration of leukocytes and the activation of astrocytes and microglia/macrophages.  相似文献   

2.
Reactive macrophages/microglia exert both protective or damaging effects in multiple sclerosis (MS), which contribute to the relapsing-remitting nature of MS. CD163 is considered a marker of M2 (alternatively activated) macrophages. In the MS brain, CD163(+) perivascular macrophages express molecules for antigen recognition and presentation. Here we further investigated the accumulation of CD163(+) macrophages/microglia in the parenchyma of MS brains. CD163 expression pattern was investigated in different lesions of brain tissue specimens from five MS brains and five neuropathologically unaffected controls by immunohistochemistry. In the parenchyma of normal brain samples, immunoreactivity (IR) of CD163 was absent. In acute active lesions and at the rim of chronic active lesions of MS, strong accumulation of CD163(+) macrophages/microglia was seen. In chronic inactive lesions and in the center of chronic active lesion, CD163(+) macrophages/microglia were rare. Further, double-labeling showed that parenchymal and perivascular CD163(+) macrophages/microglia were myelin basic protein positive and HLA-DR(+), suggesting that CD163(+) macrophages/microglia could ingest and present antigen. In addition, in vitro incubating macrophage RAW264.7 cells with myelin turned LPS-induced inflammatory macrophages into an anti-inflammatory phenotype, indicating that myelin basic protein positive, CD163(+) macrophages/microglia in MS might have anti-inflammatory effects. The parenchymal CD163(+) macrophages/microglia, which had the capacity for antigen ingestion and presentation, might contribute to the resolution of inflammation in MS.  相似文献   

3.
4.
Bu J  Akhtar N  Nishiyama A 《Glia》2001,34(4):296-310
Cells that express the NG2 proteoglycan (NG2+ cells) constitute a large glial population in the normal mature rodent brain. They can differentiate into oligodendrocytes but are distinct from mature oligodendrocytes, astrocytes, microglia, and neurons. Changes in NG2+ cells were examined in kainic acid-induced excitotoxic lesions of the hippocampus, and the relationship between NG2+ cells and reactive astrocytes and microglia was investigated between 1 and 90 days after lesioning. Two types of reactive NG2+ cells with altered morphology and increased NG2 immunoreactivity were observed in the lesion. Early changes, consisting of an increase in NG2 immunoreactivity and the number of processes, were apparent 24 h after lesioning and persisted through 3 months. These cells were distinct from reactive astrocytes or activated microglia/macrophages. A second type of reactive NG2+ cells appeared 2 weeks after injection, following an influx of macrophages. They had large, round cell bodies with short processes and expressed the microglia/macrophage antigens OX42 and ED1. Single cells coexpressing NG2 and macrophage/microglial antigens could be isolated from the lesion. The number of NG2+/OX42+ cells gradually declined and disappeared by 3 months after injection. They did not express glial fibrillary acidic protein or the alpha receptor for platelet-derived growth factor, indicating that they are distinct from astrocytes or oligodendrocyte progenitor cells. Cells that coexpressed NG2 and OX42 were never observed in hippocampal slice cultures treated with kainic acid, suggesting that NG2+/OX42+ cells are not derived from endogenous resident brain cells. These findings demonstrate that NG2 expression is transiently upregulated on activated macrophages/microglia that appear during the chronic stage in an excitotoxic lesion in the adult CNS.  相似文献   

5.
6.
CD43 (leukosialin, sialophorin) expression in brain tissue of neurologically normal and Alzheimer disease (AD) cases was studied immunohistochemically. Abundant CD43-like immunoreactivity was detected in ramified microglia of normal brain. It was also seen in residual leukocytes in capillaries and was faintly detectable on the surface of some normal appearing neurons. In AD brains, the overall expression of CD43 by microglia was markedly lower than in control brains. This was in contrast to HLA-DR which was sharply upregulated due to the activated state of the microglia. This is the first report of a microglial marker which is more highly expressed in the resting or ramified state. Such expression is consistent with theories that CD43 plays an anti-adhesional role, and that cleavage occurs during cellular activation.  相似文献   

