首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 747 毫秒
1.
Peripheral nerve injury leading to neuropathic pain induces the upregulation of interleukin (IL)‐6 and microglial CX3CR1 expression, and activation of p38 mitogen‐activated protein kinase (MAPK) in the spinal cord. Here, we investigated whether IL‐6 regulates CX3CR1 expression through p38 MAPK activation in the spinal cord in rats with chronic constriction injury (CCI) of the sciatic nerve. Similar temporal changes in the expression of IL‐6, phosphorylated p38 MAPK and CX3CR1 were observed following CCI. The increases in CX3CR1 expression, p38 MAPK activation and pain behavior after CCI were suppressed by blocking IL‐6 action with a neutralizing antibody, while they were enhanced by supplying exogenous recombinant rat IL‐6 (rrIL‐6). rrIL‐6 also induced increases in spinal CX3CR1 expression, p38 MAPK activation and pain behavior in naïve rats without nerve injury. Furthermore, treatment with the p38 MAPK‐specific inhibitor, SB203580, suppressed the increase in CX3CR1 expression induced by CCI or rrIL‐6 treatment. Finally, blocking CX3CR1 or p38 MAPK activation prevented the development of mechanical allodynia and thermal hyperalgesia induced by CCI or rrIL‐6 treatment. These results suggest a new mechanism of neuropathic pain, in which IL‐6 induces microglial CX3CR1 expression in the spinal cord through p38 MAPK activation, enhancing the responsiveness of microglia to fractalkine in the spinal cord, thus playing an important role in neuropathic pain after peripheral nerve injury.  相似文献   

2.
Sun S  Cao H  Han M  Li TT  Pan HL  Zhao ZQ  Zhang YQ 《Pain》2007,129(1-2):64-75
Fractalkine, a chemokine binding to only one known receptor CX3CR1, has recently been proposed to be a neuron-to-glia signal in the spinal cord leading to microglial activation and glially dependent pain facilitation. The previous studies explored that blockade of endogenous fractalkine, using anti-CX3CR1 neutralizing antibody, dose-dependently attenuated neuropathic pain. The present study examined the role of endogenous fractalkine in inflammatory pain. Intra-articular injection of complete Freund's adjuvant (CFA)-induced rat ankle joint monoarthritis (MA) model was used. Western blot analysis revealed that CX3CR1 expression in the spinal cord was significantly increased following CFA-induced MA. Intrathecal injection of anti-CX3CR1 neutralizing antibody both delayed the development of mechanical allodynia and thermal hyperalgesia, and reversed established pain facilitation. Furthermore, blockade of CX3CR1 significantly suppressed activation of spinal glia, especially microglia, evoked by MA. These data provided new evidence for the contribution of endogenous fractalkine to the initiation and early maintenance of inflammatory pain facilitation via activating spinal microglia.  相似文献   

3.
目的 通过观察脊髓背角趋化因子(C-X3-C基元)配体1 (CX3CL1)/趋化因子(C-X3-C基元)受体1 (CX3CR1)蛋白和mRNA表达变化,探讨“三法三穴”推拿手法对坐骨神经损伤大鼠痛觉功能改善的作用机制。方法 74只雄性Sprague-Dawley大鼠,随机分为正常组(n = 12)、假手术组(n = 24)、模型组(n = 25)和三法三穴组(n = 13)。模型组和三法三穴组制作坐骨神经损伤模型。假手术组仅暴露坐骨神经。三法三穴组造模后第7天起用按摩推拿手法模拟仪按摩殷门、承山、阳陵泉三穴。分别于造模后7 d、干预20 d进行光热耐痛阈测定;造模后7 d、干预10 d、干预20 d进行累积疼痛评分测定;并于造模后7 d和干预20 d取材,对脊髓背角CX3CL1/CX3CR1表达进行Western blotting和RT-PCR检测,干预20 d对脊髓背角小胶质细胞进行免疫荧光观察。结果 造模后7 d,与正常组比较,模型组和假手术组光热耐痛阈升高(P < 0.05);与假手术组比较,模型组和三法三穴组累积疼痛评分升高( P < 0.05);干预10 d后,三法三穴组累积疼痛评分低于模型组( P < 0.05);干预20 d后,三法三穴组光热耐痛阈和累积疼痛评分均低于模型组( P < 0.05)。造模后7 d和干预20 d后,各组CX3CL1/CX3CR1蛋白和mRNA的表达变化均无显著性差异( P > 0.05)。干预20 d后模型组小胶质细胞呈部分活化或完全活化状态,三法三穴组呈未活化或部分活化状态。 结论 “三法三穴”推拿手法对坐骨神经损伤大鼠痛觉功能有改善,可能是通过CX3CL1/CX3CR1以外的途径调节小胶质细胞实现的。  相似文献   

