首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic factor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciatic nerve injury better than chemically extracted acellular nerve allografts alone, or chemically extracted acellular nerve allografts loaded with bone marrow mesenchymal stem cells. We hypothesized that these allografts compounded with both brain-derived neurotrophic factor- and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells may demonstrate even better effects in the repair of peripheral nerve injury. We cultured bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor and/or ciliary neurotrophic factor and used them to treat sciatic nerve injury in rats. We observed an increase in sciatic functional index, triceps wet weight recovery rate, myelin thickness, number of myelinated nerve fibers, amplitude of motor-evoked potentials and nerve conduction velocity, and a shortened latency of motor-evoked potentials when allografts loaded with both neurotrophic factors were used, compared with allografts loaded with just one factor. Thus, the combination of both brain-derived neurotrophic factor and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells can greatly improve nerve injury.  相似文献   

2.
In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchyrnal stem cells group. Results showed that at 8 weeks after bridging, sciatic functional index, triceps wet weight recovery rate, myelin thickness, and number of myelinated nerve fibers were significantly changed in the three groups. Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups. Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects. The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation.  相似文献   

3.
We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100(Schwann cell marker) and glial fibrillary acidic protein(glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.  相似文献   

4.
The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair peripheral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good histocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration(2–8 weeks), the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objective and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.  相似文献   

5.
Peripheral nerve injuries remain problematic to treat, with poor functional recovery commonly observed. Injuries resulting in a nerve gap create specific difficulties for axonal regeneration. Approaches to address these difficulties include autologous nerve grafts (which are currently the gold standard treatment) and synthetic conduits, with the latter option being able to be impregnated with Schwann cells or stem cells which provide an appropriate micro-environment for neuronal regeneration to occur. Transplanting stem cells, however, infers additional risk of malignant transformation as well as manufacturing difficulties and ethical concerns, and the use of autologous nerve grafts and Schwann cells requires the sacrifice of a functioning nerve. A new approach utilizing exosomes, secreted extracellular vesicles, could avoid these complications. In this review, we summarize the current literature on exosomes, and suggest how they could help to improve axonal regeneration following peripheral nerve injury.  相似文献   

6.
Glioblastoma cyst fluid contains growth factors and extracellular matrix proteins which are known as neurotrophic and neurite-promoting agents. Therefore, we hypothesized that glioblastoma cyst fluid can promote the regeneration of injured peripheral nerves. To validate this hypothesis, we transected rat sciatic nerve, performed epineural anastomosis, and wrapped the injured sciatic nerve with glioblastoma cyst fluid- or saline-soaked gelatin sponges. Neurological function and histomorphological examinations showed that compared with the rats receiving local saline treatment, those receiving local glioblastoma cyst fluid treatment had better sciatic nerve function, fewer scars, greater axon area, counts and diameter as well as fiber diameter. These findings suggest that glioblastoma cyst fluid can promote the regeneration of injured sciatic nerve and has the potential for future clinical application in patients with peripheral nerve injury.  相似文献   

7.
Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.  相似文献   

8.
In this study,we chemically extracted acellular nerve allografts from bilateral sciatic nerves,and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells.Experiments were performed in three groups: the acellular nerve allograft bridging group,acellular nerve allograft + bone marrow mesenchymal stem cells group,and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group.Results showed that at 8 weeks after bridging,sciatic functional index,triceps wet weight recovery rate,myelin thickness,and number of myelinated nerve fibers were significantly changed in the three groups.Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups.Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects.The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation.  相似文献   

9.
In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the magnitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain; however, the accuracy of this simple method is limited. Therefore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anastomosis after autologous nerve grafting.  相似文献   

