首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The T1 of soft tissues increases with magnetic field strength. Some tissue contrast may be diminished on high-field-strength magnetic resonance (MR) images when conventional TRs are used, because of altered T1 effects on the MR signals. This necessitates longer TRs in techniques that use long TRs, which prolongs the examination excessively. Behavior of macroscopic magnetization is governed by the Bloch equations. Therefore, T1 contributions to the MR signal can be modulated by means of both timing intervals and radio-frequency pulses. The analytic solution to the Block equations allowed calculation of white matter/gray matter and gray matter/cerebrospinal fluid contrast in both spin-echo and inversion-recovery (IR) imaging. Rabbit brains (normal and tumor-containing) were then imaged in vivo at 1.5 and 4.7 T. In addition, MR images of a human head were obtained at 4.0 T. Experimental results supported the theoretical predictions that brain contrast on long TR spin-echo or IR images increases with field strength. However, varying the excitation flip angle allowed optimization of the T1 contribution to the MR signals, improving image contrast and/or reducing examination time. Thus, the dependence of T1 on field strength determines the optimum choice of imaging techniques and parameters in a predictable fashion.  相似文献   

2.
The brains of anesthetized 7-month-old male hooded rats were imaged in coronal, sagittal, and horizontal planes at 4.7 T. Images were obtained with a section thickness of 0.6 mm and in-plane pixel size of 0.18-0.20 mm, resulting in finer combined spatial and contrast resolution than in most previously published reports. This allowed detailed anatomic assignment of many brain structures on the basis of comparison with a histologic brain atlas. T1, apparent T2, and water proton density values of gray matter, white matter, and cerebrospinal fluid (CSF) were derived from saturation-recovery and multi-echo measurements. These values were used to calculate expected contrast-to-noise ratios as a function of TR and TE in spin-echo imaging sequences. The optimal simultaneous contrast between gray and white matter and between CSF and gray matter was obtained on images with moderate T2 weighing, with a TR of 3.6 seconds and a TE of 45 msec. The use of thin sections was found to be essential for resolving many fine structures, and the improved sensitivity provided by the high magnetic field strength was crucial for imaging such thin sections at adequate signal-to-noise ratios.  相似文献   

3.
A group of 70 professional divers and 47 healthy control subjects who had never dived were examined with magnetic resonance (MR) imaging to determine the prevalence of focal white matter changes in the brain. Spots of high signal intensity in white matter on proton density- and/or T2-weighted spin-echo images were detected in 42% of the control subjects and in 34% of the divers. In the control subjects, the prevalence of more than three changes was related to smoking, use of alcohol, head trauma, age of more than 35 years, and a combination of several cerebrovascular risk factors. This relationship was not present in the divers. The prevalence of changes in divers was inversely related to diving depth, amount of diving, participation in "unsafe diving," and decompression sickness. The reasons for these results could not be ascertained. The results are compared with those of MR imaging studies of white matter changes recently presented by other research groups.  相似文献   

4.
Magnetic resonance imaging is the most efficient imaging modality to evaluate brain gray and white matter of patients with metabolic diseases [1, 2, 3]. The main purpose of out study was to investigate the relation between brain MRI abnormalities and the phenylalanine (phe) and tyrosine (tyr) blood levels in 38 phenylketonuria (PKU) patients. Increased periventricular white matter intensity on T2-weighted brain images was the only pahtologic finding in 24 patients. Brain MRI abnormalities were scored (4) and correlated with the individual mean phe and phe/ tyr levels during 1 year preceding MR examination and with phe tolerance. The appearance of MRI abnormalities on brain T2-weighted images correlates with a threshold mean phe level (averaged over the year preceding the examination).  相似文献   

5.
A computerized system for processing spin-echo magnetic resonance (MR) imaging data was implemented to estimate whole brain (gray and white matter) and cerebrospinal fluid volumes and to display three-dimensional surface reconstructions of specified tissue classes. The techniques were evaluated by assessing the radiometric variability of MR volume data and by comparing automated and manual procedures for measuring tissue volumes. Results showed (a) the homogeneity of the MR data and (b) that automated techniques were consistently superior to manual techniques. Both techniques, however, were affected by the complexity of the structure, with simpler structures (eg, the intracranial cavity) showing less variability and better spatial correlation of segmentation results between raters. Moreover, the automated techniques were completed for whole brain in a fraction of the time required to complete the equivalent segmentation manually. Additional evaluations included interrater reliability and an evaluation that included longitudinal measurement, in which one subject was imaged sequentially 24 times, with reliability computed from data collected by three raters over 1 year. Results showed good reliability for the automated segmentation procedures.  相似文献   

