首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 98 毫秒
1.
目前人工智能技术已应用在多个医学影像领域,这给传统医学教育带来新的挑战。未来也必将带动医学影像智能化教学的发展。随着人工智能技术与职业教育的深度融合,AI在医学影像教学领域的应用已经起步,但目前国内将人工智能应用于医学影像技术教学的研究相对较少。通过查阅文献,现对人工智能在医学影像技术教学领域中的应用现状进行阐述,以期能够推动医学职业教育的智能化进程。  相似文献   

2.
结直肠癌是结肠癌和直肠癌的统称,是常见的消化道恶性肿瘤.医学影像是结直肠癌分期、分子分型预测、疗效评估和预后预测至关重要的辅助手段,其研究一直是医学领域的焦点.人工智能领域的影像组学和深度学习技术通过从医学影像中提取出肉眼无法获得的肿瘤信息,为全面评估肿瘤异质性提供了新的技术,令个性化医学迈入了新的阶段.本文对人工智能...  相似文献   

3.
伴随人工智能的蓬勃发展, 图像智能识别技术可较大程度降低医生工作量的观点在业界已达成共识。但在综合诊疗上, 人工智能可否给予医生更好的意见和建议尚无定论。目前, 国内医学影像领域的人工智能绝大多数仅集中于单纯的图像识别, 缺乏医学数据的积累和对影像报告的分析, 人工智能和医学影像结合的模式刚刚开始, 我们期待科技的进步继续成为人类文明的动力之源。  相似文献   

4.
深度学习技术, 作为最近几年人工智能最热门的研究领域, 已成为全世界关注的焦点。深度学习在很多行业中展现出强大的应用能力, 在某些视听识别任务中的表现甚至超越了人类。在医学领域, 深度学习也逐渐成为研究者们分析大数据, 尤其是医学影像的首选方法。本文简要介绍深度学习的历史与概况, 结合国内外最新和最有影响力的研究成果, 阐述深度学习在医学影像领域的科学研究进展, 同时介绍深度学习在医学影像领域产品化应用及其未来的机遇与挑战。  相似文献   

5.
医学影像是放射科医生做出医学诊断的重要依据。但随着医学影像技术的快速发展, 逐渐增多的影像图像和复杂的图像信息对医生的工作产生了巨大的挑战。而深度学习是人工智能研究中最热门的领域, 在处理大数据和提取有效信息方面具有优势, 因此逐渐成为分析医学影像方面的首选方法。本文阐述了深度学习的概念, 并简要总结深度学习在医学影像中的常见模型, 包括卷积神经网络、循环神经网络、深度置信网络和自动编码器。卷积神经网络的基本结构是卷积层、池化层和全连接层; 循环神经网络由输入层、隐藏层和输出层组成; 深度置信网络的基础是玻尔兹曼机; 自动编码器包含编码层、隐藏层和解码层。通过对CT肺结节和MRI脑部疾病的分类, 阐明目前深度学习在疾病自动分类上准确性较高; 通过分割左心室、椎旁肌肉和肝脏的结构, 可见深度学习方法在医学图像分割上与人为分割具有一致性; 深度学习在肺结节和乳腺癌疾病的检测上已相对成熟。但目前为止, 仍存在标注的样本量少和过拟合的问题, 希望通过共享图像数据库来解决此问题。总之, 深度学习在医学影像中具有广阔前景, 且对临床医生的工作具有重大意义。  相似文献   

6.
随着信息革命的快速发展,大数据时代的到来,以深度学习为关键技术的人工智能逐渐成为各国研发投入的重点,目前已发展到应用阶段[1].人工智能定义为计算机具有人类智慧的能力,并能够自我学习,完成需要人类智慧才能完成的任务.人工智能的关键技术是深度学习,模拟人类大脑的神经网络,读取、处理大数据,并找出其中规律,完成特定任务.尽...  相似文献   

7.
胃癌作为一种常见的恶性肿瘤,是我国癌症相关的主要死因之一。无创的精确诊断和评估,是制订最佳诊疗方案的基础。人工智能(artificial intelligence,AI)技术,特别是影像组学和深度学习技术,为影像学与胃癌临床诊疗的学科交叉带来新的研究热点。如今,AI技术能够将影像图像转换为海量的影像组学数据,已广泛应用于胃癌影像学研究领域。本文系统地回顾了AI技术应用在胃癌影像学研究的技术步骤、临床应用,提出研究中的挑战和机遇。  相似文献   

