首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
背景:课题组采用发泡剂成孔技术,制成了有知识产权的新型骨修复材料多孔碳酸化羟基磷灰石,既保留了碳酸化羟基磷灰石骨水泥原位固化性能等所有的优点,同时又形成多孔结构.目的:通过动物实验进一步验证制备的新型骨修复材料多孔碳酸化羟基磷灰石水泥修复骨缺损的效果.设计、时间及地点:同体对比观察实验,于2000-01/2002 08在解放军总医院骨科研究所及医学动物实验中心完成.材料:以碳酸钙、磷酸氢钙等化学试剂为原材料,通过高温烧结合成碳酸化羟基磷灰石粉体,粉体与固化液相混合原位固化形成碳酸化羟基磷灰石;在碳酸化羟基磷灰石粉体中加入成孔剂,成孔剂在骨水泥固化过程中发生化学反应产生二氧化碳气体,由此形成多孔碳酸化羟基磷灰石.方法:采用10只新西兰大白兔在双侧股骨髁制备直径为5.5 mm、深12 mm的骨缺损动物模型,随机选择侧作为实验组,调和多孔碳酸化羟基磷化石,迅速将其置于特制的注射器中,注入骨缺损.另一侧为对照组,骨缺损直接填充碳酸化羟基磷化石.主要观察指标:分别于术后2,4,8,12,16周分批处死动物.通过X射线和组织学观察其修复效果.结果:实验组骨缺损逐渐被新生骨填充,骨组织逐渐改建,趋于成熟.对照组材料的边缘区有新骨生长,并随时间呈递增趋势,材料的中央区未见新骨组织.术后16周影像学检查,实验组材料与周围正常骨的密度相当,很难区分界线,对照组材料的可视面积明显减少.结论:多孔碳酸化羟基磷灰石水泥具有原位固化性能和良好的生物相容性,能作为自体骨移植的一种替代物修复骨缺损.  相似文献   

2.
背景:已有将多孔钛植入小型骨缺损的报道.目的:验证多孔钛修复兔桡骨节段性骨缺损的疗效.方法:成年健康新西兰大白兔 21只,建立双侧桡骨10 mm缺损模型,骨缺损处分别植入多孔钛和多孔羟基磷灰石材料.结果:材料植入后第4,8,16周取材观察:①4周时多孔钛组和多孔羟基磷灰石组在材料与宿主骨交界处均有少量骨痂形成,第8和16周时孔隙被新生骨组织填充,与自体骨吻合好.②第8,16周时多孔钛组新骨细胞长入量和骨重建效果几乎接近多孔羟基磷灰石组.两组骨面积在新生骨质长入量上差异无显著性意义(P > 0.05).③第8,16周时多孔钛组的最大承载负荷值明显优于多孔羟基磷灰石组.表明多孔钛支架材料可以促进新骨的形成并有利于节段骨缺损的修复.  相似文献   

3.
背景:已有将多孔钛植入小型骨缺损的报道。目的:验证多孔钛修复兔桡骨节段性骨缺损的疗效。方法:成年健康新西兰大白兔21只,建立双侧桡骨10mm缺损模型,骨缺损处分别植入多孔钛和多孔羟基磷灰石材料。结果:材料植入后第4,8,16周取材观察:①4周时多孔钛组和多孔羟基磷灰石组在材料与宿主骨交界处均有少量骨痂形成,第8和16周时孔隙被新生骨组织填充,与自体骨吻合好。②第8,16周时多孔钛组新骨细胞长入量和骨重建效果几乎接近多孔羟基磷灰石组。两组骨面积在新生骨质长入量上差异无显著性意义(P〉0.05)。③第8,16周时多孔钛组的最大承载负荷值明显优于多孔羟基磷灰石组。表明多孔钛支架材料可以促进新骨的形成并有利于节段骨缺损的修复。  相似文献   