7.
Nonsteroidal anti-inflammatory drugs, such as cyclooxygenase (COX)-2 inhibitors, have been unsuccessful in slowing or reversing Alzheimer's disease (AD). Thus, understanding the expression patterns of the downstream effectors for the regulation of prostaglandin synthesis may be important for understanding the pathological processes involved in AD and formulating more effective pharmacotherapeutics for this disease. In this study, we used immunofluorescence, immunohistochemistry, and Western blot analysis to compare patterns of microsomal prostaglandin E synthase (mPGES)-2 expression in the middle frontal gyrus (MFG) of AD patients and age-matched controls. In control human brain sections, mPGES-2 immunoreactivity was observed in neurons, activated microglia, and endothelium, but not in resting microglia, astrocytes, or smooth muscle cells. Microsomal PGES-2 immunoreactivity was particularly elevated in the pyramidal neurons of brains from three of five sporadic and four of five familial AD patients compared with four of five age-matched control brains that showed minimal immunoreactivity. In contrast, Western blot analysis revealed no difference in mPGES-2 levels between end-stage AD brain tissue and control brain tissue. These results suggest that in human cortex, mPGES-2 is constitutive in neurons and endothelium and induced in activated microglia. Furthermore, the high immunoreactivity of mPGES-2 in pyramidal neurons of AD brains indicates that it might have a potential role in the functional replacement of cytosolic PGES or inactive mPGES-1 in later stages of AD.  相似文献   

8.
Shin WH  Lee DY  Park KW  Kim SU  Yang MS  Joe EH  Jin BK 《Glia》2004,46(2):142-152
How to minimize brain inflammation is pathophysiologically important, since inflammation induced by microglial activation can exacerbate brain damage. In the present report, we show that injection of lipopolysaccharide (LPS) into the rat cortex led to increased levels of interleukin-13 (IL-13) and to IL-13 immunoreactivity, followed by the substantial loss of microglia at 3 days post-LPS. IL-13 levels in LPS-injected cortex reached a peak at 12 h post-injection, remained elevated at 24 h, and returned to basal levels at day 4. In parallel, IL-13 immunoreactivity was detected as early as 12 h post-LPS and maintained up to 24 h; it disappeared at 4 days. Surprisingly, IL-13 immunoreactivity was detected exclusively in microglia, but not in neurons or astrocytes. Following treatment with LPS in vitro, IL-13 expression was also induced in microglia in the presence of neurons, but not in the presence of astrocytes or in cultured pure microglia alone. In experiments designed to determine the involvement of IL-13 in microglia cell death, IL-13-neutralizing antibodies significantly increased survival of activated microglia at 3 days post-LPS. Consistent with these results, the expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-alpha) was sustained in activated microglia and neuronal cell death was consequently increased. Taken together, the present study is the first to demonstrate the endogenous expression of IL-13 in LPS-activated microglia in vivo, and to demonstrate that neurons may be required for IL-13 expression in microglia. Our data strongly suggest that IL-13 may control brain inflammation by inducing the death of activated microglia in vivo, resulting in an enhancement of neuronal survival.  相似文献   

9.
Adenosine 5'-triphosphate outflow increases after an ischemic insult in the brain and may induce the expression of P2X7 receptors in resting microglia, determining its modification into an activated state. To assess the effects of P2X7 receptor blockade in preventing microglia activation and ameliorating brain damage and neurological impairment, we delivered the P2 unselective antagonist Reactive Blue 2 to rats after middle cerebral artery occlusion. In sham-operated animals, devoid of brain damage, double immunofluorescence verified the absence of P2X7 immunoreactivity on resting microglia, astrocytes, and neurons, identified, respectively, by OX-42, glial fibrillary acid protein, and neuronal nuclei (NeuN) immunoreactivity. After ischemia, vehicle-treated rats showed monolateral sensorimotor deficit and tissue damage in striatum and frontoparietal cortex. Moreover, P2X7 immunoreactivity was de novo expressed on activated microglia in infarcted and surrounding areas, as well as on a reactive form of microglia, resting in shape but P2X7 immunoreactive, present in ipsi- and contralateral cingulate and medial frontal cortex. Reactive Blue 2 improved sensorimotor deficit and restricted the volume of infarction, without preventing the expression of P2X7, but inducing it in the microglia of contralateral frontal and parietal cortex and striatum, which had lost reciprocal connections with the remote infarct area. De novo expression of P2X7 occurred in both activated and reactive microglia, suggesting their differentiated roles in the area of infarct and in remote regions. Reactive Blue 2 reduced ischemic brain damage, likely blocking the function of activated microglia in the infarct area, but in the remote brain regions promoted the expression of P2X7 on reactive microglia, developing defense and reparative processes.  相似文献   

