首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The novel PGMY L1 consensus primer pair is more sensitive than the MY09 and MY11 primer mix for detection and typing with PCR of human papillomavirus (HPV) DNA in genital specimens. We assessed the diagnostic yield of PGMY primers for the detection and typing of HPV by comparing the results obtained with PGMY09/PGMY11 and MY09/MY11/HMB01 on 299 genital samples. Amplicons generated with PGMY primers were typed with the line blot assay (PGMY-line blot), while HPV amplicons obtained with the degenerate primer pool MY09/MY11/HMB01 were detected with type-specific radiolabeled probes in a dot blot assay (standard consensus PCR test). Cervicovaginal lavage samples (N = 272) and cervical scrape samples (N = 27) were tested in parallel with both PCR tests. The PGMY-line blot test detected the presence of HPV DNA more frequently than the standard consensus PCR assay. The concordance for HPV typing between the two assays was 84.3% (214 of 255 samples), for a good kappa value of 0.69. Of the 177 samples containing HPV DNA by at least one method, 40 samples contained at least one HPV type detected only with PGMY-line blot, whereas positivity exclusively with the standard consensus PCR test was found for only 7 samples (P < 0.001). HPV types 45 and 52 were especially more frequently detected with PGMY than MY primers. However, most HPV types were better amplified with PGMY primers, including HPV-16. Samples with discordant results between the two PCR assays more frequently contained multiple HPV types. Studies using PGMY instead of MY primers have the potential to report higher detection rates of HPV infection not only for newer HPV types but also for well-known genital types.  相似文献   

2.
The Roche PGMY primer-based research prototype line blot assay (PGMY-LB) is a convenient tool in epidemiological studies for the detection and typing of human papillomavirus (HPV) DNA. This assay has been optimized and is being commercialized as the Linear Array HPV genotyping test (LA-HPV). We assessed the agreement between LA-HPV and PGMY-LB for detection and typing of 37 HPV genotypes in 528 anogenital samples (236 anal, 146 physician-collected cervical, and 146 self-collected cervicovaginal swabs) obtained from human immunodeficiency virus-seropositive individuals (236 men and 146 women). HPV DNA was detected in 433 (82.0%) and 458 (86.7%) samples with PGMY-LB and LA-HPV (P = 0.047), respectively, for an excellent agreement of 93.8% (kappa = 0.76). Of the 17,094 HPV typing results, 16,562 (1,743 positive and 14,819 negative results) were concordant between tests (agreement = 96.9%; kappa = 0.76). The mean agreement between tests for each type was 96.4% +/- 2.4% (95% confidence interval [CI], 95.6% to 97.2%; range, 86% to 100%), for an excellent mean kappa value of 0.85 +/- 0.10 (95% CI, 0.82 to 0.87). However, detection rates for most HPV types were greater with LA-HPV. The mean number of types per sample detected by LA-HPV (4.2 +/- 3.4; 95% CI, 3.9 to 4.5; median, 3.0) was greater than that for PGMY-LB (3.4 +/- 3.0; 95% CI, 3.1 to 3.6; median, 2.0) (P < 0.001). The number of types detected in excess by LA-HPV in anal samples correlated with the number of types per sample (r = 0.49 +/- 0.06; P = 0.001) but not with patient age (r = 0.03 +/- 0.06; P = 0.57), CD4 cell counts (r = 0.06 +/- 0.06; P = 0.13), or the grade of anal disease (r = -0.11 +/- 0.06; P = 0.07). LA-HPV compared favorably with PGMY-LB but yielded higher detection rates for newer and well-known HPV types.  相似文献   