4.
A major dose-limiting side effect associated with cancer-treating antineoplastic drugs is the development of neuropathic pain, which is not readily relieved by available analgesics. A better understanding of the mechanisms that underlie pain generation has potential to provide targets for prophylactic management of chemotherapy pain. Here, we delineate a pathway for pain that is induced by the chemotherapeutic drug vincristine sulfate (VCR). In a murine model of chemotherapy-induced allodynia, VCR treatment induced upregulation of endothelial cell adhesion properties, resulting in the infiltration of circulating CX3CR1+ monocytes into the sciatic nerve. At the endothelial-nerve interface, CX3CR1+ monocytes were activated by the chemokine CX3CL1 (also known as fractalkine [FKN]), which promoted production of reactive oxygen species that in turn activated the receptor TRPA1 in sensory neurons and evoked the pain response. Furthermore, mice lacking CX3CR1 exhibited a delay in the development of allodynia following VCR administration. Together, our data suggest that CX3CR1 antagonists and inhibition of FKN proteolytic shedding, possibly by targeting ADAM10/17 and/or cathepsin S, have potential as peripheral approaches for the prophylactic treatment of chemotherapy-induced pain.  相似文献   

5.
The present study examined the effects of intrathecal use of resveratrol on pain hypersensitivities, spinal glia activation, and CX3CR1 expression in the model of bone cancer pain (BCP). The BCP model was established through intrathecally injecting Walker 256 mammary gland carcinoma cells to Sprague‐Dawley rats. We found that spinal CX3CR1 expression and glial activation aggravated after inoculation. Resveratrol (i.t.) attenuated bone cancer‐induced pain hypersensitivities, decreased CX3CR1 expression and glial activation in the spine in a BCP model. Resveratrol (i.t.) also attenuated mechanical allodynia resulting from intrathecally injecting fractalkine in rats. Inhibition of spinal glial activation and CX3CR1 upregulation may involve in resveratrol's analgesic effects. These findings demonstrated that resveratrol attenuated pain facilitation through inhibiting spinal glial activation and CX3CR1 upregulation in a BCP model.  相似文献   

6.
Fractalkine is a unique chemokine which has both adhesive and chemoattractant functions. With the increasing emphasis on the importance of inflammation in atherosclerosis, more attention has been focused on the role of chemokines in atherosclerosis. It has been shown that fractalkine/CX3CR1 participates in the atherosclerotic pathological process through mediating the recruitment of leukocytes and the interaction of vascular cells and leukocytes. Some signal pathways are simultaneously activated through fractalkine/CX3CR1 coupling to promote the inflammatory response in atherosclerotic vessels. Additionally, fractalkine has cytotoxic effects on endothelium as well as anti-apoptosis and proliferative effects on vascular cells which consequently changes plaque components and stability in plaque. Several studies have showed that fractalkine or CX3CR1 deficiency in atherosclerotic mice would ameliorate the severity of plaque. Population studies on CX3CR1 polymorphism have confirmed that 280M-containing haplotype is associated with reduced risk of atherosclerotic disease. Despite the apparent association with atherosclerosis, further studies on fractalkine/CX3CR1 chemokine pair are clearly warranted to more fully elucidate this relationship.  相似文献   

