首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
In human somatic cells proliferation results in telomere shortening due to the end replication problem and the absence of adequate levels of telomerase activity. The progressive loss of telomeric DNA has been associated with replicative senescence. Maintenance of telomere structure and function is, therefore, an essential requisite for cells that proliferate indefinitely. Human cells that have acquired the immortal phenotype mostly rely on telomerase to compensate for telomere shortening with cell division. However, a certain percentage of immortalized cell lines and human tumors maintain their telomeres by Alternative Lengthening of Telomeres (ALT), a mechanism not fully understood but apparently based on homologous recombination. Here, we report the isolation of an immortal human cell line that is derived from an ALT cell line but maintains telomeres in the absence of key features of ALT and of telomerase. The properties of these cells suggest that the identification of ALT cells may not be reliably based on known ALT markers. This finding is of relevance for discriminating between the mortal and immortal phenotype among telomerase-negative cells in vitro and in vivo, particularly in regard to the development of pharmacological approaches for cancer treatment based on telomerase inhibition.  相似文献   

2.
3.
Telomeres, the ends of eukaryotic chromosomes, are structural and functional units composed of proteins and repetitive DNA sequences. Telomeres protect the ends of chromosomes from DNA loss caused by incomplete replication of 3' ends. The obligatory loss of terminal sequence with each cell division leads to telomere shortening, and is counteracted in germline cells by an enzymatic activity termed telomerase that resynthesizes telomeric DNA de novo. Telomere length and telomerase activity have been measured by several groups in both normal and malignant blood and marrow cells. Telomere length decreases with age in normal blood and bone marrow, despite the presence of a detectable telomerase activity. In most hematologic malignancies telomere length is short and telomerase activity is enhanced, compatible with the late activation of the enzyme in tumour development. The implications of these findings for tumour pathogenesis, diagnosis, and treatment are discussed.  相似文献   

4.
端粒酶是一种能以自带RNA为模板,反转录合成端粒DNA加于染色体末端的核糖核酸蛋白酶,作用是维持染色体稳定,使细胞具有永生化特性。胸腔积液可由多种疾病引起,与肿瘤因素有关者占30%~60%。作为目前最具特异性和普遍性的恶性肿瘤标志物,检测胸腔积液中端粒酶的活性,对早期发现肿瘤,具有重要意义。  相似文献   

5.
Zhang TC  Schmitt MT  Mumford JL 《Carcinogenesis》2003,24(11):1811-1817
Telomeres are critical in maintaining chromosome and genomic stability. Arsenic, a human carcinogen as well as an anticancer agent, is known for its clastogenicity. To better understand molecular mechanisms of arsenic actions, we investigated arsenite effects on telomere and telomerase and determined cell growth and apoptosis in HL-60 and HaCaT cells in vitro. Low concentrations (0.1-1 microM in HaCaT and 0.1-0.5 microM in HL-60) of arsenite increased telomerase activity, maintained or elongated telomere length, and promoted cellular proliferation. High concentrations (>1-40 microM) of arsenite decreased telomerase activity, telomere length and induced apoptosis. Results from the studies comparing cell lines with and without telomerase activity suggested that telomerase was involved in arsenic-induced apoptosis. The spin trap agent, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was effective in protecting the arsenite-induced telomere attrition and apoptosis, suggesting that reactive oxygen species may play an important role in the shortening of telomeres and apoptosis induced by arsenic. These findings suggest the carcinogenic effects of arsenic may be partly attributed to increase in telomerase activity leading to promotion of cell proliferation and its anticancer effects by exerting oxidative stress and leading to telomeric DNA attrition and apoptosis.  相似文献   

6.
Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized 'optimal' length.  相似文献   

7.
Telomeres, G-rich structures at the ends of chromosomes are essential for maintaining chromosomal integrity. Most tumor cells contain telomerase, a ribonucleoprotein that elongates telomeric repeats, and it plays an essential role in indefinite proliferation. To better understand regulatory mechanisms of telomerase, in relationship with apoptosis and the cell cycle, we examined telomerase activity in PCM6, an interleukin-6 (IL-6)-responsive, interferon-alpha (IFN-alpha)-sensitive multiple myeloma cell line, using a PCR-based assay. When PCM6 cells were cultured in serum-free media, the addition of IFN-alpha resulted in apoptosis of the cells, but with no influence on telomerase activity. When IFN-alpha was added to the culture with serum plus rIL-6 after serum deprivation, G1-S transition was inhibited and telomerase activity was lower compare to findings in culture with no IFN-alpha. Dose response experiments of rIL-6 and IFN-alpha, and the measurement of telomerase activity of sorted cells in S-phase using CD71, demonstrated a higher activity of telomerase in the samples which contained a larger proportion of cells in S-phase. These data indicate that regulation of telomerase activity is closely related to cell cycle status, in particular cells in S-phase have an high telomerase activity. While telomeres play an important role in cellular senescence, the regulation of telomerase is independent from apoptotic signals induced by IFN-alpha in myeloma cells.  相似文献   