3.
The line blot assay, a gene amplification method that combines PCR with nonisotopic detection of amplified DNA, was evaluated for its ability to detect human papillomavirus (HPV) DNA in genital specimens. Processed samples were amplified with biotin-labeled primers for HPV detection (primers MY09, MY11, and HMB01) and for beta-globin detection (primers PC03 and PC04). Amplified DNA products were hybridized by a reverse blot method with oligonucleotide probe mixtures fixed on a strip that allowed the identification of 27 HPV genotypes. The line blot assay was compared to a standard consensus PCR test in which HPV amplicons were detected with radiolabeled probes in a dot blot assay. Two hundred fifty-five cervicovaginal lavage specimens and cervical scrapings were tested in parallel by both PCR tests. The line blot assay consistently detected 25 copies of HPV type 18 per run. The overall positivity for the DNA of HPV types detectable by both methods was 37.7% (96 of 255 samples) by the line blot assay, whereas it was 43. 5% (111 of 255 samples) by the standard consensus PCR assay. The sensitivity and specificity of the line blot assay reached 84.7% (94 of 111 samples) and 98.6% (142 of 144 samples), respectively. The agreement for HPV typing between the two PCR assays reached 83.9% (214 of 255 samples). Of the 37 samples with discrepant results, 33 (89%) were resolved by avoiding coamplification of beta-globin and modifying the amplification parameters. With these modifications, the line blot assay compared favorably to an assay that used radiolabeled probes. Its convenience allows the faster analysis of samples for large-scale epidemiological studies. Also, the increased probe spectrum in this single hybridization assay permits more complete type discrimination.  相似文献   

4.
Classification of high-risk HPV types for cervical cancer screening depends on epidemiological studies defining HPV type-specific risk. The genotyping tests that are used, are however, not uniform with regard to type-specific detection rates making comparisons between different studies difficult. To overcome the lack of a "gold standard" four tests were evaluated crosswise using 824 cervical smears pretested by HC2. The tests evaluated were the L1-PCR-based assays PGMY09/11 LBA, HPV DNA Chip and SPF LiPA and an E1 consensus PCR followed by cycle sequencing (E1-PCR). A subset of 265 samples was tested in addition with the GP5+/6+ reverse line blot assay. Differences were noted in the sensitivity and range for specific HPV types, e.g. with detection rates for HPV53 ranging from 2.3% to 11.6%. HPV16 was the most prevalent type detected by all tests except for the SPF-10 LiPa, which detected HPV31 more often. Kappa values calculated ranged from poor (k=0.20) to intermediate (k=0.54) for HPV positivity, but were higher for high-risk type positivity (k=0.31-0.61) and best for recognition of HPV16 (k=0.53-0.72). The analytical sensitivity of the tests ranged between 15% and 97% for individual types and specificity was highly dependent on which test system was used as "gold standard" for the analysis. The results of histology were used for calculation of clinical sensitivity and specificity. E1-PCR, PGMY09/11 LBA and SPF-10 LiPA had a high clinical sensitivity (>95%) for the detection of cervical intraepithelial neoplasia 2 or higher, whereas the HPV DNA Chip reached only 84.1%.  相似文献   

5.
The novel PapilloCheck® genotyping test was compared with SPF10 PCR LiPav1 and PGMY09/11 on hybrid capture 2 (HC2)‐pretested samples. From results of 826 cervical samples detection rates and kappa values for the tests were calculated using a HPV type consensus definition. With PapilloCheck® HPV types 53, 56, and 33 were found with a sensitivity of 100%. The lowest detection rate was observed for HPV 35 (72.2%). The SPF10 PCR LiPav1 was found to be 100% positive for HPV 18, 31, 53, 56, and 35 and lowest for HPV 59 (81%). The PGMY09/11 system detected only HPV 59 at 100% detection rate and showed lowest sensitivity for HPV 56 (40.5%). Multiple infection rates ranged from 25.8% (PGMY09/11 PCR‐LBA), over 39.5% (PapilloCheck®) to 55.9% (SPF10 PCR LiPav1). In samples with higher viral DNA load detection rates and concordance between the genotyping tests increases. The kappa values in comparison to the HPV consensus type ranged from k = 0.21 to k = 0.82 for comparing SPF10 PCR with the HPV consensus type, while values for PGMY09/11 PCR ranged from k = 0 to k = 0.96 and were best for the PapilloCheck® (k = 0.49–0.98). Detection rates for the identification of high‐grade cervical intraepithelial neoplasia (CIN2+) ranged from 93.7% (PGMY09/11 PCR) to 98.4% (PapilloCheck®, SPF10 PCR, HC2). In conclusion, this study shows that the PapilloCheck® give comparable results to established PCR methods. However, these results also show a necessity for the standardization of genotype‐specific HPV detection assays. J. Med. Virol. 82:605–615, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
The Aptima HPV assay (Hologic Gen-Probe, San Diego, CA) is an FDA-approved assay for detecting human papillomavirus (HPV) E6/E7 mRNA from 14 high-risk HPV types. This study evaluated the clinical performance of the Aptima HPV assay for cervical intraepithelial neoplasia of grade 2 or worse (CIN2+), relative to the high-risk HPV GP5+/GP6+ PCR, in a cross-sectional clinical equivalence analysis using the noninferiority score test with cervical samples from population-based screening, i.e., 69 cervical scraping samples from women with CIN2+ and 843 from women without evidence of CIN2+. In addition, intralaboratory reproducibility over time and interlaboratory agreement of the Aptima HPV assay results were assessed with another set of 548 cervical samples. The Aptima HPV assay showed a clinical sensitivity for CIN2+ of 94.2% (95% confidence interval [CI], 85.5 to 97.8%) and a clinical specificity for CIN2+ of 94.5% (95% CI, 92.8 to 95.9%); by comparison, these figures were 97.1% (95% CI, 89.1 to 99.3%) (67/69 samples) and 93.6% (95% CI, 91.7 to 95.0%) (785/839 samples), respectively, for GP5+/GP6+ PCR. The clinical sensitivity and specificity of the Aptima HPV assay were noninferior to those of GP5+/GP6+ PCR (P = 0.039 and 0.00016, respectively). In addition, high reproducibility of the Aptima HPV assay, as reflected by the intralaboratory reproducibility over time of 96.0% (95% CI, 94.4 to 97.3%) (526/548 samples; kappa = 0.89) and interlaboratory agreement of 96.7% (95% CI, 95.4 to 98.1%) (531/548 samples; kappa = 0.91), was found. Altogether, these data show that the Aptima HPV assay meets the cross-sectional clinical and reproducibility criteria of the international guidelines for HPV test requirements for cervical screening. Longitudinal data are needed to ensure that the long-term negative predictive value of this mRNA assay is similar to those of validated HPV DNA tests.  相似文献   