7.
BackgroundThe incidence of migraines is higher among individuals with epilepsy than in healthy individuals, and these two diseases are thought to shared pathophysiological mechanisms. Excitation/inhibition imbalance plays an essential role in the comorbidity of epilepsy and migraine. Microglial activation is crucial for abnormal neuronal signal transmission. However, it remains unclear whether and how microglia are activated and their role in comorbidities after being activated. This study aimed to explore the characteristics and mechanism of microglial activation after seizures and their effect on migraine.MethodsModel rats of status epilepticus (SE) induced by intraperitoneal injection of lithium chloride (LiCl)-pilocarpine and migraine induced by repeated dural injections of inflammatory soup (IS) were generated, and molecular and histopathologic evidence of the microglial activation targets of fractalkine (FKN) signalling were examined. HT22-BV2 transwell coculture assays were used to explore the interaction between neurons and microglia. LPS (a microglial agonist) and FKN stimulation of BV2 microglial cells were used to evaluate changes in BDNF levels after microglial activation.ResultsMicroglia were specifically hyperplastic and activated in the temporal lobe cortex, thalamus, and spinal trigeminal nucleus caudalis (sp5c), accompanied by the upregulation of FKN and CX3CR1 four days after seizures. Moreover, SE-induced increases in nociceptive behaviour and FKN/CX3CR1 axis expression in migraine model rats. AZD8797 (a CX3CR1 inhibitor) prevented the worsening of hyperalgesia and microglial activation in migraine model rats after seizures, while FKN infusion in migraine model rats exacerbated hyperalgesia and microglial activation associated with BDNF-Trkb signalling. Furthermore, in neuron-microglia cocultures, microglial activation and FKN/CX3CR1/BDNF/iba1 expression were increased compared with those in microglial cultures alone. Activating microglia with LPS and FKN increased BDNF synthesis in BV2 microglia.ConclusionsOur results indicated that epilepsy facilitated migraine through FKN/CX3CR1 axis-mediated microglial activation in the cortex/thalamus/sp5c, which was accompanied by BDNF release. Blocking the FKN/CX3CR1 axis and microglial activation are potential therapeutic strategies for preventing and treating migraine in patients with epilepsy.Supplementary InformationThe online version contains supplementary material available at 10.1186/s10194-022-01416-w.  相似文献   

8.
The chemokine receptor CX3CR1 is a proinflammatory leukocyte receptor specific for the chemokine fractalkine (FKN or CX3CL1). In two retrospective studies, CX3CR1 has been implicated in the pathogenesis of atherosclerotic cardiovascular disease (CVD) based on statistical association of a common receptor variant named CX3CR1-M280 with lower prevalence of atherosclerosis, coronary endothelial dysfunction, and acute coronary syndromes. However, the general significance of CX3CR1-M280 and its putative mechanism of action have not previously been defined. Here we show that FKN-dependent cell-cell adhesion under conditions of physiologic shear is severely reduced in cells expressing CX3CR1-M280. This was associated with marked reduction in the kinetics of FKN binding as well as reduced FKN-induced chemotaxis of primary leukocytes from donors homozygous for CX3CR1-M280. We also show that CX3CR1-M280 is independently associated with a lower risk of CVD (adjusted odds ratio, 0.60, P = 0.008) in the Offspring Cohort of the Framingham Heart Study, a long-term prospective study of the risks and natural history of this disease. These data provide mechanism-based and consistent epidemiologic evidence that CX3CR1 may be involved in the pathogenesis of CVD in humans, possibly by supporting leukocyte entry into the coronary artery wall. Moreover, they suggest that CX3CR1-M280 is a genetic risk factor for CVD.  相似文献   