8.
9.
Telomerase is a promising target for human cancer gene therapy. Its inhibition allows telomere shortening to occur in cancer cells, which in turn is thought to trigger delayed senescence and/or apoptosis. We tested whether telomerase inhibition might have additional, immediate effects on tumor cell growth. Ovarian cancer cell lines with widely differing telomere lengths were efficiently transduced with an adenovirus expressing a ribozyme directed against the T motif of the catalytic subunit of human telomerase, hTERT. Three days after transduction, telomerase activity was significantly reduced and massive cell loss was induced in mass cultures from all four ovarian cancer cell lines tested, whereas transduction of telomerase-negative human fibroblasts did not attenuate their growth. The kinetics of induction of cell death in cancer cells was not significantly dependent on telomere length, and telomeres did not shorten measurably before the onset of apoptosis. The data suggest the existence of a "fast-track" mechanism by which diminution of telomerase can interfere with cancer cell growth and induce cell death, presumably by apoptosis. This phenomenon might be a consequence of the telomere capping function provided by telomerase in tumor cells. Uncapping of telomeres by ribozyme-mediated inhibition of telomerase bears therapeutic potential for ovarian cancer.  相似文献   

10.
11.
Since telomerase plays a role in cellular resistance to apoptosis, which is the primary mode of cell death induced by several drugs, telomerase could be involved in determining the chemosensitivity profile of tumor cells. Thus, we investigated the relationship between telomerase activity, telomere length and chemosensitivity to effective antitumor agents in a panel of human melanoma and ovarian cancer cell lines. Telomerase activity, as detected by the telomeric repeat amplification protocol, ranged from 0.58 to 1.10 arbitrary units in individual cell lines, with similar median values for melanoma and ovarian carcinoma cell lines (0.80 vs. 0.90). Telomeres were generally longer in melanoma than in ovarian carcinoma cell lines, with a more than 2-fold median telomere restriction fragment length (7.74 vs. 3.82 kb). No significant correlation was evidenced between the two telomere-related parameters and cell population doubling time, DNA index or TP53 gene status. No precise relation was found between telomerase activity and cellular sensitivity to different DNA damaging agents including doxorubicin, cisplatin and the multinuclear platinum compound BBR 3464. In contrast, longer telomeres were associated to resistance to the drugs, even though the association reached statistical significance only for cisplatin. Since platinum compounds may have affinity for telomere sequences, it is conceivable that the interaction is relevant for drug sensitivity/resistance status depending on telomere length.  相似文献   

12.
13.
Telomeres, which are specialized structures consisting of T2AG3 repeats and proteins at the ends of chromosomes, may be essential for genomic stability. To test whether telomere length maintenance preserves genomic stability in rats (Rattus rattus and Fischer 344), we assayed telomerase activity and telomere length in the rat hepatic epithelial stem-like cell line WB-F344 during aging in vitro and in tumor-derived lines. Telomerase activity in the parental WB-F344 line was repressed at low and intermediate passage levels in vitro and reexpressed at high passages. Southern blot hybridization and quantitative fluorescence in situ hybridization analyses demonstrated that telomeres were significantly eroded at intermediate passage levels, when telomerase was repressed, and at high passage levels, when telomerase was expressed. Fluorescence in situ hybridization analysis also revealed interstitial telomeric sequences in rat chromosomes. Tumor-derived WB-F344 cell lines that express telomerase had variably shortened telomeres. Cytogenetic analyses performed on WB-F344 cells at low, intermediate, and high passages demonstrated that chromosome instability was most severe in the intermediate passage cells. These data suggest that telomere shortening during aging of rat hepatic epithelial stem-like WB-F344 cells in vitro and during selection of tumorigenic lines in vivo may destabilize chromosomes. Expression of telomerase in high passage cells appeared to partially stabilize chromosomes.  相似文献   