4.
背景:碳酸化羟基磷灰石骨水泥是一种新型的骨修复材料,已应用在骨缺损临床治疗中。目的:通过动物实验观察碳酸化羟基磷灰石水泥修复骨缺损效果的特征。设计:配对设计、自身对照、验证性实验。单位:解放军骨科研究所和动物实验中心。对象:实验于2002-05/2003-01在解放军骨科研究所和动物实验中心完成。健康成年雄性杂种犬10只,体质量20~22kg。方法:10只杂种犬肱骨近端制作骨缺损动物模型,随机选择实验侧和对照侧。分别采用碳酸化羟基磷灰石水泥和高温烧结羟基磷灰石陶瓷修复骨缺损。分别于术后5d,4,8,12和16周处死动物,通过X射线和组织学观察其修复效果。主要观察指标:①两侧骨缺损处实体显微镜观察结果。②两侧骨缺损处X射线观察结果。③部分脱钙切片苏木精-伊红染色观察结果。④磨片Gimsa染色观察结果。结果:纳入犬lO只,均进入结果分析。①两侧骨缺损处实体显微镜观察及X射线观察结果:实验侧碳酸化羟基磷灰石水泥界面结合紧密,随植入时间延长界面逐渐模糊。对照侧羟基磷灰石始终与骨界面清晰。②部分脱钙切片苏木精-伊红染色及磨片Gimsa染色观察:实验侧8周时新骨长入碳酸化羟基磷灰石水泥,16周时二者互相交错整合成为一体,并且在碳酸化羟基磷灰石水泥中出现围绕新生血管形成的骨岛。对照侧羟基磷灰石始终保持完整,与骨界面清晰,在16周时羟基磷灰石表面有新生骨沉积。结论:碳酸化羟基磷灰石水泥具有原位固化性能和生物相容性及骨传导活性,是一种较为理想的新型骨缺损修复材料。  相似文献   

5.
背景:碳酸化羟基磷灰石骨水泥是一种新型的骨修复材料,已应用在骨缺损临床治疗中.目的:通过动物实验观察碳酸化羟基磷灰石水泥修复骨缺损效果的特征.设计:配对设计、自身对照、验证性实验.单位:解放军骨科研究所和动物实验中心.对象:实验于2002-05/2003-01在解放军骨科研究所和动物实验中心完成.健康成年雄性杂种犬10只,体质量20~22kg.方法:10只杂种犬肱骨近端制作骨缺损动物模型,随机选择实验侧和对照侧.分别采用碳酸化羟基磷灰石水泥和高温烧结羟基磷灰石陶瓷修复骨缺损.分别于术后5 d,4,8,12和16周处死动物,通过X射线和组织学观察其修复效果.主要观察指标:①两侧骨缺损处实体显微镜观察结果.②两侧骨缺损处X射线观察结果.③部分脱钙切片苏木精-伊红染色观察结果.④磨片Gimsa染色观察结果.结果:纳入犬10只,均进入结果分析.①两侧骨缺损处实体显微镜观察及X射线观察结果:实验侧碳酸化羟基磷灰石水泥界面结合紧密,随植入时间延长界面逐渐模糊.对照侧羟基磷灰石始终与骨界面清晰.②部分脱钙切片苏木精-伊红染色及磨片Gimsa染色观察:实验侧8周时新骨长入碳酸化羟基磷灰石水泥,16周时二者互相交错整合成为一体,并且在碳酸化羟基磷灰石水泥中出现围绕新生血管形成的骨岛.对照侧羟基磷灰石始终保持完整,与骨界面清晰,在16周时羟基磷灰石表面有新生骨沉积.结论:碳酸化羟基磷灰石水泥具有原位固化性能和生物相容性及骨传导活性,是一种较为理想的新型骨缺损修复材料.  相似文献   

6.
背景:自体骨移植是治疗骨缺损的最理想方法,但来源有限,供区有一定的并发症,所以寻找自体骨的替代材料一直是骨科学领域的研究方向。目的:观察珊瑚多孔羟基磷灰石、富血小板血浆和纤维蛋白胶复合物修复骨缺损的效果。方法:在新西兰大白兔双侧前臂桡骨中段截骨1.5cm制成骨缺损模型,随机分为3组,实验组植入珊瑚多孔羟基磷灰石、富血小板血浆和纤维蛋白胶复合物,对照组植入自体骨,空白对照组未植入任何物质。结果与结论:①X射线:实验组术后12周时骨缺损基本修复,塑性完全,愈合过程与对照组同步:空白对照组骨缺损无明显变化。②组织病理学:实验组与对照组术后12周时骨缺损基本修复,出现成熟板层骨及哈佛氏管;空白对照组仅见大量成纤维细胞增生,未见骨质形成。③生物力学:术后2周时实验组最大扭矩和抗扭刚度优于对照组(P〈0.05),术后12周时两组最大扭矩和抗扭刚度差异无显著性意义。表明珊瑚多孔羟基磷灰石、富血小板血浆和纤维蛋白胶复合物具有促骨质愈合的作用,甚至在术后早期修复骨缺损的效果优于自体骨。  相似文献   

