首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent epidemiological studies suggest that long-term exposure to particulate matter (PM) causes chronic effects on the cardiovascular system that result in cumulative increases cardiovascular morbidity and mortality. Since atherosclerosis is a progressive irreversible condition and an underlying cause of many cardiovascular diseases, we hypothesized that long-term exposure to PM causes adverse cardiovascular effects by exacerbating atherosclerosis. In this study, we exposed C57- and ApoE-deficient (ApoE-/-) and ApoE, LDLr (DK)-deficient mice to concentrated ambient PM2.5 for 6 h/5 days/wk, for up to 5 mo. The overall mean exposure concentration for these groups of animals was 110 microg/m3. The cross-sectional area of the aorta root of DK mice was examined morphologically using confocal microscopy for the severity of lesion, extent of cellularity, and lipid contents. Aortas from the arch to the iliac bifurcations were also sectioned longitudinally and lesion areas were stained with Sudan IV. All DK mice regardless of exposure had developed extensive lesions in the aortic sinus regions, with lesion areas that covered more than 79% of the total area. In male DK mice, the lesion areas in the aortic sinus regions appeared to be enhanced by concentrated ambient particles (CAPs), with changes approaching statistical significance (p = .06). In addition, plaque cellularity was increased by 28% (p = .014, combined), whereas there were no CAPs-associated changes in the lipid content in these mice. When examining the entire aorta opened longitudinally, both the ApoE-/- and DK mice had prominent areas of severe atherosclerosis covering 40% or more of the lumenal surface. Visual examination of all images suggested that plaques tend to form in clusters concentrating near the aortic arch and and the iliac bifurcations. Quantitative measurements showed that CAPs exposure increased the percentage of aortic intimal surface covered by grossly discernible atherosclerotic lesion by 57% in the ApoE-/- mice (p = .03). Changes produced by CAPs in male (10% increase) or female DK mice (8% increase) were not statistically significant. In this study, we have demonstrated that subchronic exposure to CAPs in mice prone to develop atherosclerotic lesions had a significant impact on the size, severity, and composition of aortic plaque.  相似文献   

2.
The NYU PM Center subchronic animal inhalation study addressed the issues of composition and sources of ambient fine particulate matter (PM2.5), as well as the relationship of these PM2.5 characteristics to the cellular response of human bronchial epithelial cells. In this simultaneous study, we used an in vitro exposure technique to compare the daily variations of the responses of cells to fine concentrated ambient particles (CAPs) collected from a rural area upwind of New York City for the period of 9 a.m. to 3 p.m. on weekdays only, March-September, 2003. Chemical composition data for CAPs were modeled using factor analysis with varimax orthogonal rotation to determine four particle source categories contributing significant amount of mass to CAPs at Sterling Forest (Tuxedo, NY). These source categories are: (1) regional secondary sulfate characterized by high S, Si, and organic carbon (OC); (2) resuspended soil characterized by high concentrations of Ca, Fe, Al, and Si; (3) oil-fired power plants emissions of the eastern United States identified by presence of V, Ni, and Se; and (4) unknown other sources. To estimate the mass contributions of each individual source category, the CAPs mass concentration was regressed against the factor scores. Regional sulfate was the largest contributor to mass (65%), followed by soil (20%), residual oil combustion (2%), and the other sources contributing 13%. Based on an evaluation of the cellular responses to CAPs and a detailed chemical characterization of the ambient PM2.5, we investigated the sources and individual components of ambient PM2.5 that are responsible for the induced cellular response. Nuclear Factor kappa B (NF-kappa B) was selected as a monitor of cellular stress response that followed after the exposure to CAPs. The results of the NF-kappa B assay were found to be most highly correlated with Ni and V among the individual components, and with the residual oil combustion source category.  相似文献   