7.
We assessed the value of a new digoxigenin (DIG)-labeled generic probe mix in a PCR-enzyme-linked immunosorbent assay format to screen for the presence of human papillomavirus (HPV) DNA amplified from clinical specimens. After screening with this new generic assay is performed, HPV DNA-positive samples can be directly genotyped using a reverse blotting method with product from the same PCR amplification. DNA from 287 genital specimens was amplified via PCR using biotin-labeled consensus primers directed to the L1 gene. HPV amplicons were captured on a streptavidin-coated microwell plate (MWP) and detected with a DIG-labeled HPV generic probe mix consisting of nested L1 fragments from types 11, 16, 18, and 51. Coamplification and detection of human DNA with biotinylated beta-globin primers served as a control for both sample adequacy and PCR amplification. All specimens were genotyped using a reverse line blot assay (13). Results for the generic assay using MWPs and a DIG-labeled HPV generic probe mix (DIG-MWP generic probe assay) were compared with results from a previous analysis using dot blots with a radiolabeled nested generic probe mix and type-specific probes for genotyping. The DIG-MWP generic probe assay resulted in high intralaboratory concordance in genotyping results (88% versus 73% agreement using traditional methods). There were 207 HPV-positive results using the DIG-MWP method and 196 positives using the radiolabeled generic probe technique, suggesting slightly improved sensitivity. Only one sample failed to test positive with the DIG-MWP generic probe assay in spite of a positive genotyping result. Concordance between the two laboratories was nearly 87%. Approximately 6% of samples that were positive or borderline when tested with the DIG-MWP generic probe assay were not detected with the HPV type-specific panel, perhaps representing very rare or novel HPV types. This new method is easier to perform than traditional generic probe techniques and uses more objective interpretation criteria, making it useful in studies of HPV natural history.  相似文献   

8.
The purpose of this study was to examine the quality of DNA recovered for human papillomavirus (HPV) detection using polymerase chain reaction (PCR) in samples that had been collected for Hybrid Capture II (HCII), testing and stored in specimen transport medium (STM) with denaturing reagent at -20 degrees C for 18 months. Endocervical tissue was collected from 92 women for HCII assay using the Digene STM, and a Papanicolaou smear was carried out in all cases. Seven women had normal colposcopy results. The remaining 85 patients underwent colposcopy-directed biopsy or cervical conization for histological investigation. Of the 92 samples tested, 84 were HCII-positive and 8 were negative. Quality control for amplification was carried out with beta-globin primers G73 and G74, and HPV was tested using PGMY09 and PGMY11. DNA was recovered from 83 of the 92 samples (90%). Among the 84 samples HCII-positive initially, HPV was detected by PCR in 56 (67%). PCR did not detect HPV DNA in the eight samples that were HCII-negative, although five of them were positive for beta-globin. This paper describes a novel DNA extraction technique that may permit exact HPV typing in stored samples collected originally for HCII testing, making it possible to carry out retrospective investigations to retrieve information on specific HPV types in large HCII series.  相似文献   