7.
氧化铝羟基磷灰石修复兔桡骨节断性缺损的组织学观察   总被引:1,自引:0,他引:1  
背景:前期的实验已经证明,氧化铝羟基磷灰石可以修复兔股骨腔隙性缺损,该材料具有良好的生物相容性和骨传导性。目的:观察氧化铝羟基磷灰石修复兔桡骨节段性缺损的效果。设计、时间及地点:随机对照动物实验。氧化铝羟基磷灰石复合陶瓷人工骨实验材料于2006-05在瑞典斯德哥尔摩大学阿伦尼乌斯实验室烧结成形。动物实验于2006-06/2007-06在宁夏医科大学中医学院实验室完成。材料:放电等离子烧结技术制备氧化铝羟基磷灰石人工骨。方法:新西兰兔12只,制备15mm长的桡骨节段性骨缺损模型。随机分为3组,人工骨植入实验组6只植入氧化铝羟基磷灰石人工骨材料。空白对照组3只骨缺损处旷置,不植入材料。自体骨植入对照组3只截骨后,将截下的自体骨用生理盐水冲洗后,再植入原截骨处。于术后24周截取实验段桡骨。主要观察指标:①大体解剖观察。②界面成骨观察。③材料被膜观察。结果:人工骨植入实验组材料两端及材料尺骨面骨痂向材料中部延伸生长,骨组织将人工骨材料完全包绕,材料与周围骨组织完全修复骨缺损区。空白对照组有少量骨痂修复缺损区,但骨缺损仍然存在。自体骨植入对照组缺损区完全修复。人工骨植入实验组24周不脱钙骨磨片直接显微镜观察:材料与周围新生骨组织界面镶嵌样紧密结合,骨组织长入材料表面融合为一体。再将不脱钙骨磨片苏木精-伊红染色可见骨细胞呈层样排列,形成板层状骨,哈佛氏系统骨。材料两端界面骨脱钙片苏木精-伊红染色,冠切面与纵切面均见骨细胞呈环形排列骨单位形成。材料段冠切面脱钙片可见骨原细胞排列于材料表面,骨髓腔形成。材料被膜观察可见较多胶原纤维和骨原细胞。结论:采用放电等离子烧结技术制备的氧化铝羟基磷灰石人工骨可以修复兔桡骨节段性缺损,其修复过程完全呈现了界面成骨过程。  相似文献   

8.
背景:纳米羟基磷灰石因其与天然骨中的盐类成分一致,与骨中羟基磷灰石的尺寸接近,因而成为骨修复材料的较好选择。设计、时间及地点:材料学动物实验观察,2003—01/2005—06于佳木斯大学实验动物中心及北京积水潭医院完成。目的:探讨纳米羟基磷灰石修复颌骨缺损的可行性。材料:采用磷酸二氢钙和氢氧化钙中和反应构造体系,通过控制反应条件,适量加入形核剂,使反应物成为胶体状态,在不同反应条件下得到针状羟基磷灰石纳米晶体,再进行烧结除处理,得到羟基磷灰石纳米粒子,直径为1-56nm。方法:24只大耳白兔于颌下区备皮,麻醉后在下颌骨体部以GX微型钻机慢速制作一面积为1.5cm×1.5cm的骨缺损。将24只大耳白兔随机分实验组和对照组,12只,组。实验组采用纳米羟基磷灰石修复,对照组采用普通羟基磷灰石修复,并应用抗生素5d。主要观察指标:纳米羟基磷灰石植入骨缺损后骨密度的变化。结果:骨缺损修复后,实验组骨密度随时间的延长逐渐增大,直至与正常的骨密度接近并趋于稳定;对照组骨密度随时间的延长逐渐减小。实验组与对照组比较,差异有显著意义(P〈0.01)。结论:纳米羟基磷灰石修复骨缺损,骨成熟较快,是修复骨缺损的良好材料。  相似文献   