3.
The purpose of this exploratory study within the integrated subchronic inhalation exposure study (Lippmann et al., 2005) was to identify genes in heart and lung tissue that changed in expression level as a result of subchronic exposure to concentrated ambient particles (CAPs). Identification of CAPs exposure-related changes in gene expression could serve in the formulation of mechanistic hypotheses and/or to suggest possible biomarkers of exposure. In this exploratory study undertaken here, tissues from multiple replicates of ApoE/low-density-lipoprotein double knockout (DK) mice were examined for relative exposure-related changes in gene expression. Due to limited resources, the number of replicates was three for each tissue (lung and heart) of each exposure condition (CAPs or air control). A rigorous comparison of exposure versus control data using the "significance analysis of microarrays" (SAM) method indicated that only one gene was differentially expressed at a significant level. However, when using a less restrictive, nonstatistical analytical treatment of the data, several genes that might be involved in PM-related heart or lung pathology, and/or the circadian rhythm of physiological processes, were identified. A more comprehensive study is required to mre definitively assess differences in gene expression in heart and lung resulting from exposure to CAPs.  相似文献   

4.
This subchronic (6-mo) inhalation study of the effects of concentrated ambient air fine particulate matter (PM2.5) in normal mice (C57) and a murine model of humans with an advanced level of aortic plaque (ApoE-/- or ApoE-/- LDLr-/-) was designed to determine the presence and extent of a variety of health-related responses. The animals were exposed for 6 h/day, 5 day/wk during the spring and summer of 2003 to concentrations that were elevated 10-fold in Tuxedo, NY, a regional background site that is upwind and approximately 50 km west-northwest of New York City. The average PM2.5 concentration during exposure was 110 microgram/m3, and the long-term average was 19.7 microg/m3. There were substantial daily variations in concentration, and we sought evidence both for the influence of peak exposures on acute responses and for the cumulative effects of the prolonged series of exposures. Acute responses were characterized in terms of: (1) short-term electrocardiographic (EKG), core body temperature, and physical activity differences between PM and sham-exposed mice; and (2) in vitro toxicity of a simultaneously collected PM2.5 sample to lung epithelial cells. Cumulative responses to PM2.5 were characterized in terms of changes in heart rate, heart-rate variability, heart-rate variance, aortic plaque density, genetic marker expression, and brain cell distributions. There were no significant changes in the normal mice. The nature and extent of the exposure-related responses that were seen in the ApoE-/- as well as ApoE-/- LDLr-/- mice are described in the articles that follow in this special issue of Inhalation Toxicology.  相似文献   

5.
We modified, assembled, tested, and validated the versatile aerosol concentration enrichment system (VACES) developed by Sioutas et al. (1999) for use in a subchronic experiment that involved exposure of mice in vivo and of respiratory epithelial cells in vitro to concentrated ambient particles (CAPs). Since the labor-intensive nose-only exposure regimen is not an option in a long-term experiment, a whole-body exposure mouse chamber was designed specifically for use with the VACES. The exposure system concsists of a stainless-steel (SS) tub with 32 cubicles (1 mouse per cubicle) separated by perforated SS sheets. The tops of these cubicles are covered with perforated plastic sheets to allow telemetry monitoring during the exposure. In each exposure chamber, perforated aluminum tubes are used to distribute CAPs evenly (within 2% difference) throughout the exposure chamber. The exhaust consists of perforated aluminum tubes covered with a urine shield. The modification to the original design of the VACES facilitated the operation of the system in a subchronic study. Mass flow controllers maintain a constant flow rate into the exposure chambers. For a sham control exposure, the identical system is used, except that a HEPA filter at the inlet to the VACES removes 98% of ambient particles. The entire system allow for simultaneous exposure of 64 mice to CAPs, with an equal number of sham-expose mice as controls. Telemetry receives have been modified so that 16 mice per group with electrocardiograph (EKG) transmitters can be monitored during exposure. Furthermore, a BioSampler is used to collect CAPs (one sample per day) for the in vitro exposures. In this article, the assessments of flow and particle distribution of the exposure chamber as well as the performance of the system during the subchronic exposure experiment are described.  相似文献   