14.
Telomere maintenance is regarded as a key mechanism in overcoming cellular senescence in tumor cells and in most cases is achieved by the activation of telomerase. However there is at least one alternative mechanism of telomere lengthening (ALT) which is characterized by heterogeneous and elongated telomeres in the absence of telomerase activity (TA). We evaluated the prevalence of TA, gene expression of telomerase subunits and ALT in relation to telomere morphology and function in matrix producing bone tumors and in osteosarcoma cell lines and present evidence of a direct association of ALT with telomere dysfunction and chromosomal instability. Telomere fluorescence in situ hybridization (T-FISH) in ALT cells revealed elongated and shortened telomeres, partly in unusual configurations and loci, dicentric marker chromosomes and signal-free chromosome ends. Free ends give rise to end-to-end associations and may induce breakage-fusion-bridge cycles resulting in an increased number of complex chromosomal rearrangements, as detected by multiplex-FISH (M-FISH). We propose that ALT cannot be seen as an equivalent to telomerase activity in telomere maintenance. Its association with telomere dysfunction and chromosomal instability may have major implications for tumor progression.  相似文献   

15.
Recent advances in telomere biology: implications for human cancer   总被引:16,自引:0,他引:16  
PURPOSE OF REVIEW: Research into the basic biology of telomeres continues to reveal details relevant to fundamental aspects of human cancer. The goal of this review is to highlight discoveries made within the last year, with emphasis on their relevance to cancer prevention, diagnosis, prognostics, and treatment. RECENT FINDINGS: Increasing evidence indicates that dysfunctional telomeres likely play a causal role in the process of malignant transformation, in at least a fraction of human cancers, by initiating chromosomal instability. Telomeres form protective capping structures composed of telomeric DNA complexed with a multitude of associated proteins, the loss of which can have profound effects on telomeric stability. Critical telomeric shortening can lead to telomere "uncapping" and may occur at the earliest recognizable stages of malignant transformation in epithelial tissues. The widespread activation of the telomere synthesizing enzyme telomerase in human cancers not only confers unlimited replicative potential but also prevents intolerable levels of chromosomal instability. Several details regarding telomere structure and telomerase regulation have recently been elucidated, providing new targets for therapeutic exploitation. Various therapeutic strategies aimed at either telomerase or its telomeric substrate are showing promise and may synergize with established anti-cancer agents. Further support for anti-telomerase approaches comes from recent studies indicating that telomerase may possess additional functions, beyond telomere maintenance, that support the growth and survival of tumor cells. SUMMARY: Substantial progress has been made in understanding the complex relationships that exist between telomeres and cancer. However, important issues, such as transient activation of telomerase in normal cells and the potential for tumor cell immortalization via telomerase independent means, remain to be clarified.  相似文献   

16.
It has been repeatedly suspected that telomere shortening might be one possible trigger of the p53-dependent cell cycle arrest, although the mechanism of this arrest remained unclear. Telomeres in human cells under mild oxidative stress accumulate single-strand damage faster than interstitial repetitive sequences. In MRC-5 fibroblasts and U87 glioblastoma cells, which both express wild-type p53, oxidative stress-mediated production of single-strand damage in telomeres is concomitant to the accumulation of p53 and p21 and to cell cycle arrest. This response can be modeled by treatment of cells with short single stranded telomeric G-rich DNA fragments. The arrest is transient in U87 cells. Recovery from it is accompanied by up-regulation of telomerase activity and elongation of telomeres. Overexpression of mutated p53 is sufficient to reverse the phenotype of inhibition as well as the delayed activation of telomerase. These data suggest that the production of G-rich single stranded fragments during the course of telomere shortening is sufficient to trigger a p53 dependent cell cycle arrest.  相似文献   

17.
In human somatic cells without the activity of telomerase, the ends of chromosomes consisting of the telomeric repeats TTAGGG progressively erode with each cell division. In germline and immortal cells telomerase activity maintains telomere length and thus compensates for the 'end-replication problem'. Progressive telomere shortening and reactivation of telomerase activity have been considered to be one of the key mechanisms in cellular senescence and immortalization. It has been shown that while most somatic cells do not have detectable telomerase activity, almost all cancers do have telomerase activity. Thus, detection of telomerase activity may have utility in the early diagnosis of cancer and may be a new target for therapeutic intervention. However, there is recent evidence that some cells of renewal tissues, such as hematopoietic cells and basal cells of the epidermis, have detectable telomerase activity. In the present study, we report detectable telomerase activity in normal human intestinal mucosa. This activity is localized to the lower third of each crypt and may be derived from intestinal stem cells. Since intestinal telomeric repeats are shorter in adults when compared to children, the telomerase activity in the intestine is insufficient to maintain telomere length but may be sufficient to provide extended proliferative capacity for such renewal tissues.  相似文献   

