首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scorpion toxins are useful in the structure-function research of ion channels and valuable resources for drug design. The Kv1.3 channel is an important pharmacological target for the therapy of T cell-mediated autoimmune diseases, and many toxin peptides targeting Kv1.3 have been identified as good drug candidates in recent years. In this study, a novel toxin gene ImKTx88 was isolated from the venom of the scorpion Isometrus maculates through the construction of the cDNA library method, and the recombinant toxin peptide was purified and characterized physiologically. The mature peptide of ImKTx88 contained 39 amino acid residues including six cysteines and was predicted to be a new member of α-KTx scorpion family by sequence analysis. The electrophysiological experiments further indicated that the rImKTx88 peptide had a novel pharmacological profile: it inhibited Kv1.3 channel current with an IC50 of 91 ± 42 pM, and exhibited very good selectivity for Kv1.3 over Kv1.1 (4200-fold) and Kv1.2 (93000-fold) channels, respectively. All these results suggested that, as a new selective Kv1.3 channel blocker, the ImKTx88 peptide may serve as a potential drug candidate in the therapy of autoimmune diseases.  相似文献   

2.

Aim:

To determine the presence of voltage-gated K+ (Kv) channels in bone marrow-derived human mesenchymal stem cells (hMSCs) and their impact on differentiation of hMSCs into adipocytes.

Methods:

For adipogenic differentiation, hMSCs were cultured in adipogenic medium for 22 d. The degrees of adipogenic differentiation were examined using Western blot, Oil Red O staining and Alamar assay. The expression levels of Kv channel subunits Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv2.1, Kv3.1, Kv3.3, Kv4.2, Kv4.3, and Kv9.3 in the cells were detected using RT-PCR and Western blot analysis.

Results:

The expression levels of Kv2.1 and Kv3.3 subunits were markedly increased on d 16 and 22. In contrast, the expression levels of other Kv channel subunits, including Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv4.2, Kv4.3, and Kv9.3, were decreased as undifferentiated hMSCs differentiated into adipocytes. Addition of the Kv channel blocker tetraethylammonium (TEA, 10 mmol/L) into the adipogenic medium for 6 or 12 d caused a significant decrease, although not complete, in lipid droplet formation and adipocyte fatty acid-binding protein 2 (aP2) expressions. Addition of the selective Kv2.1 channel blocker guangxitoxin (GxTX-1, 40 nmol/L) into the adipogenic medium for 21 d also suppressed adipogenic differentiation of the cells.

Conclusion:

The results demonstrate that subsets of Kv channels including Kv2.1 and Kv3.3 may play an important role in the differentiation of hMSCs into adipocytes.  相似文献   

3.
Using high-performance liquid chromatography Tst26, a novel potassium channel blocker peptide, was purified from the venom of the Brazilian scorpion Tityus stigmurus. Its primary structure was determined by means of automatic Edman degradation and mass spectrometry analysis. The peptide is composed of 37 amino acid residues and tightly folded through three disulfide bridges, similar to other K+ channel blocking peptides purified from scorpion venoms. It contains the “essential dyad” for K+ channel recognition comprised of a lysine at position 27 and a tyrosine at position 36. Electrophysiological assays revealed that Tst26 blocked hKv1.2 and hKv1.3 channels with high affinity (Kd = 1.9 nM and 10.7 nM, respectively) while it did not affect several other ion channels (mKv1.1, hKv1.4, hKv1.5, hERG, hIKCa1, hBK, hNav1.5) tested at 10 nM concentration. The voltage-dependent steady-state parameters of K+ channel gating were unaffected by the toxin in both channels, but due to the fast association and dissociation kinetics Tst26 slowed the rate of inactivation of Kv1.3 channels. Based on the primary structure, the systematic nomenclature proposed for this peptide is α-KTx 4.6.  相似文献   