6.
Long-term exposure to fine particulate air pollution (PM2.5) has been associated increased risk of death from cardiopulmonary diseases. Cardiac function parameters have also been affected by ambient particulate matter (PM) exposure, including heart-rate variability (HRV), a measure of autonomic function that has been recognized as a well-defined, quantitative indicator of autonomic dysfunction. However, the role of HRV in ambient PM-induced cardiovascular effect is not fully understood. In an accompanying article, we report significant decreasing patterns of heart rate (HR), body temperature, and physical activity for mice lacking apoliproprotein (ApoE-/-) over 5 mo of exposure to concentrated ambient PM (CAPs), with smaller and nonsignificant change for C57 mice. In this article, we report the effects of subchronic CAPs exposure on HRV parameters that are sensitive to cardiac sympathetic and parasympathetic nerve activity. The standard deviation of normal to normal beat intervals (SDNN) and the square root of the mean squared differences of successive RR intervals (RMSSD) in the late afternoon and overnight for the ApoE-/- mice showed a gradual increase for the first 6 wk, a decline for about 12 more wk, and a slight turn upward at the end of the study period. For C57 mice, there were no chronic effect changes of SDNN or RMSSD in the late afternoon, an a slight increase after 6 wk for the overnight period. The response patterns of ApoE-/- mice indicated a perturbation of the homeostatic function in the cardiovascular system (initial enhancement and late depression of the HRV parameters). Our results complement the findings in human panel and controlled CAPs exposure studies in demonstrating that increased levels of particle pollution are able to perturb cardiac autonomic function, which may lead to adverse cardiovascular outcomes.  相似文献   

7.
Normal mice (C57) and mice prone to develop atherosclerosis (ApoE-/-) were implanted with electrocardiograph (EKG), core body temperature, and motion transmitters were exposed daily for 6 h to Tuxedo, NY, concentrated ambient particles (CAPs) for 5 day/wk during the spring and summer of 2003. The series of 5-min EKG monitoring and body-temperature measurements were obtained for each animal in the CAPs and filtered air sham exposure groups. Our hypothesis was that chronic exposure could cause cumulative health effects. We used our recently developed nonparametric method to estimate the daily time periods that mean heart rates (HR), body temperature, and physical activity differed significantly between the CAPs and sham exposed group. CAPs exposure most affected heart rate between 1:30 a.m. and 4:30 a.m. With the response variables being the average heart rate, body temperature, and physical activity, we adopted a two-stage modeling approach to obtain the estimates of chronic and acute effects on the changes of these three response variables. In the first stage, a time-varying model estimated daily crude effects. In the second stage, the true means of the estimated crude effects were modeled with a polynominal function of time for chronic effects, a linear term of daily CAPs exposure concentrations for acute effects, and a random component for unknown noise. A Bayesian framework combined these two stages. There were significant decreasing patterns of HR, body temperature, and physical activity for the ApoE-/- mice over the 5 mo of CAPs exposure, with smaller and nonsignificant changes for the C57 mice. The chronic effect changes of the three response variables for ApoE-/- mice were maximal in the last few weeks. There was also a significant relationship between CAPs exposure concentration and short-term changes of heart rate in ApoE-/- mice during exposure. Response variables were also defined for examining fluctuations of 5-min heart rates within long (i.e., 3-6 h) and short time periods (i.e., approximately 15 min). The results for the ApoE-/- mice showed that heart-rate fluctuation within the longer periods increased to 1.35-fold by the end of exposure experiment, while the heart-rate fluctuation within 15 min decreased to 0.7-fold.  相似文献   

8.
This study reports that subchronic exposure of Tuxedo, NY concentrated ambient particulates (CAPs) produces neuropathological damage in the brains of Apo E-deficient mice (Apo E-/-). These genetically modified mice are characterized by elevated levels of oxidative stress (OS) in the brain. Microscopic examination of coronal sections of the brain, immunocytochemically stained for dopamineric neurons, indicated that neurons from the substantia nigral nucleus compacta were significantly reduced by 29% in CAPs-exposed Apo E-/- mice relative to air-exposed Apo E-/- controls. In addition, statistically significant increases (p < .05) in immunocytochemically stained astrocytes were noted. The dopaminergic neurons of the nucleus compact are specifically targeted in Parkinson's disease. The present study expands the systems affected by particulate matter to include the brain, and supports an environmental role for the development of neurodegeneration in OS-susceptible individuals.  相似文献   