9.
The Hybrid Capture 2 HPV DNA Test (hc2) (Digene Corporation, Gaithersburg, MD) is at present the only FDA approved assay for routine detection of human papillomavirus (HPV) infections. A significant analytical inaccuracy of the hc2 near to cut-off was reported recently. To address this problem, 240 samples with repeatedly borderline/equivocal/indeterminate hc2 results (samples with repeated RLU/CO values between 0.4 and 4.0) were tested using the PGMY09/PGMY11 consensus PCR and genotyping in order to resolve their high-risk HPV status. All PGMY09/PGMY11 PCR negative samples were tested in addition using CPI/IIg consensus PCR. A false negative rate of 11.3% and false positive rate of 19.1% were recorded in the samples with repeatedly borderline hc2 results. The corresponding hc2 false reactivity rates in 95 samples selected at random which were clearly hc2 negative (samples with RLU/CO values less than 0.4) and 124 samples selected at random which were clearly hc2 positive (samples with RLU/CO values more than 4.0) were 4.2% and 5.6%, respectively. The proportion of hc2 false reactivity increased with proximity to the hc2 cut-off value. According to the results of the present study, the introduction of an hc2 grey-zone and retesting of samples with repeatedly borderline hc2 results by an alternate HPV detection method, such as the PGMY09/PGMY11 consensus PCR and genotyping, is recommended.  相似文献   

10.
The importance of assays for the detection and typing of human papillomaviruses (HPVs) in clinical and epidemiological studies has been well demonstrated. Several accurate methods for HPV detection and typing have been developed. However, comparative studies showed that several assays have different sensitivities for the detection of specific HPV types, particularly in the case of multiple infections. Here, we describe a novel one-shot method for the detection and typing of 19 mucosal high-risk (HR) HPV types (types 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, and 82). This assay combines two different techniques: multiplex PCR with HPV type-specific primers for amplification of viral DNA and array primer extension (APEX) for typing. This novel method has been validated with artificial mixtures of HPV DNAs and clinical samples that were already analyzed for the presence of mucosal HPV types by a different consensus PCR method, i.e., GP5+/GP6+. Our data showed a very good agreement between the results from the multiplex PCR/APEX assay and those from the GP5+/GP6+ PCR (overall rates of HPV positivity, 63.0 and 60.9%, respectively). Whereas the GP5+/GP6+ PCR was slightly more sensitive for the detection of HPV type 16 (HPV-16), multiplex PCR-APEX found a higher number of infections with HPV-33, HPV-53, and multiple HPV types. These favorable features and the high-throughput potential make our present novel assay ideal for large-scale clinical and epidemiological studies aimed at determining the spectrum of mucosal HR HPV types in cervical specimens.  相似文献   

11.
BACKGROUND: In the PGMY-line blot assay, a human beta-globin fragment is co-amplified with human papillomavirus (HPV) DNA, and both analytes are detected by hybridization with probes fixed on a strip in a linear array. The beta-globin DIG-MWP test also detects beta-globin amplicons, but in a microtiter plate-based enzyme immunoassay format. Although the PGMY-line blot assay detected 50 cells per test, the beta-globin DIG-MWP test generated a signal above the detection cut-off with five cells per test. OBJECTIVE: The performance of the beta-globin DIG-MWP assay to detect beta-globin DNA was assessed. STUDY DESIGN: The beta-globin DIG-MWP assay was compared to a standard beta-globin PCR and to the PGMY-line blot strips on 401 genital specimens. Overall, the three beta-globin assays were compared on 325 undiluted lysates, 14 diluted lysates and DNA extracted from 62 lysate samples. RESULTS: Concordance between the PGMY-line blot and the standard beta-globin assay reached 99.5% (399 of 401 results), for a kappa value of 0.95. Concordant results were also obtained between the beta-globin DIG-MWP assay and PGMY-line blot assay for 387 (96.5%) of 401 test results, for a kappa value of 0.57. Discordant results were due to the increased sensitivity of the DIG-MWP assay. Using a cut-off for positivity at 1.500 optical density (OD) units for beta-globin DIG-MWP, concordance improved to 100% (401 of 401 results, kappa at 1.00). CONCLUSION: The beta-globin DIG-MWP assay was adequate to screen for sample adequacy for HPV analysis in genital specimens.  相似文献   