8.
人工智能(artificial intelligence,AI)近几年再度成为各领域关注的焦点,其中深度学习的提出带来了一系列革命性变化,而随着计算机视觉向深度学习过渡以及硬件和大数据的进步,AI在图像识别领域展现出更广阔的发展前景。深度学习模型使得相关图像算法甚至达到了比人眼更高的识别准确率, 这为医学影像的发展提供了巨大契机。超声医学作为影像领域的重要分支,利用AI相关算法进行声像图分析的研究不断涌现,不仅为临床科研提供了新思路,亦有助于提高超声诊断的准确性。  相似文献   

9.
凭借深度学习及大数据等技术的飞速发展,人工智能是医学领域最具发展前景的技术,鉴于医学影像对疾病的诊断与及时治疗的关键作用,医学影像与人工智能的结合正成为重要的交叉学科研究方向。在临床实践中,医生为了更精确全面的诊断疾病,往往需要同时参考多模态的影像数据进行综合分析和判断。本文首先介绍了多模态深度学习的基本概念和工作原理,对深度学习技术应用于多模态医学影像辅助诊断的代表性研究成果做出综述,分析了多模态深度学习在医学影像领域的技术挑战,并对该技术的应用前景作出展望。  相似文献   

10.
计算机人工智能技术在数字病理中应用广泛、发展迅速,是肿瘤精准诊疗时代的一个里程碑。传统病理学作为肿瘤诊断的金标准具有高度主观性及不可重复性,且工作繁琐。基于人工智能技术对数字病理图像进行特征提取及定量分析,并转变为高保真、高通量的可挖掘/分析的数据,在肿瘤早期诊断、分级及构建预后模型等方面表现出独特优势。数字病理人工智能的发展为病理学科带来了难得的机遇,也是精准诊疗的未来发展趋势。本文概述人工智能在结直肠癌数字化病理图像分析中的应用现状和潜在价值,以期为临床诊疗提供参考。  相似文献   

11.
功能与分子影像学能够提供组织器官功能变化及细胞或分子事件的时间和空间分布信息,而人工智能是一门新兴的计算机技术,在医学影像中具有广泛的应用。将人工智能应用到功能影像学,能够使影像科医生更加高效、充分地利用得到的信息,更加深入地挖掘图像的生物学本质,在疾病早期诊断、有效治疗、预后预测、探索发病机制等方面均具有重要意义。本文将重点阐述人工智能在功能与分子影像学中图像处理、图像解释及质量控制的应用与进展。   相似文献   

12.
在医疗领域影像医学是人工智能的主要应用方向之一。在日常诊疗工作中,影像检查的临床需求量巨大,但影像科医师数量的增长和临床经验的积累远不及影像数据的增长速度,AI与影像数据交叉融合,可减轻影像科医师处理海量影像数据的压力。目前,基于超声、X线、CT和MRI数据以深度学习技术为核心,已研发了多种AI辅助影像的定量分析算法,在临床得到广泛的应用,实现了疾病的早期诊断、精准治疗、疗效评估和预测,显著提高影像科医师处理影像信息的效率和准确性,可为临床诊疗提供定量依据。   相似文献   

13.
近年来,我国人口老龄化正加速推进,脊柱疾病的患病风险呈上升趋势。随着人工智能与脊柱医学的交叉融合,以深度学习为代表的人工智能技术逐渐成为脊柱影像及诊疗领域热门研究方法。然而,深度学习在脊柱方面的研究相对较少并仍处于起步阶段,未来具有广阔的发展潜力及进步空间。本文将从深度学习在脊柱图像识别、分割及测量,脊柱疾病的诊断及脊柱手术预后评估3个方面中的应用及研究进展进行归纳综述,助力脊柱影像及脊柱诊疗研究的更深入、更高水平发展。   相似文献   

14.
肿瘤的早期发现和精确诊断对于患者治疗的选择和生存率的提高有很大的帮助,病理学作为肿瘤早期诊断的金标准,由病理医生通过肉眼观察对样本的组织结构和细胞病变进行分析诊断,这是高度主观、繁琐、不可重复的过程.随着近些年人工智能技术的发展,尤其是影像组学能够从MRI图像中高通量地提取定量特征,将图像转换成高维的、可挖掘的数据,在...  相似文献   

15.
16.
    