9.
Naturally occurring single nucleotide polymorphisms have been identified in human CX3CR1, the chemokine receptor for fractalkine (FKN/CX3CL1). Individuals carrying the I249/M280 variant of CX3CR1 have a lower risk of cardiovascular disease compared with those homozygous for the common variant (V249/T280). The precise molecular basis for this phenotype is unclear, although differences in FKN binding, adhesive properties, and signaling efficiency between the CX3CR1 variants have been reported. FKN binding to CX3CR1 leads to an increase in intracellular calcium, actin rearrangement, and activation of the mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K) pathways. Regulation of these signaling pathways underlies the known roles for FKN in cell survival, proliferation, and migration. In the present study, we demonstrate that FKN stimulates phosphorylation of protein kinase B (Akt/PKB) in Chinese hamster ovary cells individually expressing the naturally occurring variants of human CX3CR1-, as well as rat CX3CR1-, but not in murine CX3CR1-expressing cells. Substitution of Pro326 in the C terminus of murine CX3CR1 with Ser (residue found in the analogous position of human CX3CR1) produced a mutant receptor that mimicked the human receptor in its ability to stimulate the phosphorylation of both Akt and extracellular signal-regulated kinase in a time-, PI3K-, and pertussis toxin-sensitive G-protein-dependent manner. These results identify a critical structural determinant of CX3CR1 important for activation of downstream signaling pathways.  相似文献   

10.
Recent studies have indicated an important role of chemokines such as CCL2 in the development of chronic pain. However, the distinct roles of different chemokines in the development and maintenance of neuropathic pain and in their interactions with neurons have not been clearly elucidated. We found that spinal nerve ligation (SNL) not only induced persistent neuropathic pain symptoms, including mechanical allodynia and heat hyperalgesia, but also produced sustained CXCL1 upregulation in the spinal cord. Double staining of immunofluorescence and in situ hybridization revealed that CXCL1 was primarily induced in spinal astrocytes. In cultured astrocytes, tumor necrosis factor-α induced robust CXCL1 expression via the activation of the c-jun N-terminal kinase. Intrathecal administration of CXCL1 neutralizing antibody transiently reduced SNL-induced pain hypersensitivity, suggesting an essential role of CXCL1 in neuropathic pain sensitization. In particular, intraspinal delivery of CXCL1 shRNA lentiviral vectors, either before or after SNL, persistently attenuated SNL-induced pain hypersensitivity. Spinal application of CXCL1 not only elicited pain hypersensitivity but also induced rapid neuronal activation, as indicated by the expression of phosphorylated extracellular signal-regulated kinase and cAMP response element binding protein, and c-Fos in spinal cord neurons. Interestingly, CXCR2, the primary receptor of CXCL1, was upregulated in dorsal horn neurons after SNL, and the CXCR2 antagonist SB225002 completely blocked the CXCL1-induced heat hyperalgesia. SB225002 also attenuated SNL-induced pain hypersensitivity. Collectively, our results have demonstrated a novel form of chemokine-mediated glial-neuronal interaction in the spinal cord that can drive neuropathic pain. Inhibition of the CXCL1-CXCR2 signaling may offer a new therapy for neuropathic pain management.  相似文献   

11.
In Parkinson''s disease, α-synuclein is known to activate microglia and this activation has been proposed as one of the mechanisms of neurodegeneration. There are several signals produced by neurons that have an anti-inflammatory action on microglia, including CX3CL1 (fractalkine). We have shown that a soluble form of CX3CL1 is required to reduce neuron loss in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice and that fractalkine agonism can reduce neuron loss in a 6-hydroxydopamine lesion model. Here, we show that fractalkine can reduce α-synuclein-mediated neurodegeneration in rats. Rats that received fractalkine showed abrogated loss of tyrosine hydroxylase and Neu-N staining. This was replicated in animals where we expressed fractalkine from astrocytes with the glial fibrillary acid protein (GFAP) promoter. Interestingly, we did not observe a reduction in MHCII expression suggesting that soluble fractalkine is likely altering the microglial state to a more neuroprotective one rather than reducing antigen presentation.  相似文献   