9.
目的:观察碳酸化羟基磷灰石骨水泥与磷酸钙骨水泥的组织学反应差异,判定羟基磷灰石骨水泥中碳酸根存在的意义及其对组织相容性的影响。方法:实验于2000-01/2002-08在解放军总医院骨科研究所及医学动物实验中心完成。①碳酸化羟基磷灰石骨水泥的制备:以碳酸钙、磷酸三钙、磷酸氢钙等化学试剂为原材料,合成碳酸化羟基磷灰石骨水泥粉体。以磷酸氢二钠和磷酸二氢钠合成0.2mol/L磷酸钠缓冲液,作为固化液。固相/液相=1g/0.4mL。②细胞毒性实验:以磷酸钙骨水泥为对照,观察碳酸化羟基磷灰石骨水泥与骨髓基质细胞共培养后细胞的形态以及与材料表面的黏附性,并分别于2,4,6,8d用MTT法测量细胞的相对增殖率。③肌内埋植实验:选用成年新西兰兔8只,按随机数字表法分为实验组和对照组,每组4只。实验组将碳酸化羟基磷灰石预制成形,植入家兔背部肌肉组织内。对照组动物植入磷酸钙骨水泥。术后2,4,8,12周每组分别麻醉处死1只,观察材料周围组织的炎性反应和纤维包膜的形成情况。结果:纳入动物8只,均进入结果分析。①碳酸化羟基磷灰石骨水泥和磷酸钙骨水泥的浸提液分别与兔骨髓基质细胞共培养后,细胞的形态、与材料表面的黏附性以及细胞相对增殖率等无显著差别。②两种材料植入家兔背部肌肉内,材料周围形成的纤维组织包膜厚度均低于30μm,均未发现炎性细胞反应。植入12周时实验组碳酸化羟基磷灰石骨水泥的平均包膜厚度略低于对照组磷酸钙骨水泥(分别为22.7,26.1μm)。结论:碳酸化羟基磷灰石骨水泥和磷酸钙骨水泥均具有优秀的组织相容性,碳酸根的存在可以减少羟基磷灰石骨水泥的组织反应。  相似文献   

10.
珊瑚羟基磷灰石人工骨移植修复良性骨肿瘤骨缺损32例   总被引:4,自引:2,他引:4  
背景:作为一种植骨替代材料,珊瑚羟基磷灰石具有均匀一致且相互连通的孔隙结构,植入骨缺损区其孔隙适合于血管再生、骨再生和骨沉积,生物相容性好,目无免疫原性.目的:评价珊瑚羟基磷灰石人T骨移植修复良性溶骨性骨缺损的临床效果.设计、时间及地点:回顾性病例分析,于1996-05/2007-05在海南医学院附属医院骨科完成.对象:选取海南医学院附属医院骨科同期收治的32例良性溶骨性瘤样病变患者,病理诊断骨缺损原冈:骨囊肿18例,骨纤维异样增殖症9例,动脉瘤样骨囊肿4例,骨软骨瘤1例;合并骨折5例,其中2例股骨、1例胧骨为完全骨折,2例肱骨为不完全骨折.珊瑚羟基磷灰石由海南医学院生物材料实验室制备.方法:32例忠者均行常规手术入路,彻底刮除病灶内瘤组织至正常变薄的骨皮质,选用大小不一的块状珊瑚羟基磷灰石充填,并用颗粒状珊瑚羟基磷灰石尽量将腔隙填满压实,缝合骨膜.完伞骨折的3例患者作内固定,其余患者未作内固定,均不采用石膏外固定.主要观察指标:人工骨移植修复后不同时问x射线摄片检查骨折愈合情况.结果:32例患者均获随访,随访时间6-24个月,无全身性片常反应,伤口均存2周内一期愈合.移植前骨缺损病变范围为3 cm×2 cm×2 cm~12cm×4 cm×4 cm;移植修复后1~3个月人工骨植入区与缺损周围的骨组织之间界限模糊;3~6个月人工骨与周围骨组织融为一体,骨缺损基本修复:6~24个月植入人工骨帮形改建,逐渐为自体新骨替代.结论:应用珊瑚羟基磷灰石人工骨移植修复良性溶骨性骨缺损效果满意,且并发症少,验证了其为一种比较理想的移植骨替代物.  相似文献   