10.
HIV encephalitis (HIVE) is accompanied by brain inflammation, leukocyte infiltration, and glial activation, and HIV patients who abuse opiates are more likely to develop HIVE. To better understand how opiates could alter HIV-related brain inflammation, the expression of astrocyte (GFAP immunoreactivity) and macrophage/microglial (F4/80 or Mac1 immunoreactivity) markers in the striatum, and the percentage of 3-nitrotyrosine (3-NT) positive macrophages/microglia, was determined following a 2-day exposure to morphine (5 mg/kg/day via time-release, subcutaneous implant) and doxycycline in GFAP-driven, doxycycline-inducible HIV-1 Tat transgenic mice. Data show that both morphine and Tat induction via doxycycline increased astrocyte activation, with significant additive increases achieved with combined morphine and doxycycline exposure. By contrast, combined Tat induction and morphine exposure, but neither manipulation alone, significantly increased the proportion of macrophages/microglia present in the striatum of transgenic mice, although morphine exposure was necessary to elevate 3-NT co-detection in Mac1-positive macrophages/microglia. Finally, Tat induction increased the percentage of neurons expressing active caspase-3, and this was even more significantly elevated by co-administration of morphine. In spite of elevations in caspase-3, neuronal TUNEL reactivity was unchanged in all groups, even after 10 days of Tat induction. Importantly, co-administration of naltrexone completely antagonized the effects of morphine. These findings indicate that morphine rapidly and significantly increases the activation of astrocytes and macrophages/microglia in the brains of inducible Tat transgenic mice, supporting the theory that early inflammatory changes in glia could underlie the development of HIVE in opiate-abusing AIDS patients.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) infects the brains of a majority of patients with the acquired immunodeficiency syndrome (AIDS), and has been linked to the development of a progressive dementia termed “HIV-associated dementia.” This disorder results in severe cognitive, behavioral, and motor deficits. Despite this neurological dysfunction, HIV-1 infection of brain cells does not occur significantly in neurons, astrocytes, or oligodendrocytes, but is restricted to brain macrophages and microglia. To identify possible low-level or latent infection of other brain cells, we combined the techniques of the polymerase chain reaction with in situ hybridization for the detection of HIV DNA, and used immunocytochemistry to identify the HIV-expressing cells. In the 21 adult brains studied (15 AIDS and 6 seronegative control brains), we found that polymerase chain reaction/in situ hybridization was both sensitive and specific for identifying HIV-infected cells. In all brains, the majority of infected cells were macrophages and microglia. In several brains, however, a substantial minority of cells harboring HIV DNA were identified as astrocytes. Neurons, oligodendrocytes, and endothelial cells were not infected with HIV, even in cases with HIV-associated dementia. These findings confirm previous data regarding the importance of macrophage/microglial infection, and essentially exclude neuronal infection in pathogenetic models of HIV-associated neurological disease. These data also demonstrate that latent or low-level infection of astrocytes occurs in AIDS, a finding that may be of importance in understanding HIV neuropathogenesis.  相似文献   