10.
Preliminary animal experiments have confirmed that sensory nerve fibers promote osteoblast differentiation, but motor nerve fibers have no promotion effect. Whether sensory neurons promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells remains unclear. No results at the cellular level have been reported. In this study, dorsal root ganglion neurons(sensory neurons) from Sprague-Dawley fetal rats were co-cultured with bone marrow mesenchymal stem cells transfected with green fluorescent protein 3 weeks after osteogenic differentiation in vitro, while osteoblasts derived from bone marrow mesenchymal stem cells served as the control group. The rat dorsal root ganglion neurons promoted the proliferation of bone marrow mesenchymal stem cell-derived osteoblasts at 3 and 5 days of co-culture, as observed by fluorescence microscopy. The levels of m RNAs for osteogenic differentiation-related factors(including alkaline phosphatase, osteocalcin, osteopontin and bone morphogenetic protein 2) in the co-culture group were higher than those in the control group, as detected by real-time quantitative PCR. Our findings indicate that dorsal root ganglion neurons promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, which provides a theoretical basis for in vitro experiments aimed at constructing tissue-engineered bone.  相似文献   

11.
Human umbilical cord-derived mesenchymal stem cells(h UCMSCs) represent a promising young-state stem cell source for cell-based therapy. h UCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of h UCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that h UCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with h UCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of h UCMSCs in peripheral nerve repair.  相似文献   

12.
Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-rich plasma and Schwann cell-like cells were mixed in suspension at a density of 1 × 10 6 cells/mL, prior to introduction into a poly (lactic-co-glycolic acid) conduit. Fabricated tissue-engineered nerves were implanted into rabbits to bridge 10 mm sciatic nerve defects (platelet-rich plasma group). Controls were established using fibrin as the seeding matrix for Schwann cell-like cells at identical density to construct tissue-engineered nerves (fibrin group). Twelve weeks after implantation, toluidine blue staining and scanning electron microscopy were used to demonstrate an increase in the number of regenerating nerve fibers and thickness of the myelin sheath in the platelet-rich plasma group compared with the fibrin group. Fluoro-gold retrograde labeling revealed that the number of Fluo-ro-gold-positive neurons in the dorsal root ganglion and the spinal cord anterior horn was greater in the platelet-rich plasma group than in the fibrin group. Electrophysiological examination confirmed that compound muscle action potential and nerve conduction velocity were superior in the plate-let-rich plasma group compared with the fibrin group. These results indicate that autologous plate-let-rich plasma gel can effectively serve as a seeding matrix for Schwann cell-like cells to construct tissue-engineered nerves to promote peripheral nerve regeneration.  相似文献   

13.
背景:作者已经成功制备了无细胞神经移植物,并且复合骨髓间充质干细胞构建组织工程人工神经桥接大鼠坐骨神经缺损。 目的:无细胞神经移植物复合骨髓间充质干细胞构建组织工程人工神经修复大鼠坐骨神经缺损后运动功能的恢复。 方法:成年雄性SD大鼠构建大鼠坐骨神经15 mm缺损模型,分别应用组织工程人工神经、组织工程神经支架或自行神经桥接坐骨神经缺损。桥接后20周再生神经电生理学测定,手术侧胫骨前肌湿质量、腓肠肌组织学及透视电镜分析。 结果与结论:桥接20周后,组织工程人工神经与自体神经移植组胫骨前肌湿质量比较,差异无显著性意义(P > 0.05),神经干传导速度为(30.56±2.15)m/s。结果提示,无细胞神经移植物复合骨髓间充质干细胞构建的组织工程人工神经桥接大鼠坐骨神经缺损后,可以促进再生神经运动功能的恢复。  相似文献   

14.
An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7–8. Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan(BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.  相似文献   

15.
The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.  相似文献   

16.
In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-specific enolase were visible in Brd U-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold has a neuroprotective effect following ischemic stroke.  相似文献   