4.
Despite the great variability of the conus peptides characterized until now only relatively few have been identified that interact with K+ channels. κM-conotoxin RIIIK (κM-RIIIK) is a 24 amino acid peptide from Conus radiatus, which is structurally similar to μ-conotoxin GIIIA, a peptide known to block specifically skeletal muscle Na+ channels. Recently, it has been shown that κM-RIIIK does not interact with Na+ channels, but inhibits Shaker potassium channels expressed in Xenopus oocytes. It was demonstrated that κM-RIIIK binds to the pore region of Shaker channels and a teleost homologue of the Shaker channel TSha1 was identified as a high affinity target of the toxin. In contrast the mammalian Shaker-homologues Kv1.1, Kv1.3, Kv1.4 are not affected by the toxin. In this study the activity of κM-RIIIK on other mammalian Kv1 K+ channels expressed in Xenopus oocytes was investigated. We demonstrate that κM-conotoxin RIIIK up to 5 μM exhibits no significant effect on Kv1.5 and Kv1.6 mediated currents, but the human Kv1.2 K+ channel is blocked by this peptide. The binding of κM-RIIIK to Kv1.2 channels is state dependent with an IC50 for the closed state of about 200 nM and for the open state of about 400 nM at a test potential of 0 mV. κM-conotoxin RIIIK is the first conotoxin described to block human Kv1.2 potassium channels.  相似文献   

5.
A new family of weak K(+) channel toxins (designated kappa-KTx) with a novel "bi-helical" scaffold has recently been characterized from Heterometrus fulvipes (Scorpionidae) venom. Based on the presence of the minimum functional dyad (Y5 and K19), kappa-hefutoxin-1 (kappa-KTx1.1) was investigated and found to block Kv 1.2 (IC(50) approximately 40 microM) and Kv 1.3 (IC(50) approximately 150 microM) channels. In the present study, kappa-KTx1.3, that shares approximately 60% identity with kappa-hefutoxin 1, has been isolated from Heterometrus spinifer venom. Interestingly, despite the presence of the functional dyad (Y5 and K19), kappa-KTx1.3 failed to reproduce the K(+) channel blocking activity of kappa-hefutoxin-1. Since the dyad lysine in kappa-KTx1.3 was flanked by another lysine (K20), it was hypothesized that this additional positive charge could hinder the critical electrostatic interactions known to occur between the dyad lysine and the Kv 1 channel selectivity filter. Hence, mutants of kappa-KTx1.3, substituting K20 with a neutral (K20A) or a negatively (K20E) or another positively (K20R) charged amino acid were synthesized. kappa-KTx1.3 K20E, in congruence with kappa-hefutoxin 1 with respect to subtype selectivity and affinity, produced blockade of Kv 1.2 (IC(50) = 36.8+/-4.9 microM) and Kv 1.3 (IC(50)=53.7+/-6.7 microM) but not Kv 1.1 channels. kappa-KTx1.3 K20A produced blockade of both Kv 1.2 (IC(50) = 36.9+/-4.9 microM) and Kv 1.3 (IC(50)=115.7+/-7.3 microM) and in addition, acquired affinity for Kv 1.1 channels (IC(50) =1 10.7+/-7.7 microM). kappa-KTx1.3 K20R failed to produce any blockade on the channel subtypes tested. These data suggest that the presence of an additional charged residue in a position adjacent to the dyad lysine impedes the functional block of Kv 1 channels produced by kappa-KTx1.3.  相似文献   

6.
The effects of rosiglitazone and troglitazone were examined on cloned Kv1.3 channels stably expressed in Chinese hamster ovary cells using the whole-cell configuration of the patch-clamp technique. Rosiglitazone decreased the Kv1.3 currents and accelerated the decay rate of current inactivation in a concentration-dependent manner with an IC50 of 18.6 μM. These effects were reversible after washout of the drug. Troglitazone caused the block of Kv1.3 with a similar pattern but was five times more potent than rosiglitazone with an IC50 of 3.5 μM. The block of Kv1.3 by rosiglitazone and troglitazone was voltage-dependent at a membrane potential coinciding with the activation of the channels. Both drugs decreased the tail current amplitude and slowed the deactivation process of Kv1.3, resulting in a tail crossover phenomenon. These results indicate that rosiglitazone and troglitazone block the open state of Kv1.3 channels, suggesting that it is an important pharmacological target for rosiglitazone as a potent blocker of Kv1.3 channels.  相似文献   