11.
目的:碳酸化羟基磷灰石骨水泥(carbonatedhydroxyapatitecement,CHC)能原位固化形成骨矿物相材料,是一种新型的无机代骨材料,但因缺乏自然骨的孔隙结构,降解、成骨速度非常缓慢。为此研究发泡成孔的方法,制备能原位固化形成多孔结构的CHC,以加快其降解速度,提高成骨能力。方法:实验于1997-01/2000-11由解放军总医院和中国科学院化学研究所共同完成。合成CHC,调整配方,添加成孔剂,制备能原位固化形成多孔结构的碳酸化羟基磷灰石代骨材料,并完成组织相容性、理化特性、力学强度以及内部结构等相关检测。结果:通过改变CHC的组分,添加成孔剂,可以成功的制备原位固化形成多孔结构的CHC。量化材料的组配成分,可调控其孔隙率和孔结构。系列检测结果表明,该材料固化产物为碳酸化羟基磷灰石,与人骨矿物相类似;材料的孔隙率为36%,孔之间互相贯通;固化时间为13~15min,能满足临床应用;抗压强度为(5.6±2.2)MPa,与骨松质强度相当;细胞毒性检测,组织相容性良好。结论:多孔CHC可塑形性强,适合填充任何不规则形状的骨缺损,可用于非负重部位的骨缺损修复。  相似文献   

12.
目的:探讨碳酸化磷灰石(carbonatedhydroxyapatite;CHA)与骨界面的结合强度,为临床使用该材料提供实验依据。方法:成年新西兰兔70只,分别在股骨远端制备分离和拔出动物实验模型,实验组植入碳酸化磷灰石,对照组植入聚甲基丙烯酸甲酯(polymethylmethaerylate,PMMA),术后分批处死动物,进行分离和拔出实验及组织学观察。结果:CHA组与骨界面结合力1周时仅为(56.0±2.6)N,螺钉拔出力仅为(250.0±7.4)N,16周时界面结合力达到(281.0±13.1)N,螺钉拔出力上升至(512.5±7.8)N,表明CHA-骨界面结合强度随时间推移逐渐升高;PMMA组与骨界面结合力1周达到(288.5±2.3)N,螺钉拔出力高达(753.0±26.1)N,16周时界面结合力降为(228.0±9.2)N,拔出力则降为(603.0±14.1)N,表明PMMA初始强度高,随时间推移逐渐下降。组织学观察CHA与宿主骨界面在8周出现CHA降解,新骨长入,16周时更加明显;而PMMA组8~16周标本显示骨界面间形成厚薄不一的纤维组织。结论:CHA是生物相容性非常好的生物活性材料,但应用初期与骨界面结合强度较低,因其在骨界面间可以降解,并伴有新骨形成和长入,因此结合强度增加,而PMMA则无此性能。界面分离实验和螺钉拔出实验结果相符,支持CHA-骨界面结合强度在体内稳定增强的趋势。CHA的原位固化性能、固化强度以及  相似文献   