12.
Recent studies have implicated chemokines in microglial activation and pathogenesis of neuropathic pain. C-X-C motif chemokine 13 (CXCL13) is a B lymphocyte chemoattractant that activates CXCR5. Using the spinal nerve ligation (SNL) model of neuropathic pain, we found that CXCL13 was persistently upregulated in spinal cord neurons after SNL, resulting in spinal astrocyte activation via CXCR5 in mice. shRNA-mediated inhibition of CXCL13 in the spinal cord persistently attenuated SNL-induced neuropathic pain. Interestingly, CXCL13 expression was suppressed by miR-186-5p, a microRNA that colocalized with CXCL13 and was downregulated after SNL. Spinal overexpression of miR-186-5p decreased CXCL13 expression, alleviating neuropathic pain. Furthermore, SNL induced CXCR5 expression in spinal astrocytes, and neuropathic pain was abrogated in Cxcr5–/– mice. CXCR5 expression induced by SNL was required for the SNL-induced activation of spinal astrocytes and microglia. Intrathecal injection of CXCL13 was sufficient to induce pain hypersensitivity and astrocyte activation via CXCR5 and ERK. Finally, intrathecal injection of CXCL13-activated astrocytes induced mechanical allodynia in naive mice. Collectively, our findings reveal a neuronal/astrocytic interaction in the spinal cord by which neuronally produced CXCL13 activates astrocytes via CXCR5 to facilitate neuropathic pain. Thus, miR-186-5p and CXCL13/CXCR5-mediated astrocyte signaling may be suitable therapeutic targets for neuropathic pain.  相似文献   

13.
Echeverry S  Shi XQ  Zhang J 《Pain》2008,135(1-2):37-47
Glial activation is a typical response of the central nervous system to nerve injury. In the current investigation, we characterized the temporal and spatial pattern of glial proliferation, one of the most conspicuous features of glial activation, in relation to nerve injury-induced neuropathic pain. Using bromodeoxyuridine (BrdU) as a mitotic marker, we analyzed cell proliferation in the spinal cord, identified the phenotype of dividing cells, traced their fate, and correlated these phenomena with behavioural assays of the neuropathic pain syndrome. Our results demonstrated that peripheral nerve injury induced an early and transient cell proliferation, on the spinal cord ipsilateral to the nerve lesion which peaked at day 3 post-surgery. The majority of the proliferating cells were Iba-1(+) microglia, together with some NG2(+) oligodendrocyte progenitors, and GFAP(+) astrocytes. These newly generated cells continued to divide over time with the response peaking at day 14 post-injury. Microglia were always the predominant phenotype which made up over 60% of activated microglia derived from this newly generated cell population. There was a close temporal correlation between microglial proliferation in the spinal cord dorsal horn and the abnormal pain responses, suggesting a contribution of the new microglia to the genesis of the neuropathic pain symptoms.  相似文献   

14.
Activation of spinal cord microglia and astrocytes is a common phenomenon in nerve injury pain models and is thought to exacerbate pain perception. Following a nerve injury, a transient increase in the presence of microglia takes place while the increased numbers of astrocytes stay elevated for an extended period of time. It has been proposed that activated microglia are crucial for the development of neuropathic pain and that they lead to activation of astrocytes which then play a role in maintaining the long term pathological pain sensation. In the present report, we examined the time course of spinal cord glial activation in three different murine pain models to investigate if microglial activation is a general prerequisite for astrocyte activation in pain models. We found that two different types of cancer induced pain resulted in severe spinal astrogliosis without activation of microglia. In contrast, sciatic nerve injury led to a transient activation of microglia and sustained astrogliosis. These results show that development of hypersensitivity and astrocyte activation in pain models can take place independent of microglial activation.  相似文献   