17.
Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the therapeutic effects of local administration of icariin, a major component of Epimedium extract, on peripheral nerve regeneration. A poly(lactic-co-glycolic acid) biological conduit sleeve was used to bridge a 5 mm right sciatic nerve defect in rats, and physiological saline, nerve growth factor, icariin suspension, or nerve growth factor-releasing microsphere suspension was injected into the defect. Twelve weeks later, sciatic nerve conduction velocity and the number of myelinated fibers were notably greater in the rats treated with icariin suspension or nerve growth factor-releasing microspheres than those that had received nerve growth factor or physiological saline. The effects of icariin suspension were similar to those of nerve growth factor-releasing microspheres. These data suggest that icariin acts as a nerve growth factor-releasing agent, and indicate that local application of icariin after spinal injury can promote peripheral nerve regeneration.  相似文献   

18.
Micro RNA-9(mi R-9) has been shown to promote the differentiation of bone marrow mesenchymal stem cells into neuronal cells, but the precise mechanism is unclear. Our previous study confirmed that increased autophagic activity improved the efficiency of neuronal differentiation in bone marrow mesenchymal stem cells. Accumulating evidence reveals that mi RNAs adjust the autophagic pathways. This study used mi R-9-1 lentiviral vector and mi R-9-1 inhibitor to modulate the expression level of mi R-9. Autophagic activity and neuronal differentiation were measured by the number of light chain-3(LC3)-positive dots, the ratio of LC3-II/LC3, and the expression levels of the neuronal markers enolase and microtubule-associated protein 2. Results showed that LC3-positive dots, the ratio of LC3-II/LC3, and expression of neuron specific enolase and microtubule-associated protein 2 increased in the mi R-9+ group. The above results suggest that autophagic activity increased and bone marrow mesenchymal stem cells were prone to differentiate into neuronal cells when mi R-9 was overexpressed, demonstrating that mi R-9 can promote neuronal differentiation by increasing autophagic activity.  相似文献   

19.
The use of a nerve conduit provides an opportunity to regulate cytokines, growth factors and neurotrophins in peripheral nerve regeneration and avoid autograft defects. We constructed a poly-D-L-lactide(PDLLA)-based nerve conduit that was modified using poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} and β-tricalcium phosphate. The effectiveness of this bioactive PDLLA-based nerve conduit was compared to that of PDLLA-only conduit in the nerve regeneration following a 10-mm sciatic nerve injury in rats. We observed the nerve morphology in the early period of regeneration, 35 days post injury, using hematoxylin-eosin and methylene blue staining. Compared with the PDLLA conduit, the nerve fibers in the PDLLA-based bioactive nerve conduit were thicker and more regular in size. Muscle fibers in the soleus muscle had greater diameters in the PDLLA bioactive group than in the PDLLA only group. The PDLLA-based bioactive nerve conduit is a promising strategy for repair after sciatic nerve injury.  相似文献   

20.
Electrical stimulation has been shown to accelerate and enhance nerve regeneration in sensory and motor neurons after injury, but there is little evidence that focuses on the varying degrees of fibrosis in the delayed repair of peripheral nerve tissue. In this study, a rat model of sciatic nerve transection injury was repaired with a biodegradable conduit at 1 day, 1 week, 1 month and 2 months after injury, when the rats were divided into two subgroups. In the experimental group, rats were treated with electrical stimuli of frequency of 20 Hz, pulse width 100 ms and direct current voltage of 3 V; while rats in the control group received no electrical stimulation after the conduit operation. Histological results showed that stained collagen fibers comprised less than 20% of the total operated area in the two groups after delayed repair at both 1 day and 1 week but after longer delays, the collagen fiber area increased with the time after injury. Immunohistochemical staining revealed that the expression level of transforming growth factor β(an indicator of tissue fibrosis) decreased at both 1 day and 1 week after delayed repair but increased at both 1 and 2 months after delayed repair. These findings indicate that if the biodegradable conduit repair combined with electrical stimulation is delayed, it results in a poor outcome following sciatic nerve injury. One month after injury, tissue degeneration and distal fibrosis are apparent and are probably the main reason why electrical stimulation fails to promote nerve regeneration after delayed repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号