12.
Primary human neuron cultures are an important in vitro model system for studies on mechanisms involved in human immunodeficiency virus (HIV)-associated dementia (HAD) and other neurological disorders. Here, more than 80 cell surface antigens were screened to identify a marker that could readily distinguish between neurons and astrocytes and found that neurons lack CD44 surface expression, whereas astrocytes and other cell types in brain are CD44+. Neurons and astrocytes were isolated from human fetal brain based on differential expression of CD44. Using purified neurons cocultured with astrocytes and/or microglia, it was demonstrated that HIV infection of microglia induces cellular activation and production of soluble factors that activate uninfected microglia and astrocytes and induce neuronal cell death. Activated astrocytes promoted HIV replication in microglia, thereby amplifying HIV-induced neurotoxicity. A screen for 120 cytokine/proteins detected upregulation of insulin-like growth factor (IGF)-binding protein (IGFBP)-2, interleukin (IL)-6, and CCL8/MCP-2 (monocyte chemoattractant protein 2) in supernatants of HIV-infected brain cell cultures. IGF-1 and -2 increased neuronal survival in HIV-infected brain cell cultures, whereas IGFBP-2 inhibited prosurvival effects of these growth factors. These findings identify CD44 as a marker that can be used to sort neurons from other cell types in brain, suggest the importance of microglia-astrocyte interactions in neurodegenerative mechanisms associated with HIV infection, and indicate a role for insulin-like growth factors in neuroprotection from HIV-induced neurodegeneration. The ability to reconstitute brain cultures using isolated populations of neurons, astrocytes, and microglia will be valuable for studies on pathogenic mechanisms in HAD and other neurological disorders, and will also facilitate neuroactive drug discovery.  相似文献   

13.
The tissue response after brain damage implicates the cellular “activation” of astrocytes and microglia. This glial response is referred as reactive gliosis. Using immunohistochemical markers, we have analyzed the neuronal and glial response to some neurotoxic-induced lesions. We have compared the effects of two glutamate analogs, AMPA and kainic acid, with those of traumatic injury. Our data showed that the time-course of appearance, the relative contribution of and the behavior of reactive astrocytes and microglial cells were clearly different after AMPA or kainic acid administration. The immunoreactivity associated with microglia response, with respect to the immunoreactivity associated with reactive astrocytes, was higher after AMPA damage than after kainic acid treatment. In both cases, however, glial cells were more abundant than after traumatic lesions. Interestingly, the CA1 pyramidal neurons affected by AMPA and some cortical neurons affected by traumatic injury responded with an overexpression of amyloid precursor protein, whereas no neuronal response was detected after the kainic acid treatment. Our data suggest that the gliotic response is highly specific to the type of insult and heterogeneous depending on the brain area affected. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The role of neurotrophic factors and their therapeutic potential have been investigated in various neurodegenerative disorders. In neurodegeneration associated with human immunodeficiency virus (HIV) infection, neuronal function and survival may be affected by abnormal neurotrophic regulation involving HIV-infected microglia and reactive astrocytes. To characterize the cellular localization of brain-derived neurotrophic factor (BDNF) and its high-affinity tyrosine kinase receptor, trkB, proteins in HIV-1 encephalitis, we examined post-mortem brains from patients with acquired immunodeficiency syndrome and brains from non-HIV-infected controls. Using double immunofluorescent confocal microscopy, we found that BDNF immunoreactivity was distributed in neocortical neuronal perikarya and neuritic processes, while in the striatum only neurites were BDNF-immunoreactive. Additionally, the striatum with HIV infection was characterized by BDNF immunoreactivity in infiltrating activated microglia/macrophages and multinucleated giant cells. Catalytic trkB receptor immunoreactivity was observed in neuronal perikarya in the neocortex and striatum, as well as in reactive astrocytes within HIV-infected regions. Our findings suggest that expression of BDNF by activated microglia in HIV-1 encephalitis may affect neuronal survival and astroglial response through corresponding trkB receptors.  相似文献   