15.
《Pain》2014,155(12):2618-2629
The proinflammatory cytokines tumor necrosis factor (TNF) α and interleukin (IL) 1β have been strongly implicated in the pathogenesis of neuropathic pain, but the intracellular signaling of these cytokines in glial cells is not fully understood. TNF receptor-associated factor 6 (TRAF6) plays a key role in signal transduction in the TNF receptor superfamily and the IL-1 receptor superfamily. In this study, we investigated the role of TRAF6 in neuropathic pain in mice after spinal nerve ligation (SNL). SNL induced persistent TRAF6 upregulation in the spinal cord. Interestingly, TRAF6 was mainly colocalized with the astrocytic marker glial fibrillary acidic protein on SNL day 10 and partially expressed in microglia on SNL day 3. In cultured astrocytes, TRAF6 was upregulated after exposure to TNF-α or IL-1β. TNF-α or IL-1β also increased CCL2 expression, which was suppressed by both siRNA and shRNA targeting TRAF6. TRAF6 siRNA treatment also inhibited the phosphorylation of c-Jun N-terminal kinase (JNK) in astrocytes induced by TNF-α or IL-1β. JNK inhibitor D-NKI-1 dose-dependently decreased IL-1β–induced CCL2 expression. Moreover, spinal injection of TRAF6 siRNA decreased intrathecal TNF-α– or IL-1β–induced allodynia and hyperalgesia. Spinal TRAF6 inhibition via TRAF6 siRNA, shRNA lentivirus, or antisense oligodeoxynucleotides partially reversed SNL-induced neuropathic pain and spinal CCL2 expression. Finally, intrathecal injection of TNF-α–activated astrocytes induced mechanical allodynia, which was attenuated by pretreatment of astrocytes with TRAF6 siRNA. Taken together, the results suggest that TRAF6, upregulated in spinal cord astrocytes in the late phase after nerve injury, maintains neuropathic pain by integrating TNF-α and IL-1β signaling and activating the JNK/CCL2 pathway in astrocytes.  相似文献   

16.
Neuropathic pain refers to a variety of chronic pain conditions with differing underlying pathophysiologic mechanisms and origins. Recent studies indicate a communication between the immune system and the nervous system. A common underlying mechanism of neuropathic pain is the presence of inflammation at the site of the damaged or affected nerve(s). This inflammatory response initiates a cascade of events resulting in the concentration and activation of innate immune cells at the site of tissue injury. The release of immunoactive substances such as cytokines, neurotrophic factors, and chemokines initiate local actions and can result in a more generalized immune response. The resultant neuroinflammatory environment can cause activation of glial cells located in the spinal cord and the brain, which appear to play a prominent role in nociception. Glial cells, also known as neuroglia, are nonconducting cells that modulate neurotransmission at the synaptic level. Glial cells can be subdivided into two primary categories: microglia and macroglia, which include astrocytes and oligodendrocytes. Astrocytes and microglia are known to play a role in the development, spread, and potentiation of neuropathic pain. Following peripheral nociceptive activation via nerve injury, microglia become activated and release pro‐inflammatory cytokines such as tumor necrosis factor‐α, interleukin‐1β, and interleukin‐6, thereby initiating the pain process. Microglia propagate the neuroinflammation by recruiting other microglia and eventually activating nearby astrocytes, which prolongs the inflammatory state and leads to a chronic neuropathic pain condition. Our review focuses on the role of glia and the immune system in the development and maintenance of neuropathic pain.  相似文献   

17.
CX3CL1/Fractalkine, a CX3C chemokine, is a potent agonist for the chemotaxis and adhesion of monocytes and lymphocytes. It was first identified as a membrane protein in endothelial cells activated with IL-1 or TNF-alpha. We have found the enhanced expression of fractalkine in human umbilical vein endothelial cells stimulated with interferon-gamma (IFN-gamma). Pretreatment of the cells with cycloheximide did not inhibit the expression of fractalkine mRNA. The majority of fractalkine protein was found in the cell lysate, and an antibody-blocking experiment disclosed that fractalkine contributes to the adhesion of mononuclear cells to endothelial monolayers stimulated with IFN-gamma. Vascular endothelial cells produce fractalkine in response to IFN-gamma, and this may play an important role in immune responses by eliciting a traffic of mononuclear cells through the vascular wall.  相似文献   