6.
With magnetic resonance (MR) imaging, brain water self-diffusion was measured in 17 healthy volunteers 22–76 (mean, 44.6) years old. The calculated values for the apparent diffusion coefficients (ADCs) ranged from 0.58 × 10?9 to 1.23 × 10?9 m2/sec in cerebral white matter. A significant correlation was found between the ADC in white matter and age (r =.7069, P <.01). The calculated values for ADC in cortical gray matter ranged from 1.06 × 10?9 to 1.72 × 10?9 m2/sec no correlation was found between ADCs in gray matter and age. The increased ADC in white matter may be caused by an increase in the extracellular volume due to age-dependent neuronal degeneration or to changes in myelination. These findings have implications for future clinical investigations with diffusion MR imaging techniques in patients with neurologic diseases, and stress the importance of having an agematched group of healthy volunteers for comparison.  相似文献   

7.
Echo-planar magnetic resonance (MR) imaging was used to observe signal intensity changes in the human brain during hypoxia. Increasing arterial blood levels of deoxyhemoglobin (0%–42%) during prolonged apnea were monitored with a pulse oximeter and correlated with gray matter and white matter signal attenuation of 13% and 20%, respectively. The results suggest the possibility of using deoxyhemoglobin boluses as a physiologic, intravascular susceptibility contrast agent for assessment of local cerebral oxygen utilization.  相似文献   

8.
Rapid three-dimensional T1-weighted MR imaging with the MP-RAGE sequence.   总被引:2,自引:0,他引:2  
The authors investigated the application of three-dimensional (3D) magnetization-prepared rapid gradient-echo (MP-RAGE) imaging to the acquisition of small (32 x 128 x 256) T1-weighted 3D data sets with imaging times of approximately 1 minute. A theoretical model was used to study the contrast behavior of brain tissue. On the basis of these theoretical results, 3D MP-RAGE sequences were implemented on a 1.5-T whole-body imager. Thirty-two-section 3D data sets demonstrating good signal-to-noise ratios and resolution and strong T1-weighted contrast were obtained in 1 minute. Compared with standard short TR/TE spin-echo sequences with the same imaging times and comparable sequence parameters, the 3D MP-RAGE sequence delivered increases of more than 50% in the white matter/gray matter signal difference-to-noise and white matter signal-to-noise ratios, and provided almost twice as many sections. These sequences may find a clinical role in 3D scout imaging and screening and in patients with claustrophobia or trauma.  相似文献   

9.
Digital photography of postmortem brain slices was compared with magnetic resonance imaging (MRI) for morphological analysis of human brain atrophy. In this study, we used two human brains obtained at autopsy: a cognitively defined nondemented control (70-yr-old male) and a demented Alzheimer's disease (AD) subject (82yr-old female). For each of two brains, interactive manual image segmentation was performed by two observers on two image sets: (a) four coronal T1-weighted MR images (5 mm slices); and (b) four digitized photographic images from comparable rostrocaudal levels. Microcomputer image analysis software was used to measure the areas of three segmented cerebral compartments—gray matter (GM), white matter (WM) and CSF—for both image types. Resegmentation error was defined as the absolute difference between the areas derived from two segmentation trials divided by the value from trial 1 and multiplied by 100. This yielded the percent difference between the area measurements from the two trials. We found intea-observer agreement was better (error rates 1–18%) than inter-observer agreement (3–70%) with best agreement for WM and least for CSF, the smallest object class. MRI overestimated GM area relative to digitized photographs in the control but not the AD brain. The results define limitations of manual image segmentations and comparison of MRI with pathologic section photographic images.  相似文献   

10.
目的:应用基于体素的形态测量学( VBM)方法分析酒精成瘾患者脑结构的变化。方法 采用3.0T超导MR系统,对15例酒精成瘾者(患者组)和15例年龄和性别与之相匹配的正常成年志愿者(对照组)行MR脑结构像扫描,并应用VBM方法对图像进行分析,全脑体积的比较采用成组t检验。结果 酒精成瘾者局部灰质体积明显萎缩脑区为左侧...  相似文献   

11.

Objective

To evaluate the findings of brain MRI in patients with carbon disulfide poisoning.

Materials and Methods

Ninety-one patients who had suffered carbon disulfide poisoning [male:female=87:4; age, 32-74 (mean 53.3) years] were included in this study. To determine the extent of white matter hyperintensity (Grade 0-V) and lacunar infarction, T2-weighted MR imaging of the brain was performed.

Results

T2-weighted images depicted white matter hyperintensity in 70 patients (76.9%) and lacunar infarcts in 27 (29.7%).