7.
We have studied the interaction between the SK2 channel and different scorpion toxins in order to find similarity and differences to other K+ channels. Beside apamin, ScTX is a high affinity blocker of the SK2 channel, whereas CTX is unable to block current through SK2. In order to prove that the ScTX affinity can be explained by the character of the different residues in the outer pore of the SK channels we introduced point mutations that render SK2 K+ channel SK1 and SK3 like. Directed by the results of the toxin receptor on the ShakerK+ channel, we changed single amino acids of the SK2 K+ channel that should render it sensitive to other peptide toxins like CTX a blocker of the IK channel, or KTX a blocker of the voltage-dependent channel Kv1.1 and Kv1.3. Amino acids V342G, S344E, and G384D of SK2 were changed to amino acids known from ShakerK+ channel to improve Shaker K+ channel CTX sensitivity. Interestingly SK2 V342G became CTX sensitive with a Kd of 19 nM and was also KTX sensitive Kd=97 nM. SK2 S344E (KdCTX=105 nM,KdKTX=144 nM) and G348D (KdCTX=31 nM,Kd KTX=89 nM) became also CTX and KTX sensitive with a lower affinity. The mutant channels SK V342G, SK2 S344E and SK2 G348D showed reduced ScTX sensitivity (Kd=6 nM,Kd=48 nM, and Kd=12 nM). Because the exchange of a single residue could create a new high affinity binding site for CTX and KTX we concluded that the outer vestibule around position V342, S344, and G348 of the SK2 K+ channel pore is very similar to those of voltage-gated K+ channels such as the Shaker K+ channel, Kv1.1 and Kv1.3 channels and also to the prokaryotic KcsA channel. From mutant cycle analysis of KTX position H34 and SK2 position V342G, S344E, and G348D we could deduce that KTX binds in a similar way to SK2 channel mutant pore than to the Kv1.1 pore.  相似文献   

8.
In Brazil, Tityus serrulatus (Ts) is the species responsible for most of the scorpion related accidents. Among the Ts toxins, the neurotoxins with action on potassium channels (α-KTx) present high interest, due to their effect in the envenoming process and the ion channel specificity they display. The α-KTx toxins family is the most relevant because its toxins can be used as therapeutic tools for specific target cells. The improved isolation method provided toxins with high resolution, obtaining pure Ts6 and Ts7 in two chromatographic steps. The effects of Ts6 and Ts7 toxins were evaluated in 14 different types of potassium channels using the voltage-clamp technique with two-microelectrodes. Ts6 toxin shows high affinity for Kv1.2, Kv1.3 and Shaker IR, blocking these channels in low concentrations. Moreover, Ts6 blocks the Kv1.3 channel in picomolar concentrations with an IC50 of 0.55 nM and therefore could be of valuable assistance to further designing immunosuppressive therapeutics. Ts7 toxin blocks multiple subtypes channels, showing low selectivity among the channels analyzed. This work also stands out in its attempt to elucidate the residues important for interacting with each channel and, in the near future, to model a desired drug.  相似文献   