15.
Kainic acid lesions of rat striatum caused an elevation of amyloid precursor protein (APP) immunoreactivity in neurons and neurites, some of which were then phagocytosed by reactive microglia/macrophages. Immunoexpression of APP was observed in neurites and neurons 1 day after the kainic injection. Four days after lesioning, immunoreactivity was still concentrated in thick and distorted neurites, but it began to appear in microglia/macrophages and in the tissue matrix. The cells were identified as microglia/macrophages by the phenotypic markers Ia (OX6), leukocyte common antigen (OX1), C3bi receptor (OX42), and macrophage marker (ED1). They were negative for the astrocytic marker glial fibrillary acidic protein (GFAP). APP immunoreactivity in these phagocytic cells was most prominent between 1 week and 1 month postlesioning. No extracellular amyloid fibrils were detectable. These results suggest that APP production is rapidly upregulated in damaged neurons and accumulates in degenerating axons. However, phagocytosis of APP by reactive microglia/macrophages in this rat model does not result in production of Alzheimer type amyloid deposits.  相似文献   

16.
It is known that the pleiotropic cytokine transforming growth factor beta (TGF-beta) has a regulatory role in the process of tissue repair and remodelling following injury. As reports on these molecules in multiple sclerosis (MS) lesion with different lesional activity are rare, we studied the cellular localization of TGF-beta1, -beta2, and -beta3 isoforms, and TGF-beta receptor type I (TGF-betaR-I) and TGF-betaR-II expression by immunohistochemistry on postmortem brain tissue from MS and normal control cases. To validate the TGF-beta staining results we demonstrated that cultured human adult astrocytes that produce biological active TGF-beta2, and to a lesser extent TGF-beta1, were immunoreactive for all 3 TGF-beta isoforms. Moreover, at mRNA level TGF-beta1 was detected in MS and normal control brain tissue. In normal control brain tissue, TGF-beta isoforms were expressed in ramified microglia and TGF-beta2, and -beta3 on neuronal cells in the gray matter TGF-betaR-I and TGF-betaR-II expression was found on endothelial cells, astrocytes, microglia, and neurons. In active demyelinating MS lesions a strong to intense immunoreactivity was detected for all 3 TGF-beta isoforms in perivascular and parenchymal (foamy) macrophages and in hypertrophic astrocytes. Strong immunoreactivity for TGF-betaR-I and TGF-betaR-II was found on macrophages in both parenchymal and perivascular areas and on hypertrophic astrocytes and endothelial cells in active demyelinating MS lesions. In chronic active and inactive MS lesions, all 3 TGF-beta isoforms and their receptors were strongly expressed in hypertrophic astrocytes. Our findings strongly suggest that the expression of the various TGF-beta isoforms and their receptor types found in MS lesions with different cellular activity participate in reactive processes leading to the formation of chronic MS lesions.  相似文献   

17.
A myelin-associated neurite outgrowth inhibitor, Nogo-A, plays a key role in inhibition of axonal regeneration following injury and ischemia in the central nervous system (CNS). Because axonal injury is a pathologic hallmark of multiple sclerosis (MS), we have investigated the expression of Nogo-A and its receptor NgR in four MS and 12 non-MS control brains by immunohistochemistry. Nogo-A expression was markedly upregulated in surviving oligodendrocytes at the edge of chronic active demyelinating lesions of MS and ischemic lesions of acute and old cerebral infarction, whereas NgR expression was greatly enhanced in reactive astrocytes and microglia/macrophages in these lesions when compared with their expression in the brains of neurologically normal controls. Nogo-A and NgR were also identified in a subpopulation of neurons. In contrast, Nogo-A was undetectable in reactive astrocytes and microglia/macrophages and NgR was not expressed on oligodendrocytes in any cases examined. Western blot analysis and double labeling immunocytochemistry identified the constitutive expression of NgR in cultured human astrocytes. These results suggest that Nogo-A expressed on oligodendrocytes might interact with NgR presented by reactive astrocytes and microglia/macrophages in active demyelinating lesions of MS, although biologic effects caused by Nogo-A/NgR interaction among glial cells remain unknown.  相似文献   