18.
Telomeres are specialized nucleoprotein complexes that protect against fusion and degradation of linear chromosomes. Critical shortening of telomeres leads to irreversible cessation of cell division, whereas telomerase elongates telomere sequences to compensate for losses that occur with each round of DNA replication. Continued proliferation of tumor cells requires this enzyme to maintain chromosomal stability and to counteract the cellular mitotic clock. In this study, we evaluated the effect of oligonucleotide N3'-->P5' thio-phosphoramidate (NP), which targets template RNA component, in human multiple myeloma (MM) cell lines and patient MM cells. Fluorescein staining at 24 h confirmed NP uptake in 84.7 and 86.1% of MM.1S cells and MM patient cells, respectively, without any transfection enhancer. High transfection efficiency was observed into both CD138(+) and CD138(-) MM patient cells. Match NP (7S), but not mismatch NP (30S), inhibited telomerase activity in MM.1S cells, U266 cells, and RPMI 8226 cells, as well as in patient MM cells. Moreover, 7S inhibited cytokine-induced telomerase activity in MM.1S cells. 7S treatment-induced progressive telomere shortening was associated with growth inhibition and cell death in MM.1S cells with short telomeres (2.5 kb), but not in U266 cells with long telomeres (9.0 kb), at 56 days of culture. Progressive telomere shortening leading to growth inhibition and cell death in MM.1S cells was associated with up-regulation of p21 and phosphorylation of p53 (Ser-15). These studies, therefore, identify the molecular sequelae of NP oligonucleotide (GRN163) against human telomerase RNA component as a telomerase inhibitor and provide the rationale for the development of telomerase-targeted therapies to improve patient outcome in MM.  相似文献   

19.
S Sasgary  M Wieser  C Cerni 《Onkologie》2001,24(1):22-26
More than 80% of human malignancies express telomerase activity, while normal somatic tissues in general lack it. During each normal cell division, there is a constant loss of DNA sequences at chromosomal ends, which is due to the 'end-replication problem' of conventional DNA polymerase. Critical shortening of telomeres induces cell cycle arrest and eventually cell death. Telomerase, a ribonucleoprotein complex with a RNA (TR) and a catalytic subunit (TERT) as core components, is able to add reitineratedly telomeric repeat sequences to the very ends of chromosomes. It was suggested that activation of telomerase in tumor cells has a major impact on their continuous growth. Indeed, transfection of TERT constructs into various normal human cell types led to telomere elongation or stabilization and, most importantly, cellular immortalization. Conversely, inhibition of telomerase in tumor cell lines induced growth arrest, at least in first experimental settings. Such initial success implies that drug-mediated abrogation of telomerase action might be an ideal adjuvant treatment for cancer patients. There are, however, legitimate concerns about the generalization of such an approach.  相似文献   

20.
Telomeres, which are important for maintaining chromosome integrity and functions, shorten with each cell division. Telomerase, responsible for telomere synthesis, is expressed in approximately 90% of human tumor cells but seldom in normal somatic cells. This study evaluated the hypothesis that simultaneous shortening of telomeres and inhibition of telomerase results in synergistic and tumor-selective cytotoxicity. In telomerase-positive human pharynx FaDu tumor cells, paclitaxel caused telomere erosion (first detected at 1 h) and apoptosis. Expression of antisense to the RNA component of human telomerase (hTR) inhibited telomerase activity, shortened telomere length, reduced cell growth rate, and resulted in a significant higher sensitivity to paclitaxel. Another telomerase inhibitor, 3'-azido-3'-deoxythymidine (AZT), at a concentration that produced little or no cell detachment or apoptosis, inhibited the telomerase activity and enhanced the paclitaxel-induced cell detachment and apoptosis. AZT also enhanced the activity of paclitaxel in mice bearing well-established s.c. FaDu xenograft tumors (i.e., reduced residual tumor size, enhanced apoptotic cell fraction, and prolonged survival time), without enhancing host toxicity. In contrast, AZT did not enhance the paclitaxel activity in the telomerase-negative osteosarcoma Saos-2 cells nor in FaDu cells where telomerase was already suppressed by antisense hTR, confirming that the AZT effect in parent FaDu cells is mediated through telomerase inhibition. These results demonstrate that combined use of agents targeting both telomere and telomerase yielded synergistic activity selective for tumors that depend on telomerase for telomere maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号