9.
Blocking or regulating K+ channels is important for investigating neuronal functions in mammalian brains, because voltage-dependent K+ channels (Kv channels) play roles to regulate membrane excitabilities for synaptic and somatic processings in neurons. Although a number of toxins and chemicals are useful to change gating properties of Kv channels, specific effects of each toxin on a particular Kv subunit have not been sufficiently demonstrated in neurons yet. In this study, we tested electrophysiologically if heteropodatoxin2 (HpTX2), known as one of Kv4-specific toxins, might be effective on various K+ outward currents in CA1 neurons of organotypic hippocampal slices of rats. Using a nucleated-patch technique and a pre-pulse protocol in voltage-clamp mode, total K+ outward currents recorded in the soma of CA1 neurons were separated into two components, transient and sustained currents. The extracellular application of HpTX2 weakly but significantly reduced transient currents. However, when HpTX2 was added to internal solution, the significant reduction of amplitudes were observed in sustained currents but not in transient currents. This indicates the non-specificity of HpTX2 effects on Kv4 family. Compared with the effect of cytosolic 4-AP to block transient currents, it is possible that cytosolic HpTX2 is pharmacologically specific to sustained currents in CA1 neurons. These results suggest that distinctive actions of HpTX2 inside and outside of neurons are very efficient to selectively reduce specific K+ outward currents.  相似文献   

10.
Thermally processed Buthus martensii Karsch scorpions are a traditional Chinese medical material for treating various diseases. However, their pharmacological foundation remains unclear. Here, a new degraded peptide of scorpion toxin was identified in Chinese scorpion medicinal material by proteomics. It was named BmK86-P1 and has six conserved cysteine residues. Homology modeling and circular dichroism spectra experiments revealed that BmK86-P1 not only contained representative disulfide bond-stabilized α-helical and β-sheet motifs but also showed remarkable stability at test temperatures from 20–95 °C. Electrophysiology experiments indicated that BmK86-P1 was a highly potent and selective inhibitor of the hKv1.2 channel with IC50 values of 28.5 ± 6.3 nM. Structural and functional dissection revealed that two residues of BmK86-P1 (i.e., Lys19 and Ile21) were the key residues that interacted with the hKv1.2 channel. In addition, channel chimeras and mutagenesis experiments revealed that three amino acids (i.e., Gln357, Val381 and Thr383) of the hKv1.2 channel were responsible for BmK86-P1 selectivity. This research uncovered a new bioactive peptide from traditional Chinese scorpion medicinal material that has desirable thermostability and Kv1.2 channel-specific activity, which strongly suggests that thermally processed scorpions are novel peptide resources for new drug discovery for the Kv1.2 channel-related ataxia and epilepsy diseases.  相似文献   

11.
Despite the great variability of the conus peptides characterized until now only relatively few have been identified that interact with K+ channels. κM-conotoxin RIIIK (κM-RIIIK) is a 24 amino acid peptide from Conus radiatus, which is structurally similar to μ-conotoxin GIIIA, a peptide known to block specifically skeletal muscle Na+ channels. Recently, it has been shown that κM-RIIIK does not interact with Na+ channels, but inhibits Shaker potassium channels expressed in Xenopus oocytes. It was demonstrated that κM-RIIIK binds to the pore region of Shaker channels and a teleost homologue of the Shaker channel TSha1 was identified as a high affinity target of the toxin. In contrast the mammalian Shaker-homologues Kv1.1, Kv1.3, Kv1.4 are not affected by the toxin. In this study the activity of κM-RIIIK on other mammalian Kv1 K+ channels expressed in Xenopus oocytes was investigated. We demonstrate that κM-conotoxin RIIIK up to 5 μM exhibits no significant effect on Kv1.5 and Kv1.6 mediated currents, but the human Kv1.2 K+ channel is blocked by this peptide. The binding of κM-RIIIK to Kv1.2 channels is state dependent with an IC50 for the closed state of about 200 nM and for the open state of about 400 nM at a test potential of 0 mV. κM-conotoxin RIIIK is the first conotoxin described to block human Kv1.2 potassium channels.  相似文献   