12.
Based on epidemiological and research evidence, HPV has a causal role in cervical carcinogenesis. Several HPV detection methods exist to date; the most commonly used method for detection of genital HPVs consists of nested PCR using the MY09/11 and GP5(+)/6(+) primer sets (MY/GP(+)). Recently, the PGMY09/11 primer set, a modified version of the MY09/11 primer set, was introduced for single PCR and was found to detect a wider range of HPV types. The next logical step was taken and the efficacy of nested PCR using the PGMY09/11 and GP5(+)/6(+) primer sets (PGMY/GP(+)) to detect HPV in cervical samples was evaluated. In this comparative study, nested PCR using the novel PGMY/GP(+) primer set combination was found to be more type sensitive than the nested PCR with the MY/GP(+) primer sets, detecting a wider range of HPV types, low copy HPVs, and better characterizing samples infected with multiple strains of HPV. Standardization and use of the PGMY/GP(+) PCR system could aid physicians in providing more efficient HPV screening and better treatment for patients.  相似文献   

13.
A strategy combining human papillomavirus general primer (mainly the PGMY primers)-directed PCR sequencing and type-specific PCR is presented. DNA samples were first tested in general primer-mediated PCR. The amplified fragments of positive samples after ethidium bromide-stained DNA gel analysis were further sequenced, and corresponding DNA samples were further analyzed by PCR using type-specific primers for human papillomavirus (HPV) types 16, 18, 31, and 52. The comparison of the results of 157 samples analyzed by this strategy in parallel with the Hybrid Capture 2 tests and with the HPV INNO-LiPA (Innogenetics line probe assay) shows that this method is suitable for HPV detection and genotyping in cervical cell samples. Although the PCR sequencing method is as sensitive as the HPV INNO-LiPA for HPV detection, our method allows the identification of a broader range of HPV types. In contrast, the HPV INNO-LiPA was less time-consuming and better identified coinfections.  相似文献   

14.
Sixty-four samples of urethral cells from male sexual partners of women with genital human papillomavirus (HPV) infection were analyzed for the presence of HPV types 6, 11, 16, and 18 by polymerase chain reaction (PCR) followed by slot blot hybridization. Additional samples from 37 of these subjects were analyzed for the presence of viral cytopathic effects by conventional cytology. By PCR, HPV DNA was detected in 21% (14/64) of samples. By cytology, 16% (6/37) of the samples showed cellular changes consistent with HPV infection. Polymerase chain reaction and cytology results were concordant for presence and absence of HPV in 5 and 28 cases, respectively. Three additional HPV-positive cases were obtained with PCR in the cytologically negative samples. The cytologic abnormalities were found to be associated with the presence of both low-risk HPV types and meatal acetoreactivity. On the contrary, HPV DNA positivity by PCR was unrelated to viral type and peniscopic findings. Urethral HPV infection was detected by PCR in 30% of males with visible penile lesions and in 18% of those without. These results indicate that PCR analysis of urethral samples is a helpful adjunct to cytology for the detection of HPV DNA in absence of cytologic evidence of infection.  相似文献   