Conclusion

In these patients, the prevalent findings at T2-weighted MR imaging of the brain were white matter hyperintensity and lacunar infarcts. Disturbance of the cardiovascular system by carbon disulfide might account for these results.  相似文献   

12.
Semiautomated segmentation of dual-contrast magnetic resonance images was used to determine volumes of total brain, gray matter, white matter, and cerebrospinal fluid (CSF) in healthy volunteers. Reproducibility of the technique was evaluated in terms of intraobserver, interobserver, and study-to-study variations. Intraobserver coefficients of variation ranged from 0.4% to 6.0%, while interobserver values ranged from 0.8% to 9.9%. In both cases, the maximum variations were obtained in volume measurements of tissues with maximum complexity (ie, CSF), and the minimum variation was obtained in determining total brain volume. This was also true in the case of study-to-study variations in volume measurements, for which the coefficients of variation ranged from 0.5% to 8.7%. The use of appropriate preprocessing techniques, which are crucial to the accuracy and reproducibility of the segmentation technique, are described in detail.  相似文献   

13.
Precise and accurate inversion-recovery (PAIR) magnetic resonance (MR) measurements of T1 were obtained in eight brain regions and cerebrospinal fluid of 26 healthy volunteers. Accuracy of the technique was assessed by measuring T1 in small fluid volumes with the PAIR technique and with two independent spectroscopic techniques. The mean difference between T1 measured with PAIR and with the two spectroscopic techniques was 3.1% ± 1.3. The precision (reproducibility) of measurements with the PAIR technique was excellent. The coefficient of variation (CV) across 16 measurements in a head phantom was 2.0%, compared with a CV of 2.7% across 45 separate measurements in a single subject. The within-subject CV was 1.8% ± 0.6 in white matter and 1.4% ± 1.0 in basal ganglia. The between-subject CV in 26 healthy volunteers was 3.6% ± 0.6 in white matter and 4.1% ± 1.9 in basal ganglia. Comparison between a patient with an active recurrent brain tumor and an agematched patient with an inactive brain tumor showed that T1 was significantly elevated throughout the brain of the active-tumor patient, especially in white matter tracts, even though no tumor or edema was detected in the white matter on standard MR images. Comparisons between five brain tumor patients and four healthy volunteers of similar age showed that T1 was significantly and substantially elevated throughout the white matter tracts and in the caudate nucleus, putamen, and thalamus. These results are consistent with the hypothesis that white matter tracts are selectively vulnerable to edema and that T1 increases in white matter are a sensitive indicator of patient status or tumor aggressiveness.  相似文献   

14.
Purpose: To study apparent diffusion coefficient (ADC) maps in severely brain-injured patients.Material and Methods: Four deeply comatose patients with severe brain injury were investigated with single-shot, diffusion-weighted, spin-echo echoplanar imaging. The tetrahedral diffusion gradient configuration and four iterations of a set of b-values (one time of 0 mm2/s, and four times of 1000 mm2/s) were used to create isotropic ADC maps with high signal-to-noise ratio. ADC values of gray and white matter were compared among patients and 4 reference subjects.Results: One patient was diagnosed as clinically brain dead after the MR examination. The patient's ADC values of gray and white matter were significantly lower than those of 3 other brain-injured patients. In addition the ADC value of white matter was significantly lower than that of gray matter.Conclusion: The patient with fatal outcome shortly after MR examination differed significantly from other patients with severe brain injury but non-fatal outcome, with regard to ADC values in gray and white matter. This might indicate a prognostic value of ADC maps in the evaluation of traumatic brain injury.  相似文献   

15.
Three-dimensional (3D) MP-RAGE (magnetization-prepared rapid gradient-echo) imaging was evaluated as a high-resolution 3D T1-weighted brain imaging technique for patients with suspected neurologic disease. Fourteen patients were studied. In five, 3D MP-RAGE images were compared with 3D FLASH (fast low-angle shot) images. Signal difference--to-noise ratios and T1 contrast were not statistically different for 3D MP-RAGE images as opposed to 3D FLASH images. Advantages intrinsic to the application of 3D MP-RAGE sequences include decreased imaging time and decreased motion artifact. With this technique, it is possible to perform a relatively motion-insensitive, T1-weighted screening brain study with voxel resolution of 1.0 x 1.4 x 2.0 mm or smaller, in an imaging time of 5.9 minutes or less--permitting offline (poststudy) reconstruction of high-resolution images in any desired plane.  相似文献   