13.
目的:评价新型注射型纳米羟基磷灰石/酰胺66复合骨水泥体外增强聚骨质疏松性松质骨的生物力学性能,从而选择适合临床使用的骨水泥。方法:实验于2001-01/2003-01在重庆医科大学、四川大学纳米生物材料研究中心和四川大学生物治疗国家重点实验室完成。选取5具老年和1具青年的T1-T6脊柱和双侧股骨髁标本,经X线摄片未见明显病理性缺损和破坏。椎体压缩实验:将脊柱标本去除椎间盘和椎体后方成分后仅保留椎体34个。①老年椎体28个,随机分为4组:纳米羟基磷灰石/酰胺66含量60%的复合骨水泥组(HP1组)、纳米羟基磷灰石/聚聚聚酰胺酰胺66含量70%的复合骨水泥组(HP2组)、纳米羟基磷灰石/66含量80%的复合骨水泥组(HP3组)、骨质疏松组,7个标本/;青年组椎体6个,作为正常对照组。②HP1,HP2,HP3组分别注射含量为60%,70%和80%的纳米羟基磷灰石/酰胺66复合骨水泥5mL,骨质疏松聚组和正常对照组仅作穿刺。③测定每个标本的载荷-位移数据和压力-位移曲线,采样频率为10Hz。股骨髁松质骨扭转实验:用于实验的股骨髁10个。①老年股骨髁8个,随机分为4组:HP1,HP2HP3组及骨质,疏松组,2个/;青年股骨髁2个,作为正常对照组。②HP1,HP2,HP3组组分别注射含量为60%,70%和80%的纳米羟基磷灰石/酰胺66复聚合骨水泥20mL,骨质疏松组和正常对照组仅作穿刺。然后将各组股骨髁的松质骨制成10mm×10mm×30mm的松质骨条标本,5个/每组。测定各组的抗扭强度和抗扭刚度。结果:椎体压缩实验中保留34个椎体,股骨髁松质骨扭转实验中选用10个股骨髁,全部进入结果分析。椎体压缩实验:①各组屈服强度和最大抗压强度的测定:与骨质疏松组比较,HP1,HP2,HP3组均明显提高,HP1,HP2组尤为显著(P均<0.05);但HP1,HP2,HP3组仍均显著低于正常对照组(P<0.05)。②各组抗压刚度的测定:与骨质疏松组比较,HP1,HP2,HP3组均明显提高,HP1,HP2组尤为显著(P<0.05);但HP1,HP2,HP3组仍均低于正常对照组,且HP3组差异显著(P<0.05)。股骨髁松质骨扭转实验:①各组抗扭强度的测定:与骨质疏松组比较,HP1,HP2,HP3组的抗扭强度均明显提高,HP1,HP2组尤为显著(P<0.05);但HP1,HP2,HP3组的抗扭强度仍均低于正常对照组,HP2,HP3组尤为显著(P<0.05)。②各组抗扭刚度的测定:与骨质疏松组比较,HP1,HP2,HP3组的抗扭刚度均明显提高,HP1,HP2组尤为显著(P<0.05);但HP1,HP2,HP3组的抗扭刚度仍均低于正常对照组,HP3组尤为显著(P<0.05)。结论:注射型纳米羟基磷灰石与聚酰胺66复合骨水泥材料能够增强骨质疏松松质骨的抗压和抗扭性能,治疗骨质疏松骨折,预防椎体骨折的发生。另外,纳米羟基磷灰石/酰胺66含量为60%和70%的复合骨水聚泥有较好的抗压和抗扭性能,更符合临床应用的需求。  相似文献   

14.
目的:评价新型注射型纳米羟基磷灰石/聚酰胺66复合骨水泥体外增强骨质疏松性松质骨的生物力学性能,从而选择适合临床使用的骨水泥。方法:实验于2001-01/2003-01在重庆医科大学、四川大学纳米生物材料研究中心和四川大学生物治疗国家重点实验室完成。选取5具老年和1具青年的T1-T6脊柱和双侧股骨髁标本,经X线摄片未见明显病理性缺损和破坏。椎体压缩实验:将脊柱标本去除椎间盘和椎体后方成分后仅保留椎体34个。①老年椎体28个,随机分为4组:纳米羟基磷灰石/聚酰胺66含量60%的复合骨水泥组(HP1组)、纳米羟基磷灰石/聚酰胺66含量70%的复合骨水泥组(HP2组)、纳米羟基磷灰石/聚酰胺66含量80%的复合骨水泥组(HP3组)、骨质疏松组,7个标本/组;青年椎体6个,作为正常对照组。②HP1,HP2,HP3组分别注射含量为60%,70%和80%的纳米羟基磷灰石/聚酰胺66复合骨水泥5mL,骨质疏松组和正常对照组仅作穿刺。③测定每个标本的载荷-位移数据和压力-位移曲线,采样频率为10Hz。股骨髁松质骨扭转实验:用于实验的股骨髁10个。①老年股骨髁8个,随机分为4组:HP1,HP2,HP3组及骨质疏松组。2个/组;青年股骨髁2个,作为正常对照组。②HP1,HP2,HP3组分别注射含量为60%,70%和80%的纳米羟基磷灰石/聚酰胺66复合骨水泥20mL,骨质疏松组和正常对照组仅作穿刺。然后将各组股骨髁的松质骨制成10mm&;#215;10mm&;#215;30mm的松质骨条标本,5个/每组。测定各组的抗扭强度和抗扭刚度。结果:椎体压缩实验中保留34个椎体,股骨髁松质骨扭转实验中选用10个股骨髁,全部进入结果分析。椎体压缩实验:①各组屈服强度和最大抗压强度的测定:与骨质疏松组比较,HP1,HP2,HP3组均明显提高,HP1,HP2组尤为显著(P均〈0.05);但HP1,HP2,HP3组仍均显著低于正常对照组(P〈0.05)。②各组抗压刚度的测定:与骨质疏松组比较,HP1,HP2,HP3组均明显提高,HP1,HP2组尤为显著(P〈0.05);但HP1,HP2,HP3组仍均低于正常对照组,且HP3组差异显著(P〈0.05)。股骨髁松质骨扭转实验:①各组抗扭强度的测定:与骨质疏松组比较,HP1,HP2,HP3组的抗扭强度均明显提高,HP1,HP2组尤为显著(Pd〈 0.05);但HP1,HP2,HP3组的抗扭强度仍均低于正常对照组,HP2,HP3组尤为显著(P〈0.05)。②各组抗扭刚度的测定:与骨质疏松组比较,HP1,HP2,HP3组的抗扭刚度均明显提高,HP1,HP2组尤为显著(P〈0.05);但HP1,HP2,HP3组的抗扭刚度仍均低于正常对照组,HP3组尤为显著(P〈0.05)。结论:注射型纳米羟基磷灰石与聚酰胺66复合骨水泥材料能够增强骨质疏松松质骨的抗压和抗扭性能,治疗骨质疏松骨折,预防椎体骨折的发生。另外,纳米羟基磷灰石/聚酰胺66含量为60%和70%的复合骨水泥有较好的抗压和抗扭性能,更符合临床应用的需求。  相似文献   