9.
Epidemiologic studies support a participation of fine particulate matter (PM) with a diameter of 0.1 to 2.5 microm in the effects of air pollution particles on human health. The ambient fine particle concentrator is a recently developed technology that can enrich the mass of ambient fine particles in real time with little modification. The advantages of concentrators are that the particles produced are "real world" and they allow exposure at pertinent masses. Limitations include variability in both particle mass and composition and some uncertainty over the best statistical approach to analyze the data. Cumulative evidence provided by the body of initial investigation shows that exposures to concentrated ambient particles (CAPs) can be accomplished safely in both humans and animals. Human investigation using the CAPs has shown acute lung inflammation and changes in both blood indices and heart rate variability. Animal studies support a potential pulmonary inflammation, blood changes, alterations of specific cardiac endpoints, and an increased susceptibility of specific models. These studies have helped establish the causal relationship between find particle exposure and adverse health effects in the lung and cardiovascular system. In addition, it appears that specific components in CAPS may differentially affect these tissues.  相似文献   

10.
Information about health effects from controlled exposure to particulate matter (PM) air pollution is relatively limited but potentially critical in urban locations such as Los Angeles, where abundant mobile sources generate combustion-related particles. Nonsmoking healthy (n = 12) and asthmatic (n = 12) volunteers, age 18-45 yr, were exposed to concentrated ambient particulates (CAP) in the fine (PM(2.5)) size range at an average concentration of 174 micro g/m(3) (range 99-224), and to filtered air (FA). Exposures used a two-stage Harvard virtual-impactor concentrator and whole-body chamber and lasted 2 h with alternating rest-exercise periods. Neither group showed significant (p <.05) changes in spirometry or routine hematologic measurements attributable to CAP exposure, relative to FA. Both groups showed CAP-related decreases of columnar cells in postexposure induced sputum, slight changes in certain mediators of blood coagulability and systemic inflammation, and modest increases in parasympathetic stimulation of heart rate variability. Systolic blood pressure decreased in asthmatics and increased in healthy subjects during CAP exposure relative to FA. Cardiovascular (but not respiratory) symptoms increased slightly with CAP in both groups. In summary, the urban fine PM exposures elicited different biologic endpoints with statistically significant differences between CAP and FA. The observed changes in blood inflammation and heart-rate variability were consistent with systemic (rather than respiratory) effects reported from other laboratory and epidemiologic studies. Further studies involving other biologic endpoints, PM size modes, and risk factors will be needed to clarify these results.  相似文献   

11.
《Inhalation toxicology》2013,25(11):963-972
Inhalation exposure to fine concentrated ambient particles (CAPs) increases cardiac oxidants by mechanisms involving modulation of the sympathovagal tone on the heart. Angiotensin-II is a potent vasoconstrictor and a sympatho-excitatory peptide involved in the regulation of blood pressure. We hypothesized that increases in angiotensin-II after fine particulate matter (PM) exposure could be involved in the development of cardiac oxidative stress. Adult rats were treated with an angiotensin-converting enzyme (ACE) inhibitor (benazepril®), or an angiotensin receptor blocker (ARB; valsartan®) before exposure to fine PM aerosols or filtered air. Exposures were carried out for 5 hours in the chamber of the Harvard fine particle concentrator (fine PM mass concentration: 440 ± 80 μg/m3). At the end of the exposure the animals were tested for in situ chemiluminescence (CL) of the heart, thiobarbituric acid reactive substances (TBARS) and for plasma levels of angiotensin-II. Also, continuous electrocardiogram (ECG) measurements were collected on a subgroup of exposed animals. PM exposure was associated with statistically significant increases in plasma angiotensin concentrations. Pre-treatment with the ACE inhibitor effectively lowered angiotensin concentration, whereas ARB treatment led to increases in angiotensin above the PM-only level. PM exposure also led to significant increases in heart oxidative stress (CL, TBARS), and a shortening of the T-end to T-peak interval on the ECG that were prevented by treatment with both the ACE inhibitor and ARB. These results show that ambient fine particles can increase plasma levels of angiotensin-II and suggest a role of the renin–angiotensin system in the development of particle-related acute cardiac events.  相似文献   