16.
Diffusion-weighted MR imaging of the normal human spinal cord in vivo   总被引:13,自引:0,他引:13  
BACKGROUND AND PURPOSE: Diffusion-weighted imaging is a robust technique for evaluation of a variety of neurologic diseases affecting the brain, and might also have applications in the spinal cord. The purpose of this study was to determine the feasibility of obtaining in vivo diffusion-weighted images of the human spinal cord, to calculate normal apparent diffusion coefficient (ADC) values, and to assess cord anisotropy. METHODS: Fifteen healthy volunteers were imaged using a multi-shot, navigator-corrected, spin-echo, echo-planar pulse sequence. Axial images of the cervical spinal cord were obtained with diffusion gradients applied along three orthogonal axes (6 b values each), and ADC values were calculated for white and gray matter. RESULTS: With the diffusion gradients perpendicular to the orientation of the white matter tracts, spinal cord white matter was hyperintense to central gray matter at all b values. This was also the case at low b values with the diffusion gradients parallel to the white matter tracts; however, at higher b values, the relative signal intensity of gray and white matter reversed. With the diffusion gradients perpendicular to spinal cord, mean ADC values ranged from 0.40 to 0.57 x 10(-3) mm2/s for white and gray matter. With the diffusion gradients parallel to the white matter tracts, calculated ADC values were significantly higher. There was a statistically significant difference between the ADCs of white versus gray matter with all three gradient directions. Strong diffusional anisotropy was observed in spinal cord white matter. CONCLUSION: Small field-of-view diffusion-weighted images of the human spinal cord can be acquired in vivo with reasonable scan times. Diffusion within spinal cord white matter is highly anisotropic.  相似文献   

17.
White matter (WM) and gray matter (GM) were accurately measured using a technique based on a single standardized fuzzy classifier (FC) for each tissue. Fuzzy classifier development was based on experts' visual assessments of WM and GM boundaries from a set of T1 parametric MR images. The fuzzy classifier method's accuracy was validated and optimized by a set of T1 phantom images that were based on hand-detailed human brain cryosection images. Nine sets of axial T1 images of varying thickness equally distributed throughout the brain were simulated. All T1 data sets were mapped to the standardized FCs and rapidly segmented into WM and GM voxel fraction images. Resulting volumes revealed that, in most cases, the difference between measured and actual volumes was less than 5%. This was consistent throughout most of the brain, and as expected, the accuracy improved to generally less than 2% for the 1-mm simulated brain slices.  相似文献   

18.
正常人脑不同区域^1H磁共振波谱研究   总被引:9,自引:0,他引:9  
目的:应用1H磁共振波谱技术研究正常人脑内化合物的含量和分布。材料和方法:应用1.5T磁共振仪对18例正常人脑进行1H波谱测试,测量的感兴趣区包括大脑皮层、白质、丘脑和小脑,所用序列为激励回波探测序列(stimulatedechoaquisitionmode,STEAM)。结果:1H磁共振波谱可以检测出脑内许多化合物,如N-乙酰门冬氨酸(NAA)、含胆碱类化合物(Cho)、肌酸和磷酸肌酸(Cr+Pcr)、谷氨酸和谷氨酰胺(Glu+Gln)、脂质、乳酸等。各化合物的浓度在脑的不同区域存在着差异。NAA/Cho比值在灰质最高,小脑最低。Cr/Cho比值在小脑最高、白质最低。设定肌酸的浓度在灰质和小脑为10mmol/L,在白质和丘脑为11mmol/L,计算NAA的绝对浓度为13~23mmol/L,并且灰质的含量高于小脑和丘脑。结论:1H磁共振波谱技术可无创性检测出脑组织中与能量代谢、氨基酸、脂肪酸及神经递质有关的化合物,并可定量测定,有助于研究生理和疾病时脑生化改变。  相似文献   

19.
Gadodiamide injection is a nonionic, low-osmolar formulation of a paramagnetic metal chelate complex consisting of gadodiamide and caldiamide sodium. The efficacy of gadodiamide injection as a magnetic resonance (MR) imaging enhancement medium was evaluated by imaging intracranial 9L-glioma lesions induced in rats and naturally occurring lesions in dogs. T1- and T2-weighted spin-echo images were obtained before and after administration of gadodiamide injection at doses of 0.1 and 0.2 mmol/kg. On the precontrast T1-weighted images, the intracranial lesions were not well seen, appearing isointense to normal brain parenchyma. Although the presence of disease was shown unequivocally on the T2-weighted images, the margins of the masses could not be delineated. Postcontrast T1-weighted images were characterized by marked enhancement of the tumor, with no change in signal intensity in the surrounding edematous brain tissue. Gadodiamide injection was efficacious in identifying areas of blood-brain barrier breakdown associated with intracranial masses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号