Artificial intelligence (AI) in medical imaging is a potentially disruptive technology. An understanding of the principles and application of radiomics, artificial neural networks, machine learning, and deep learning is an essential foundation to weave design solutions that accommodate ethical and regulatory requirements, and to craft AI-based algorithms that enhance outcomes, quality, and efficiency. Moreover, a more holistic perspective of applications, opportunities, and challenges from a programmatic perspective contributes to ethical and sustainable implementation of AI solutions.  相似文献   

17.
    
Artificial intelligence (AI) is transforming many domains, including finance, agriculture, defense, and biomedicine. In this paper, we focus on the role of AI in clinical and translational research (CTR), including preclinical research (T1), clinical research (T2), clinical implementation (T3), and public (or population) health (T4). Given the rapid evolution of AI in CTR, we present three complementary perspectives: (1) scoping literature review, (2) survey, and (3) analysis of federally funded projects. For each CTR phase, we addressed challenges, successes, failures, and opportunities for AI. We surveyed Clinical and Translational Science Award (CTSA) hubs regarding AI projects at their institutions. Nineteen of 63 CTSA hubs (30%) responded to the survey. The most common funding source (48.5%) was the federal government. The most common translational phase was T2 (clinical research, 40.2%). Clinicians were the intended users in 44.6% of projects and researchers in 32.3% of projects. The most common computational approaches were supervised machine learning (38.6%) and deep learning (34.2%). The number of projects steadily increased from 2012 to 2020. Finally, we analyzed 2604 AI projects at CTSA hubs using the National Institutes of Health Research Portfolio Online Reporting Tools (RePORTER) database for 2011–2019. We mapped available abstracts to medical subject headings and found that nervous system (16.3%) and mental disorders (16.2) were the most common topics addressed. From a computational perspective, big data (32.3%) and deep learning (30.0%) were most common. This work represents a snapshot in time of the role of AI in the CTSA program.  相似文献   

18.
深度学习是当前人工智能发展最为迅速的一个分支。深度学习可以在大样本数据中自动提取良好的特征表达,有效提升各种机器学习的任务性能,广泛应用于图像信号处理、计算机视觉和自然语言处理等领域。随着数字影像的发展,深度学习凭借自动提取特征,高效处理高维度医学图像数据的优点,已成为医学图像分析在临床应用的重要技术之一。目前这项技术在分析某些医学影像方面已达到放射科医生水平,如肺结节的检出识别以及对膝关节退变进行级别分类等,这将为计算机科学发展在医疗应用的提供一个新机遇。由于骨科领域疾病种类繁多,图像数据特征清晰,内容复杂丰富,相关的学习任务与应用场景对深度学习提出了新要求。本文将从骨关节关键参数测量、病灶检测、疾病分级、图像分割以及图像配准五大临床图像处理分析任务对深度学习在骨科领域的应用研究进展进行综述,并对其发展趋势进行展望,以供从事骨科相关研究人员作参考。  相似文献   

19.
目的 探讨基于深度学习(DL)的乳腺X线肿块自动检测系统诊断乳腺肿块的价值。方法 回顾性分析298例接受乳腺X线检查的女性患者。以3名高年资放射科医师对X线片的评估结果为参照标准,对比分析2名工作时间<5年的放射科医师在无(简称医师1和医师2)或有人工智能(AI)(简称医师1+AI和医师2+AI)辅助下的肿块检出率及检出稳定性。结果 医师1+AI、医师2+AI肿块检出率分别高于医师1、医师2(P均<0.05)。医师+AI检出乳腺肿块不受美国放射学院(ACR)肿块腺体构成、乳腺影像报告和数据系统(BI-RADS)分类及其形状、密度等因素影响(P均>0.05)。结论 基于DL的乳腺X线影像肿块检测系统可有效提高低年资医师的肿块检出率,提升医师对不同类型肿块检出的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号