18.
Bura SA  Nadal X  Ledent C  Maldonado R  Valverde O 《Pain》2008,140(1):95-103
Peripheral nerve injury produces a persistent neuropathic pain state characterized by spontaneous pain, allodynia and hyperalgesia. In this study, we evaluated the possible involvement of A 2ARs in the development of neuropathic pain and the expression of microglia and astrocytes in the spinal cord after sciatic nerve injury. For this purpose, partial ligation of the sciatic nerve was performed in A 2A knockout mice and wild-type littermates. The development of mechanical and thermal allodynia, as well as thermal hyperalgesia was evaluated by using the von Frey filament model, the cold-plate test and the plantar test, respectively. In wild-type animals, sciatic nerve injury led to a neuropathic pain syndrome that was revealed in these three nociceptive behavioural tests. However, a significant decrease of the mechanical allodynia and a suppression of thermal hyperalgesia and allodynia were observed in A 2AR deficient mice. The expression of microglia and astrocytes was enhanced in wild-type mice exposed to sciatic nerve injury and this response was attenuated in knockout animals. Taken together, our results demonstrate the involvement of A 2ARs in the control of neuropathic pain and propose this receptor as an interesting target for the development of new drugs for the management of this clinical syndrome.  相似文献   

19.
The two most common forms of inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis, affect approximately 1 million people in the United States. Uncontrolled APC reactivity toward commensal bacteria is implicated in the pathogenesis of the disease. A number of functionally distinct APC populations exist in the mucosal lamina propria (LP) below the intestinal epithelium, but their relative contributions to inflammation remain unclear. Here, we demonstrate in mice important roles for the chemokine receptor CX3CR1 in maintaining LP macrophage populations, preventing translocation of commensal bacteria to mesenteric lymph nodes (mLNs), and limiting colitogenic Th17 responses. CX3CR1 was found to be expressed in resident LP macrophages (defined as CD11b(+)F4/80(+)) but not DCs (defined as CD11c(+)CD103(+)). LP macrophage frequency and number were decreased in two strains of CX3CR1-knockout mice and in mice deficient in the CX3CR1 ligand CX3CL1. All these knockout strains displayed markedly increased translocation of commensal bacteria to mLNs. Additionally, the severity of DSS-induced colitis was dramatically enhanced in the knockout mice as compared with controls. Disease severity could be limited by either administration of neutralizing IL-17A antibodies or transfer of CX3CR1-sufficient macrophages. Our data thus suggest key roles for the CX3CR1/CX3CL1 axis in the intestinal mucosa; further clarification of CX3CR1 function will likely direct efforts toward therapeutic intervention for mucosal inflammatory disorders such as IBD.  相似文献   

20.
目的 研究糖尿病肾病患者Fractalkine(FKN)受体CX3CR1基因V249I多态性与炎症介质NF—κb、FKN、IL-6、TNF-α的关系。方法 应用聚合酶链反应限制片段长度多态性方法 及测序法对80例糖尿病肾病(DN组)患者、119例糖尿病(DM组)患者和118例对照者(C组)的CX3CR1基因多态性进行分析,同时检测各组血清中NF-κb、FKN、IL-6、TNF—α含量。结果 等位基因2491在对照组(20.33%)中的分布频率明显高于DN组(17.23%)和DM组(8.75%)(χ^2=9.698,P=0.002);血清中NF—κb、FKN、IL-6、TNF—α含量DN组高于DM组,DM组高于C组,差异均有统计学意义(各指标F值分别为23.318、52.507、8.821、12.013;P值分别为0.000、0.000、0.001、0.000);DN组及DM组中Ⅵ+Ⅱ基因型FKN含量较VV基因型FKN含量明显增加(F=21.216;P=0.000);DN组及DM组中Ⅵ+Ⅱ基因型NF—κB含量较VV基因型含量明显减少(F=15.361;P=0.000);各组不同基因型中IL-6的含量并无显著差异(F=1.387;P=0.053)。结论 FKN受体CX3CR1等位基因V249I变异可能与糖尿病肾病的发病危险性下降有关:CX3CR1多态性有可能通过影响肾脏的炎症过程而参与DN的发生发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号