15.
Rapid and efficient epidemiologic typing systems would be useful to monitor transmission of methicillin-resistant Staphylococcus aureus (MRSA) at both local and interregional levels. To evaluate the intralaboratory performance and interlaboratory reproducibility of three recently developed repeat-element PCR (rep-PCR) methods for the typing of MRSA, 50 MRSA strains characterized by pulsed-field gel electrophoresis (PFGE) (SmaI) analysis and epidemiological data were blindly typed by inter-IS256, 16S-23S ribosomal DNA (rDNA), and MP3 PCR in 12 laboratories in eight countries using standard reagents and protocols. Performance of typing was defined by reproducibility (R), discriminatory power (D), and agreement with PFGE analysis. Interlaboratory reproducibility of pattern and type classification was assessed visually and using gel analysis software. Each typing method showed a different performance level in each center. In the center performing best with each method, inter-IS256 PCR typing achieved R = 100% and D = 100%; 16S-23S rDNA PCR, R = 100% and D = 82%; and MP3 PCR, R = 80% and D = 83%. Concordance between rep-PCR type and PFGE type ranged by center: 70 to 90% for inter-IS256 PCR, 44 to 57% for 16S-23S rDNA PCR, and 53 to 54% for MP3 PCR analysis. In conclusion, the performance of inter-IS256 PCR typing was similar to that of PFGE analysis in some but not all centers, whereas other rep-PCR protocols showed lower discrimination and intralaboratory reproducibility. None of these assays, however, was sufficiently reproducible for interlaboratory exchange of data.  相似文献   

16.
We compared the results of human papillomavirus (HPV) detection and typing from 781 cervical samples assayed by three methods: L1 consensus PCR followed by cycle sequencing, L1 consensus PCR with biotinylated primers followed by hybridization to a line blot, and Hybrid Capture assay. Both PCR assays used L1 consensus PCR with primers MY09 and MY11. We evaluated the amplification efficiencies of both PCR assays and also compared the specific HPV types detected by each method. The samples positive by the Hybrid Capture assay were compared to the specific types detected by the PCR-based assays. The concordance between the two PCR assays in producing an HPV amplicon visible by gel electrophoresis or in detecting any HPV type was moderate: kappa values were 0.61 (95% confidence interval [CI] = 0.56 to 0.67) and 0.51 (95% CI = 0.46 to 0.58), respectively. The McNemar test for correlated proportions indicated that biotinylated PCR was less likely to produce a band (P = 0.001) and to detect an HPV type (P = 0.001) than the other PCR assay. In comparing the Hybrid Capture assay results with the HPV types detected by the PCR-based assays, we found that positivity by the Hybrid Capture assay for a number of samples may be due to cross-hybridization with HPV types not included in the Hybrid Capture assay probe cocktails.  相似文献   

17.
Epidemiologists and clinicians wishing to introduce human papillomavirus (HPV) testing into cervical cancer prevention programs need standardized, reliable, and accurate HPV DNA tests that can detect the full spectrum of pathogenic HPV types. The Hybrid Capture System assay from Digene (hybrid capture assay) is a nonradioactive kit designed to detect 14 HPV types in two groups: a mix of 9 high-risk types associated with anogenital cancer (HPV types 16, 18, 31, 33, 35, 45, 51, 52, and 56) and another group of 5 low-risk types associated with condyloma acuminatum (HPV types 6, 11, 42, 43, and 44). The assay yields quantitative data meant to reflect viral concentration. In a study of 199 cervical specimens from women with concurrent Pap smears, we assessed the reliability of the new assay by comparing the hybrid capture assay results from three laboratories. We assessed the accuracy of the hybrid capture assay in comparison with a reference standard of HPV DNA content (multiple testing by several methods in two reference laboratories). We also compared the hybrid capture assay results with the concurrent cytologic diagnoses on the basis of an independent review of each smear by five pathologists. Pairwise interlaboratory agreement rates on HPV positivity for either high-risk or low-risk types ranged from 87 to 94%, and kappa values ranged from 0.61 to 0.83. Among specimens positive for high-risk types (the most important clinical outcome), the interlaboratory correlations of the quantitative data ranged from 0.60 to 0.90.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Human papillomavirus (HPV) has recently been associated with oral cancers. To prepare for a study of the natural history of oral HPV infection, the effect of the DNA purification method on HPV genomic DNA detection in Scope mouthwash oral rinse samples and the reproducibility of HPV detection in rinse samples collected 7 days apart were investigated. The study was conducted with a population at high risk for oral HPV infection: human immunodeficiency virus-infected men with CD4-cell counts <200. Five DNA purification methods were compared among equal aliquots of oral rinse samples collected from a subset of individuals. The purification methods included (i) proteinase K digestion (PKD) and heat inactivation; (ii) PKD and ethanol precipitation (EP); (iii) PKD, phenol-chloroform extraction, and EP; (iv) use of the Puregene DNA purification kit; and (v) use of the QIAamp DNA Blood Midi kit. HPV was detected by PCR amplification with PGMY09 and PGMY11 L1 primer pools and by use of a Roche linear array. Puregene-purified samples had higher human DNA yields and purities, and Puregene purification detected the greatest number of HPV-positive subjects and total HPV infections in comparison to the numbers detected by all other methods. The total number of HPV infections and HPV prevalence estimates were also higher for Puregene-processed oral rinse samples when a fixed volume (10 mul) rather than a fixed cell number ( approximately 50,000 cells) was used for PCR amplification. A good concordance was observed for oral HPV infection status (agreement, 80%; kappa value, = 0.60) and type-specific infection (agreement, 98%; kappa value, 0.57) in matched oral rinse samples. The method of DNA purification significantly affects the detection of HPV genomic DNA from oral rinse samples and may result in exposure misclassification that could contribute to the inconsistent associations reported in the literature.  相似文献   