18.
To assess the expression pattern of basic fibroblast growth factor (FGF-2) and one of its receptors (FGFR-1/flg) during autoimmune inflammation of the CNS, FGF-2, and FGFR1/flg peptide and mRNA levels were examined by immunocytochemistry, by in situ hybridisation and by Northern blot analysis in T cell-mediated EAE of the Lewis rat. In naive control animals as well as in animals injected with nonencephalitogenic, PPD-reactive T lymphocytes, FGF-2 immunoreactivity was low and confined to blood vessels and to a few spinal cord neurons. In rats injected with encephalitogenic, MBP-reactive T lymphocytes, however, FGF-2-immunoreactive cells were detected from day 4 after T cell transfer onward, i.e., from the onset of clinical symptoms. The number of FGF-2 immunoreactive cells was highest between days 6 and 10 after T cell transfer. Increased FGF-2 peptide expression was paralleled by increased FGF-2 mRNA expression on macrophages/microglia in the spinal cord. By 21 days after T cell transfer, i.e. after complete recovery, FGF-2 peptide and mRNA expression had fully subsided. Based on morphological criteria and on double labeling with the macrophage/microglia-binding lectin GSI-B4 two cell types expressed FGF-2: 1) round macrophages within the core, and 2) activated microglia at the edges of white and grey matter perivascular lesions. Paralleling the temporal and spatial expression pattern of FGF-2, FGFR-1/flg immunoreactivity was induced on activated macrophages/microglia but also on reactive astrocytes bordering perivascular inflammatory lesions. In situ hybridisation analysis furthermore showed that macrophages/microglia expressed the FGFR-1/flg mRNA, and that receptor mRNA expression paralleled ligand mRNA expression. Macrophage/microglia-derived FGF-2 could serve two main functions in EAE: 1) regulate microglial activation in an autocrine fashion, and 2) help to target astrocyte-derived insulin-like growth factor-I (IGF-I) to potentially injured oligodendrocytes in demyelination. © 1996 Wiley-Liss, Inc.  相似文献   

19.
In the brains of adult rodents carbonic anhydrase II (CA) immunoreactivity has been observed in the choroid plexus and in oligodendrocytes, astrocytes, and myelin. Localization and functions of CA in the neonatal brain, however, have been controversial. One issue is whether the CAII-immunopositive round and ameboid cells in the corpus callosum and cingulum in the rat CNS during the first postnatal week are oligodendrocytes or microglia. Colocalization of C AH with the microglial antigen, EDI, and the microglia-specific isolectin, BSI-B4, suggested that most (approx. 60%) of the CAII-positive round and ameboid cells in rat brain during the first postnatal week were, indeed, macrophages and microglia. During that initial week, some CAII-positive protoplasmic astrocytes (approx. 40%) were observed as well. At the end of the first postnatal week smooth-surfaced CAII-positive cells began to appear in the corpus callosum. Those cells also bound MAbO4, a marker for the oligodendrocyte cell line. We conclude that during the first postnatal week most of the CAII-positive cells are macrophages and microglia, and that some are protoplasmic astrocytes. During the second postnatal week CAII-positive cells in the oligodendrocyte lineage become apparent, and by the end of that week there are few CAII-positive microglia. Confocal microscopy suggests that in brains of three-day-old rats the ameboid microglia are associated with nerve fibers, where they may perform phagocytosis of axons, directional guidance of axons, or disinhibition of axonal growth.  相似文献   

20.
Previous studies have shown that Ninjurin-1 participates in cell trafficking and axonal growth following central and peripheral nervous system neuroinflammation.But its precise roles in these processes and involvement in spinal cord injury pathophysiology remain unclear.Western blot assay revealed that Ninjurin-1 levels in rats with spinal cord injury exhibited an upregulation until day 4 post-injury and slightly decreased thereafter compared with sham controls.Immunohistochemistry analysis revealed that Ninjurin-1 immunoreactivity in rats with spinal cord injury sharply increased on days 1 and 4 post-injury and slightly decreased on days 7 and 21 post-injury compared with sham controls.Ninjurin-1 immunostaining was weak in vascular endothelial cells, ependymal cells, and some glial cells in sham controls while it was relatively strong in macrophages, microglia, and reactive astrocytes.These findings suggest that a variety of cells, including vascular endothelial cells, macrophages, and microglia, secrete Ninjurin-1 and they participate in the pathophysiology of compression-induced spinal cord injury.All experimental procedures were approved by the Care and Use of Laboratory Animals of Jeju National University(approval No.2018-0029) on July 6, 2018.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号