12.
We review literature that provides insights on health-related effects observed in laboratory-based inhalation studies in humans and laboratory animals using concentrated ambient air particulate matter (CAPs) in the fine, thoracic coarse, and ultrafine size ranges. The CAPs studies are highly informative on the health effects of ambient air particulate matter (PM) because they represent realistic PM exposure mixtures. When PM components are also analyzed and regressed against the effects, they can sometimes be used to identify influential individual components or source-related mixtures responsible for the effects. Such CAPs inhalation studies are analogous to epidemiological studies of human populations for which both health-related effects were observed and PM composition data were available for multi-pollutant regression analyses or source apportionment. Various acute and chronic health-related effects have occurred in short- and long-term CAPs inhalation studies in the cardiovascular, nervous, hepatic, and pulmonary systems, as well as changes in markers of the metabolic syndrome, and many correspond to effects associated with ambient air PM exposures in epidemiological studies. In addition, many CAPs studies have been conducted in coordination with in vitro studies that have identified biomarkers indicative of the underlying biological mechanisms that account for the responses.  相似文献   

13.
Abstract

In order to examine the biologic plausibility of adverse chronic cardiopulmonary effects in humans associated with ambient particulate matter (PM) exposure, we exposed groups of normal mice (C57) and knockout mice that develop atherosclerotic plaques (ApoE?/? and ApoE?/? LDLr?/?) for 6 h/day, 5 days/wk for 5 or 6 mo during the spring/summer of 2003 to either filtered air or 10-fold concentrated ambient particles (CAPs) in Tuxedo, NY (average PM2.5 concentration during exposure = 110 μ g/m3). Some of the mice had implanted electocardiographic monitors. We demonstrated that: (1) this complex interdisciplinary study was technically feasible in terms of daily exposures, collection of air quality monitoring data, the collection, analysis, and interpretation of continuous data on cardiac function, and the collection and analyses of tissues of the animals sacrificed at the end of the study; (2) the daily variations in CAPs were significantly associated, in ApoE?/? mice, with daily variations in cardiac function; (3) there were significant differences between CAPs and sham-exposed ApoE?/? mice in terms of cardiac function after the end of the exposure period, as well as small differences in atherosclerotic plaque density, coronary artery disease, and cell density in the substantia nigra in the brain in the ApoE?/? mice; and (4) there are suggestive indications of gene expression changes for genes associated with the control of circadian rhythm in the ApoE?/? LDLr?/? double knockout (DK) mice. These various CAPs-related effects on cardiac function and the development of histological evidence of increased risk of clinically significant disease at the end of the exposures in animal models of atherosclerosis provide biological plausibility for the premature mortality associated with PM2.5 exposure in human subjects and provide suggestive evidence for neurogenic disease as well.  相似文献   

14.
15.
Lung inflammation is a key response to increased levels of particulate air pollution (PM); however, the cellular mechanisms leading to this response are poorly understood. To determine whether oxidants are implicated in PM-dependent lung inflammation, we tested the ability of N-acetylcysteine (NAC) to prevent lung inflammation in a rat model of short-term exposure to concentrated ambient particles (CAPs). Adult Sprague-Dawley rats were exposed to either CAPs aerosols (CAPs mass concentration 1060 +/- 300 microg/m(3)) or filtered air (Sham controls) for 5 h. NAC-treated rats received 50 mg/kg (ip) NAC 1 h prior to exposure to CAPs. Oxidative stress and recruitment of inflammatory cells into bronchoalveolar lavage were evaluated 24 h after removal of the animals from the exposure chamber. Rats breathing CAPs aerosols showed significant oxidative stress, determined by the accumulation of thiobarbituric reactive substances (TBARS, 90 +/- 15 pmol/mg protein; sham control: 50 +/- 5 pmol/mg protein, p < 0.02) and oxidized proteins (1.6 +/- 0.4 nmol/mg protein, sham: 0.70 +/- 0.02 nmol/mg protein, p < 0.01) in their lungs. CAPs-induced oxidative stress was associated with increased numbers of polymorphonuclear leukocytes in bronchoalveolar lavage (BAL) (9 +/- 2%; sham: 1.6 +/- 0.5%, p < 0.001) and slight lung edema (wet/dry ratio: 4.77 +/- 0.03, sham: 4.69 +/- 0.02). No significant change was found in BAL protein concentration, total cell count, or lactate dehydrogenase (LDH) activity. NAC pretreatment effectively prevented CAPs-induced TBARS accumulation (30 +/- 10 pmol/mg protein, p < 0.006), lung edema (4.64 +/- 0.08, p < 0.05), and polymorphonuclear neutrophil (PMN) influx into the lungs (2.1 +/- 0.5%, p < 0.001), but did not alter the protein carbonyl content. Histological evaluation of tissue samples confirmed the BAL findings. CAPs-exposed animals showed slight bronchiolar inflammation and thickened vessels at the bronchiole, whereas NAC treated animals showed no histological alterations. Regression analyses showed strong associations between increased TBARS accumulation and the CAPs content of Al, Si, and Fe, and trends of association between carbonyl content and Cr and Na concentrations, and between BAL PMN count and Cr, Zn, and Na. These data demonstrate that oxidants are critical mediators of the inflammatory response elicited by PM inhalation.  相似文献   