19.
Comparisons of HPV DNA detection by MY09/11 PCR methods   总被引:10,自引:0,他引:10  
Two modifications to the original L1 consensus primer human papillomavirus (HPV) PCR method, MY09-MY011, using AmpliTaq DNA polymerase (MY-Taq), were evaluated for HPV DNA detection on clinical specimens from a cohort study of cervical cancer in Costa Rica. First, HPV DNA testing of 2978 clinical specimens by MY09-MY011 primer set, using AmpliTaq Gold DNA polymerase (MY-Gold) were compared with MY-Taq testing. There was 86.8% total agreement (kappa = 0.72, 95%CI = 0.70-75) and 69.6% agreement among positives between MY-Gold and MY-Taq. MY-Gold detected 38% more HPV infections (P < 0.0001) and 45% more cancer-associated (high-risk) HPV types (P < 0.0001) than MY-Taq, including 12 of the 13 high-risk HPV types. Analyses of discordant results using cytologic diagnoses and detection of HPV DNA by the Hybrid Capture 2 Test suggested that MY-Gold preferentially detected DNA positive specimens with lower HPV viral loads compared with MY-Taq. In a separate analysis, PGMY09-PGMY11 (PGMY-Gold), a redesigned MY09/11 primer set, was compared with MY-Gold for HPV DNA detection (n = 439). There was very good agreement between the two methods (kappa = 0.83; 95%CI = 0.77-0.88) and surprisingly no significant differences in HPV detection (P = 0.41). In conclusion, we found MY-Gold to be a more sensitive assay for the detection of HPV DNA than MY-Taq. Our data also suggest that studies reporting HPV DNA detection by PCR need to report the type of polymerase used, as well as other assay specifics, and underscore the need for worldwide standards of testing.  相似文献   

20.
Human papillomaviruses (HPVs) are associated with benign and malignant neoplasms of the cervix. One of the criteria for their etiologic role requires an assessment of whether virtually all or only a small fraction of lesions contain viral genomes. DNA preparations from colposcopically directed punch biopsies of cervical lesions were analyzed by Southern blot hybridization and the polymerase chain reaction (PCR) for the presence of HPV DNA. The biopsy specimens represented different pathologic entities (koilocytosis, condyloma, cervical intraepithelial neoplasia, and invasive carcinoma). In Southern blot hybridization with radioactive probes for HPV 11, 16, 18, 31, and 33, HPV DNA was detected in 74% of the biopsy specimens (42 of 57 cases), with the predominant types being HPV 16 and HPV 18. In contrast, after PCR amplification with primers yielding fragments of characteristic size for HPV 11, 16, and 18, the analysis of the same 57 biopsy specimens revealed that all samples were positive for at least one HPV type. To exclude false-positive PCR results, controls without HPV DNA were interspersed at regular intervals, and results were evaluated only if these controls remained HPV negative. To exclude false-negative results due to failure of the reaction, a target sequence within the c-Ha-ras-1 gene was used as an internal control. All HPV typing results obtained by Southern blot hybridization were in agreement with HPV typing by PCR. The higher number of positive samples in the latter analysis stems from the increased sensitivity of PCR, which was which was effective in identifying as few as 10-100 HPV DNA molecules; in contrast, the sensitivity of Southern blot hybridization was 1 pg, or approximately 10(5) molecules of HPV DNA. The authors conclude that, with sufficiently sensitive diagnostic methods, HPV DNA can be detected in most, if not all, neoplastic cervical lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号