15.
背景:新近研究表明骨水泥诱导成骨能力较差、在体内降解过慢,其单独应用的效果并不理想.因此,需要对其进行改型,希望研制出一种能克服上述缺点的新型材料运用于临床.目的:观察脱钙骨基质颗粒、丙烯酸树脂骨水泥复合物填充修复股骨骨缺损的能力,从而确定该复合材料的最佳配方.设计、时间及地点:随机对照动物实验,于2008-05/09在重庆医科大学动物实验中心完成.材料:将脱钙骨基质颗粒和丙烯酸树脂骨水泥按不同质量比例(2∶8,3∶7,4∶6,5∶5,6∶4)构成复合材料.方法:在新西兰大白兔双侧股骨制备骨缺损填充模型,将各比例复合材料植入骨缺损处,以单纯丙烯酸树脂骨水泥材料作为对照.主要观察指标:对复合材料和单纯材料进行扫描电镜观察及生物力学测试.在术后4,8,12周时进行大体标本观察、组织病理学、X射线片观察,比较其修复填允骨缺损的能力.结果:脱钙骨基质颗粒与丙烯酸树脂骨水泥质量比在3∶7~6∶4的范围内,复合材料中存在较多100 μm以上的裂隙,当质量比小于3∶7时,材料内部的大部分间隙<100 μ m,质量比大于6∶4时两种材料不能有效地凝固在一起.随质量比的增加,材料抗压极限强度递减,各组数据经方差分析,差异具有显著性意义(P<0.05).在各时间点大体标本观察、组织病理学、X射线片观察显示骨缺损填充部位均有不同程度新骨形成.12周时脱钙骨基质颗粒与丙烯酸树脂骨水泥质量比在4∶6时骨结合率最高.结论:随着脱钙骨基质颗粒质量比的增加,孔隙越丰富而材料力学强度逐渐降低.脱钙骨基质颗粒与丙烯酸树脂骨水泥质量比为4∶6时修复低承重部位松质骨的骨缺损效果较好.  相似文献   

16.
背景:异种松质骨具有天然多孔结构,有利于新骨长入,经处理可完全消除抗原性,不引起免疫排斥反应,具有良好的骨传导性能。目的:评价异种骨修复兔桡骨节段性骨缺损的效果。方法:将36只新西兰白兔随机均分3组,制作单侧15mm桡骨节段性骨缺损模型,实验组植入生物型异种骨,对照组植入深冻兔异体骨,空白组未植骨。术后4,8,12周进行一般情况、大体解剖、X射线及组织学观察。结果与结论:术后4,8,12周实验组与对照组骨缺损逐步修复,空白组骨缺损未修复,实验组与对照组影像学和组织学评分均高于空白组(P<0.05),实验组与对照组影像学和组织学评分差异无显著性意义。表明生物型异种骨可较好修复骨缺损,修复效果与异体骨相当。  相似文献   