16.
The health effects of ambient fine particulate matter (PM(2.5)) and its potential impact on vascular endothelial function have not been thoroughly investigated. As endothelial dysfunction plays an important role in the pathogenesis of atherosclerosis and its complications, we examined the effects of concentrated fine ambient particles (CAPs) on the plasma level of asymmetric dimethylarginine (ADMA) in a pilot study. ADMA is a circulating endogenous inhibitor of nitric oxide synthase (NOS) that is associated with impaired vascular function and increased risk for cardiovascular events. A mobile air research laboratory (AirCARE 1) was used to provide "real-world" CAPs exposures for this study conducted in Detroit, MI. Fourteen Brown Norway rats were exposed to filtered air (FA) (n = 7) or CAPs (0.1-2.5 microm) (n = 7) for 3 consecutive days (8 h/day) in July 2002. Rats were exposed during these periods to average particle mass concentrations of 354 microg/m(3). Rat plasma samples were collected 24 h postexposure. Plasma concentrations of ADMA were significantly elevated in rats exposed to CAPs versus those exposed to FA (mean +/- standard deviation = 1.49 +/- 0.18 vs. 1.29 +/- 0.26 microM, p =.05 by one-tailed t-test). Analyses of meteorological data and CAPs trace element composition suggest that local particle emission sources contributed largely to overall mass of CAPs. Results of this pilot study suggest that exposure to PM(2.5) at high concentrations may trigger an acute increase in circulating ADMA level. This finding has implications for the regulation of vasomotor tone by particulate pollutants and the propensity for adverse cardiovascular events.  相似文献   

17.
Epidemiological studies have associated particulate air pollution with exacerbation of lung function in human populations. However, the relationship between ambient particles and lung function in animal studies has been inconsistent. In order to investigate the effects of concentrated ambient particles (CAPs) on airway responsiveness, we exposed pulmonary hypertensive rats to CAPs using particle concentrator at an EPA of Taiwan supersite, located at a traffic busy urban area nearing Taipei city. The exposure group (n = 5) was exposed to CAPs for 6 h each day for 3 consecutive days (mean mass concentration = 371.7 microg/m(3)), while a control group (n = 6) was exposed to HEPA-filtered air. Whole-body barometric plethysmography was used to measure respiratory frequency, tidal volume, and airway responsiveness before and after exposure. Enhanced pause (Penh) was used as an indicator of airway responsiveness. To improve the accuracy of airway responsiveness measurement, we controlled temperature and humidity. Further, airway responsiveness was determined 5 h after particle exposure to overcome the stress effect in nose-only exposure chambers. After CAPs exposure, we found decreased respiratory frequency and increased tidal volume (p < .05). Using the methacholine challenge test, a significant difference of Penh measured before and after experiment was observed in the CAPs group (p < .05), but not in the filtered air group. Further analysis showed that the Penh difference before and after exposure in the CAPs group was significantly greater than that in the filtered air group (p < .05). We conclude that CAPs could induce airway hyperresponsiveness in pulmonary hypertensive rats.  相似文献   