12.
Spider venoms are replete with peptidic ion channel modulators, often with novel subtype selectivity, making them a rich source of pharmacological tools and drug leads. In a search for subtype-selective blockers of voltage-gated calcium (CaV) channels, we isolated and characterized a novel 39-residue peptide, ω-TRTX-Cc1a (Cc1a), from the venom of the tarantula Citharischius crawshayi (now Pelinobius muticus). Cc1a is 67% identical to the spider toxin ω-TRTX-Hg1a, an inhibitor of CaV2.3 channels. We assembled Cc1a using a combination of Boc solid-phase peptide synthesis and native chemical ligation. Oxidative folding yielded two stable, slowly interconverting isomers. Cc1a preferentially inhibited Ba2+ currents (IBa) mediated by L-type (CaV1.2 and CaV1.3) CaV channels heterologously expressed in Xenopus oocytes, with half-maximal inhibitory concentration (IC50) values of 825 nM and 2.24 μM, respectively. In rat dorsal root ganglion neurons, Cc1a inhibited IBa mediated by high voltage-activated CaV channels but did not affect low voltage-activated T-type CaV channels. Cc1a exhibited weak activity at NaV1.5 and NaV1.7 voltage-gated sodium (NaV) channels stably expressed in mammalian HEK or CHO cells, respectively. Experiments with modified Cc1a peptides, truncated at the N-terminus (ΔG1–E5) or C-terminus (ΔW35–V39), demonstrated that the N- and C-termini are important for voltage-gated ion channel modulation. We conclude that Cc1a represents a novel pharmacological tool for probing the structure and function of L-type CaV channels.  相似文献   

13.
Kv1.3 plays a crucial role in the activation and proliferation of T-lymphocytes and macrophages. While Kv1.3 is responsible for the voltage-dependent potassium current in T-cells, in macrophages this K+ current is generated by the association of Kv1.3 and Kv1.5. Patients with autoimmune diseases show a high number of effector memory T cells that are characterized by a high expression of Kv1.3 and Kv1.3 antagonists ameliorate autoimmune disorders in vivo. Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) used in patients who suffer from painful autoimmune diseases such as rheumatoid arthritis. In this study, we show that diclofenac impairs immune response via a mechanism that involves Kv1.3. While diclofenac inhibited Kv1.3 expression in activated macrophages and T-lymphocytes, Kv1.5 remained unaffected. Diclofenac also decreased iNOS levels in Raw 264.7 cells, impairing their activation in response to lipopolysaccharide (LPS). LPS-induced macrophage migration and IL-2 production in stimulated Jurkat T-cells were also blocked by pharmacological doses of diclofenac. These effects were mimicked by Margatoxin, a specific Kv1.3 inhibitor, and Charybdotoxin, which blocks both Kv1.3 and Ca2+-activated K+ channels (KCa3.1). Because Kv1.3 is a very good target for autoimmune therapies, the effects of diclofenac on Kv1.3 are of high pharmacological relevance.  相似文献   

14.
A peptide was isolated from the venom of the scorpion Tityus trivittatus. It is an isoform of the toxin TsTX-IV earlier described [Toxicon 37 (1999) 651] and identical to butantoxin [Arch. Biochem. Biophys. 379 (2000) 18], both isolated from the Brazilian scorpion Tityus serrulatus. This newly characterized peptide contains 40 amino acid residues with a molecular mass of [M+H(+)] 4507.0, cross-linked by four disulfide bridges, made between the cysteine pairs: Cys2-Cys5, Cys10-Cys31, Cys16-Cys36 and Cys20-Cys38. It blocks in a completely reversible manner the Shaker B K(+)-channels, with a K(d) around 660nM. It belongs to the sub-family 12 and it is now being classified as alpha-KTx 12.2.  相似文献   