17.
背景:已证实同种异体微小颗粒骨复合磷酸钙骨水泥修复骨缺损的效果较好,但是二者复合的最佳比例还无定论。目的:观察不同比例的同种异体微小颗粒骨与磷酸钙骨水泥复合物修复兔桡骨缺损的效果,寻找最合适的比例。设计:随机对照动物体内实验。材料:健康成年日本大耳白兔5只,取骨盆骨制成直径300~500μm的同种异体微小颗粒骨作为供体。方法:健康成年日本大耳白兔45只,建立兔双侧桡骨中段12mm骨缺损模型,然后随机分成5组,每组9只。均植入同种异体微小颗粒骨与磷酸钙骨水泥复合物,同种异体微小颗粒骨与磷酸钙骨水泥的比例分别为1∶1,2∶1,3∶1,4∶1,5∶1。主要观察指标:观察同种异体微小颗粒骨与磷酸钙骨水泥混合后的形态;植入后4,8周分别行X射线片观察缺损区骨连接及骨痂生长情况,组织学观察新生骨组织和骨愈合情况,并进行骨缺损修复血管化观察;植入后8周测定各组桡骨标本的最大扭矩,以评价生物力学强度。结果:同种异体微小颗粒骨与磷酸钙骨水泥的比例为3∶1时,二者混合后可任意塑形,其成骨性能最好,新生骨的组织学结构和血管化程度优于其他复合比例,生物力学强度高于其他复合比例(t=2.35,P〈0.05)。结论:同种异体微小颗粒骨复合磷酸钙骨水泥的最适宜比例是3∶1。  相似文献   

18.
目的:观察自体微小颗粒骨复合牛骨形态发生蛋白的成骨效果。方法:实验于2002-10/2003-05在哈尔滨医科大学附属第二医院动物实验中心完成。将30只新西兰白兔两侧桡骨干中段造成1.5cm长骨缺损模型,随机分为实验组21只,空白对照组9只。其中实验组左侧植入颗粒骨+骨形态发生蛋白,右侧植入颗粒骨;空白对照组双侧植入明胶海绵。分别于术后2,4,12周实验组各取7只、空白对照组各取3只对兔桡骨植入物进行大体形态、放射学检查及组织学检查,12周进行生物力学试验。结果:纳入兔30只,均进入结果分析。①兔桡骨植入物大体、X射线与组织学检查结果:术后12周实验组两种方法均可以修复节段性骨缺损,但左侧无论从成骨时间及成骨效果上都要优于右侧,空白对照组无骨愈合现象。②兔桡骨植入物生物力学测试结果:证明实验组左侧在最大应力方面要优于右侧[(101.03±12.49),(73.71±9.75)N,P<0.05];在弹性模量上二者无显著性差异。结论:自体微小颗粒骨可较好的修复骨缺损,但复合骨形态发生蛋白后在成骨时间和成骨质量上更优。  相似文献   

19.
自体微小颗粒骨复合牛骨形态发生蛋白修复骨缺损   总被引:3,自引:1,他引:3  
目的:观察自体微小颗粒骨复合牛骨形态发生蛋白的成骨效果。方法:实验于2002-10/2003-05在哈尔滨医科大学附属第二医院动物实验中心完成。将30只新西兰白兔两侧桡骨干中段造成1.5cm长骨缺损模型,随机分为实验组21只,空白对照组9只。其中实验组左侧植入颗粒骨+骨形态发生蛋白,右侧植入颗粒骨;空白对照组双侧植入明胶海绵。分别于术后2,4,12周实验组各取7只、空白对照组各取3只对兔桡骨植入物进行大体形态、放射学检查及组织学检查,12周进行生物力学试验。结果:纳入免30只,均进入结果分析。①兔桡骨植入物大体、X射线与组织学检查结果:术后12周实验组两种方法均可以修复节段性骨缺损,但左侧无论从成骨时间及成骨效果上都要优于右侧,空白对照组无骨愈合现象。②兔桡骨植入物生物力学测试结果:证明实验组左侧在最大应力方面要优于右侧[(101.03&;#177;12.49),(7371&;#177;9.75)N,P〈0.051;在弹性模量上二者无显著性差异。结论:自体微小颗粒骨可较好的修复骨缺损,但复合骨形态发生蛋白后在成骨时间和成骨质量上更优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号