18.
Adult volunteers (17 healthy, 14 asthmatic) were exposed in a controlled environmental chamber to concentrated ultrafine particles (UFP) collected in a Los Angeles suburb with substantial motor vehicle pollution. Exposures lasted 2 h with intermittent exercise. Inhaled particle counts (mean 145,000/cm(3), range 39,000-312,000) were typically 7-8 times higher than ambient levels. Mass concentrations (mean 100 microg/m(3), range 13-277) were not highly correlated with counts. Volunteers were evaluated for lung function, symptoms, exhaled nitric oxide (eNO), Holter electrocardiography, and inflammatory markers in peripheral blood and induced sputum. Relative to control (filtered air) studies, UFP exposures were associated with a 0.5% mean fall in arterial O(2) saturation estimated by pulse oximetry (p < .01), a 2% mean fall in forced expired volume in 1 sec (FEV(1)) the morning after exposure (p < .05), and a transient slight decrease in low-frequency (sympathetic) power in Holter recordings during quiet rest (p < .05). Healthy and asthmatic subjects were not significantly different across most endpoints. Thus, this initial experimental study of human volunteers exposed to concentrated Los Angeles area ambient UFP showed some acute deleterious cardiopulmonary responses, which, although generally small and equivocal as in previous studies of larger sized concentrated ambient particles, might help to explain reported adverse health effects associated with urban particulate pollution.  相似文献   

19.
Twelve mildly asthmatic and four healthy adults were exposed to filtered air (FA) and concentrated ambient coarse particles (CCP) supplied to a whole-body exposure chamber via a coarse particle concentrator with 15 parallel virtual impactors. Exposures were conducted in a Los Angeles suburb with high levels of motor-vehicle pollution and lasted 2 h with intermittent exercise. Mean CCP concentration was 157 microg/m(3) (range: 56-218 microg/m(3)) measured by continuous monitoring with a tapered-element oscillating microbalance (TEOM). On average, 80% of mass was coarse (2.5-10 microm aerodynamic diameter) and the rest <2.5 microm. Relative to FA, CCP exposure did not significantly alter respiratory symptoms, spirometry, arterial oxygen saturation, or airway inflammation according to exhaled nitric oxide and total and differential cell counts of induced sputum. After CCP exposure, Holter electrocardiograms showed small (p <.05) increases in heart rate and decreases in heart-rate variability, which were larger in healthy than in asthmatic subjects. Cardiac ectopy did not increase. In conclusion, acute exposure to elevated concentrations of ambient coarse particles elicited no obvious pulmonary effects but appeared to alter the autonomic nervous system of the heart in adult volunteers.  相似文献   

20.
《Inhalation toxicology》2013,25(12):790-797
Context: Exposure to single pollutants e.g. particulate matter (PM) is associated with adverse health effects, but it does not represent a real world scenario that usually involves multiple pollutants.

Objectives: Determine if simultaneous exposure to PM and NO2 results in synergistic interactions.

Materials and methods: Healthy young volunteers were exposed to clean air, nitrogen dioxide (NO2, 0.5 ppm), concentrated fine particles from Chapel Hill air (PM2.5CAPs, 89.5?±?10.7 µg/m3), or NO2+PM2.5CAPs for 2?h. Each subject performed intermittent exercise during the exposure. Parameters of heart rate variability (HRV), changes in repolarization, peripheral blood endpoints and lung function were measured before and 1 and 18?h after exposure. Bronchoalveolar lavage (BAL) was performed 18?h after exposure.

Results: NO2 exposure alone increased cholesterol and HDL 18?h after exposure, decreased high frequency component of HRV one and 18?h after exposure, decreased QT variability index 1?h after exposure, and increased LDH in BAL fluid. The only significant change with PM2.5CAPs was an increase in HDL 1?h after exposure, likely due to the low concentrations of PM2.5CAPs in the exposure chamber. Exposure to both NO2 and PM2.5CAPs increased BAL α1-antitrypsin, mean t wave amplitude, the low frequency components of HRV and the LF/HF ratio. These changes were not observed following exposure to NO2 or PM2.5CAPs alone, suggesting possible interactions between the two pollutants.

Discussion and conclusions: NO2 exposure may produce and enhance acute cardiovascular effects of PM2.5CAPs. Assessment of health effects by ambient PM should consider its interactions with gaseous copollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号