15.
  1. The antipsychotic drug haloperidol can induce a marked QT prolongation and polymorphic ventricular arrhythmias. In this study, we expressed several cloned cardiac K+ channels, including the human ether-a-go-go related gene (HERG) channels, in Xenopus oocytes and tested them for their haloperidol sensitivity.
  2. Haloperidol had only little effects on the delayed rectifier channels Kv1.1, Kv1.2, Kv1.5 and IsK, the A-type channel Kv1.4 and the inward rectifier channel Kir2.1 (inhibition <6% at 3 μM haloperidol).
  3. In contrast, haloperidol blocked HERG channels potently with an IC50 value of approximately 1 μM. Reduced haloperidol, the primary metabolite of haloperidol, produced a block with an IC50 value of 2.6 μM.
  4. Haloperidol block was use- and voltage-dependent, suggesting that it binds preferentially to either open or inactivated HERG channels. As haloperidol increased the degree and rate of HERG inactivation, binding to inactivated HERG channels is suggested.
  5. The channel mutant HERG S631A has been shown to exhibit greatly reduced C-type inactivation which occurs only at potentials greater than 0 mV. Haloperidol block of HERG S631A at 0 mV was four fold weaker than for HERG wild-type channels. Haloperidol affinity for HERG S631A was increased four fold at +40 mV compared to 0 mV.
  6. In summary, the data suggest that HERG channel blockade is involved in the arrhythmogenic side effects of haloperidol. The mechanism of haloperidol block involves binding to inactivated HERG channels.
  相似文献   

16.

Aim:

To examine whether selective serotonin reuptake inhibitor citalopram interacts with Kv1.5, one of the cardiovascular-specific Kv channel isoforms.

Methods:

The interaction between citalopram and Kv1.5 expressed in Chinese hamster ovary cells was studied using the whole-cell patch-clamp technique.

Results:

Citalopram reduced Kv1.5 whole-cell currents in a reversible concentration-dependent manner, with an IC50 value and a Hill coefficient of 2.8±1.1 μmol/L and 0.8±0.3, respectively. Citalopram-induced inhibition of Kv1.5 is associated with time-dependent development of block without modifying the kinetics of current activation. The inhibition increased steeply between −30 and 0 mV, which corresponded with the voltage range for channel opening. In the voltage range positive to 0 mV, inhibition displayed an additional voltage dependence, consistent with an electrical distance δ of 0.19. Citalopram slowed the deactivation time course, resulting in a tail crossover phenomenon when the tail currents, recorded in the presence and absence of citalopram, were superimposed. Inhibition of Kv1.5 by citalopram was use-dependent.

Conclusion:

The present results suggest that citalopram acts on Kv1.5 currents as an open-channel blocker, and much caution about arrhythmogenic risk is required when using citalopram in the treatment with depressed patients.  相似文献   

17.
In order to discover an agent that can prevent spasm of the human radial artery, the aim of our study was to evaluate the effect of the K+ channel opener, pinacidil, on contractions in the radial artery. Contractions of the radial artery were evoked by exogenously applied noradrenaline or by electrical field stimulation (EFS, 20 Hz, neurogenic). Pinacidil induced concentration-dependent inhibition of both EFS- and noradrenaline-evoked contractions of the radial artery. Glibenclamide, a selective blocker of ATP-sensitive K+ channels (Kir6.x containing subunit) antagonized in the same manner the pinacidil-induced inhibition of neurogenic contractions and contractions evoked by exogenous noradrenaline. The inhibition of pinacidil relaxation by tetraethylammonium (TEA), a blocker of Ca-sensitive K+ (KCa) channels, was more pronounced in EFS-contracted preparations. A blocker of voltage-sensitive K+ (KV) channels, 4-aminopyridine (4-AP), inhibited pinacidil relaxation only in EFS-contracted preparations. In order to test the presence of different K+ channels, immunohistochemistry of K+ channels expression in the radial artery was performed. The vascular wall of the human radial artery showed variable positivity with the following applied antibodies: Kv1.2, Kv1.3, Kir6.1, and KCa1.1. The antibodies against Kv1.6, Kv2.1, and Kir6.2 channel subunits were completely negative. These results suggest that the inhibitory effect of pinacidil on contractions of the human radial artery might be postsynaptic and associated with opening of smooth muscle Kir6.1-containing KATP channels. TEA- and 4-AP-sensitive K+ channels may also contribute to pinacidil effect in the human radial artery.  相似文献   

18.
At least five subtypes of voltage-gated (Kv1) channels occur in neurons as tetrameric combinations of different alpha subunits. Their involvement in controlling cell excitability and synaptic transmission make them potential targets for neurotherapeutics. As a prerequisite for this, we established herein how the characteristics of hetero-oligomeric K(+) channels can be influenced by alpha subunit composition. Since the three most prevalent Kv1 subunits in brain are Kv1.2, 1.1 and 1.6, new Kv1.6-1.2 and Kv1.1-1.2 concatenated constructs in pIRES-EGFP were stably expressed in HEK cells and the biophysical plus pharmacological properties of their K(+) currents determined relative to those for the requisite homo-tetramers. These heteromers yielded delayed-rectifier type K(+) currents whose activation, deactivation and inactivation parameters are fairly similar although substituting Kv1.1 with Kv1.6 led to a small negative shift in the conductance-voltage relationship, a direction unexpected from the characteristics of the parental homo-tetramers. Changes resulting from swapping Kv1.6 for Kv1.1 in the concatemers were clearly discerned with two pharmacological agents, as measured by inhibition of the K(+) currents and Rb(+) efflux. alphaDendrotoxin and 4-aminopyridine gave a similar blockade of both hetero-tetramers, as expected. Most important for pharmacological dissection of channel subtypes, dendrotoxin(k) and tetraethylammonium readily distinguished the susceptible Kv1.1-1.2 containing oligomers from the resistant Kv1.6-1.2 channels. Moreover, the discriminating ability of dendrotoxin(k) was further confirmed by its far greater ability to displace (125)I-labelled alphadendrotoxin binding to Kv1.1-1.2 than Kv1.6-1.2 channels. Thus, due to the profiles of these two channel subtypes being found to differ, it seems that only multimers corresponding to those present in the nervous system provide meaningful targets for drug development.  相似文献   

19.
Potassium (K+) channels have been implicated in depressive disorders and in the mechanism of action of antidepressants. Considering that several studies have indicated that folic acid plays an important role in the pathophysiology of depression, the present study investigated the involvement of potassium channels in the antidepressant-like effect of this vitamin. For this aim, the effect of the combined administration of different types of K+ channel blockers and folic acid in the forced swimming test (FST) was investigated. Treatment of mice by intracerebroventricular (i.c.v.) route with subactive doses of glibenclamide (an ATP-sensitive K+ channels blocker, 0.5 pg/site), charybdotoxin (a large- and intermediate-conductance calcium-activated K+ channel blocker, 25 pg/site) or apamin (a small-conductance calcium-activated K+ channel blocker, 10 pg/site), augmented the effect of folic acid (10 mg/kg, p.o., subeffective dose) in the FST. Additionally, the administration of folic acid and the K+ channel blockers, alone or in combination, did not affect locomotion in the open-field test. Moreover, the reduction in the immobility time in the FST elicited by folic acid administered at a higher dose (50 mg/kg, p.o.) was prevented by the pretreatment of mice with the K+ channel opener cromakalim (10 μg/site, i.c.v.), without affecting locomotor activity. The results of this study indicate that the antidepressant-like effect of folic acid in the FST may be at least partly due to its modulatory effects on neuronal excitability, via inhibition of K+ channels.  相似文献   

20.
BackgroundSince lymphocytes predominantly express delayed rectifier K+-channels (Kv1.3) that trigger lymphocyte activation, statins, which exert immunosuppressive effects, would affect the channel currents.MethodsEmploying the patch-clamp technique in murine thymocytes, we examined the effects of statins on Kv1.3-channel currents and the membrane capacitance (Cm).ResultsPravastatin significantly suppressed the pulse-end currents of the channels. Lovastatin and simvastatin also suppressed the peak currents, significantly decreasing the Cm.ConclusionsThis study demonstrated for the first time that statins inhibit thymocyte Kv1.3-channels. The slow inactivation patterns induced by lovastatin and simvastatin may be associated with their accumulation in the plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号