首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The flavonol quercetin shows a wide range of effects in biological systems. We investigated whether quercetin exerts its proposed antioxidant properties via the antioxidant enzyme system. Quercetin in a concentration range from 5 to 100 microM decreased manganese superoxide dismutase, glutathione peroxidase, and copper zinc superoxide dismutase mRNA expression levels each by 30-40% in rat hepatoma H4IIE cells. Catalase mRNA expression levels increased about 30% but only with the cytotoxic concentration of 100 microM. Despite the down-regulation of antioxidant enzyme mRNA expression quercetin treatment of cells induced only a mild oxidative stress. Pretreatment of H4IIE cells with quercetin even protected against an oxidative stress resulting from hydrogen peroxide exposure. In conclusion, the antioxidant capacity of quercetin was shown not to be due to the antioxidant enzyme system.  相似文献   

3.
Lumefantrine is used to treat uncomplicated malaria caused by pure or mixed Plasmodium falciparum infections and as a prophylactic against recrudescence following artemether therapy. However, the pharmaceutical is released into the aquatic environment from industrial effluents, hospital discharges, and human excretion. This study assessed the effects of lumefantrine on the growth and physiological responses of the microalgae Chlorella vulgaris and Raphidocelis subcapitata (formerly known as Selenastrum capricornutum and Pseudokirchneriella subcapitata) and the aquatic macrophyte Lemna minor. The microalgae and macrophyte were exposed to 200−10000 μg l−1 and 16−10000 μg l−1 lumefantrine, respectively. Lumefantrine had a variable effect on the growth of the aquatic plants investigated. There was a decline in the growth of R. subcapitata and L. minor post-exposure to the drug. Contrarily, there was stimulation in the growth of Chlorella vulgaris. All experimental plants had a significant increase in lipid peroxidation, which was accompanied by an increase in malondialdehyde content. Peroxidase activity of L. minor increased only at low lumefantrine concentrations, while the opposite occurred at higher levels of the drug. Incubation in lumefantrine contaminated medium significantly up-regulated the activity of R. subcapitata cultures. Glutathione S-transferase of L. minor exposed to lumefantrine treatments had substantially higher activities than the controls. Our findings suggest lumefantrine could have adverse but variable effects on the growth and physiology of the studied aquatic plants.  相似文献   

4.
Oxidative stress has been linked to the development of many diseases and hastens the progression of cardiovascular diseases. Since lovastatin is used worldwide as a cholesterol lowering drug, the present study was undertaken to evaluate the antioxidant property of lovastatin against H2O2 induced oxidative stress in rats. Four study groups of rats of four animals each were treated with DMSO (control), H2O2 (OS), lovastatin (L) and H2O2 + lovastatin (OSL). On the 15th day the animals were sacrificed, and the liver and heart tissues were analyzed for oxidative stress biomarkers and anti-oxidant enzymes. Results of the OSL-group showed a reduction in thiobarbituric acid reactive substances in liver (42.7%) and heart tissue (8%) compared with the control group. An increase was observed in the activity of the antioxidant enzymes, catalase (34.6% in liver and 33.3% in heart) and glutathione peroxidase (50.5% in liver and 34.7% in heart). A commensurate increase in the activity of G6PDH was observed indicating an enhanced requirement of NADPH. The ratio GSH:GSSG in liver (1.05) and heart (0.84) was satisfactorily regulated compared to the control group (1.01 in liver and 0.93 in heart). These results suggest that lovastatin possesses antioxidant activity and reduces oxidative stress.  相似文献   

5.
The present study was aimed to investigate the effect of the veterinary food additive copper sulphate (CuSO4) on the eco-toxicological responses of earthworms Eisenia fetida (E. fetida). The following biomarkers were measured: catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) activities. Gene expression analyses such as metallothionein (MT) and heat shock protein 70 (Hsp70) were also examined. A time-dependent increase of CAT activity was found at 400 mg/kg and SOD activity at 200 and 400 mg/kg. The highest expression of Hsp70 (4.4-fold) was observed at day 15 at 400 mg/kg. Our results indicated that the measured antioxidant enzymes (except GST) had the ability to provide antioxidant defenses against the stressor; and compared to expression of MT, expression of Hsp70 could be more reliable molecular tools with predictive possibilities to monitor the eco-toxicity of stressors such as feed additive CuSO4.  相似文献   

6.
Jayaraj R  Anand T  Rao PV 《Toxicology》2006,220(2-3):136-146
Microcystins are cyclic heptapeptide toxins produced by certain strains of Microcystis aeruginosa and microcystin-LR (MC-LR) is the most toxic among the 70 variants isolated so far. These toxins have been implicated in both human and livestock mortality. In the present study we investigated the microcystin-LR induced oxidative stress in mice in terms of its effect on activity and gene expression profile of certain antioxidant enzymes and expression of heat shock protein-70 (HSP-70). Mice were treated with 0.5 LD50 (38.31 μg/kg) and 1 LD50 (76.62 μg/kg) and the biochemical variables were determined at 1, 3, 7 days and 15, 30, 60 and 120 min post-exposure for 0.5 and 1 LD50 dose, respectively. A significant time-dependent increase in HSP-70 expression over control was observed at 1 LD50 dose. The toxin induced significant increase in liver body weight index, hepatic lipid perxoidation and depletion of GSH levels at 1 LD50 compared to control group. There was significant decrease in the activity of antioxidant enzymes glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione-S-transferase (GST) at 1 LD50. Except catalase, there was no effect on other antioxidant enzymes at 0.5 LD50 dose. In contrast to activity of antioxidant enzymes the gene expression profile did not show any significant difference compared to control at 1 LD50. GR showed significant decrease in expression at 1, 3 and 7 days in animals dosed with 0.5 LD50 MC-LR. The results of our in vivo study clearly show the oxidative stress induced by MC-LR, and a correlation with activity and regulation at gene expression level of antioxidant enzymes.  相似文献   

7.
Aflatoxins (AFs) are the most detrimental mycotoxin, potentially hazardous to animals and humans. AFs in food threaten the health of consumers and cause liver cancer. Therefore, a safe, efficient, and friendly approach is attributed to the control of aflatoxicosis. Therefore, this study aimed to evaluate the impacts of Chlorella vulgaris (CLV) on hepatic aflatoxicosis, aflatoxin residues, and meat quality in quails. Quails were allocated into a control group; the CLV group received CLV (1 g/kg diet); the AF group received an AF-contaminated diet (50 ppb); and the AF+CLV group received both treatments. The results revealed that AF decreased the growth performance and caused a hepatic injury, exhibited as an increase in liver enzymes and disrupted lipid metabolism. In addition, AF induced oxidative stress, exhibited by a dramatic increase in the malondialdehyde (MDA) level and decreases in glutathione (GSH) level, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Significant up-regulation in the inflammatory cytokine (TNF-α, IL-1β, and IL-6) mRNA expression was also documented. Moreover, aflatoxin residues were detected in the liver and meat with an elevation of fat% alongside a decrease in meat protein%. On the other hand, CLV supplementation ameliorated AF-induced oxidative stress and inflammatory condition in addition to improving the nutritional value of meat and significantly reducing AF residues. CLV mitigated AF-induced hepatic damage, decreased growth performance, and lowered meat quality via its antioxidant and nutritional constituents.  相似文献   

8.
Technical imidacloprid was evaluated for its effect on ovarian morphology, hormones and antioxidant enzymes in female rats after 90 days oral exposure. Luteinizing hormone (LH), follicle stimulating hormone (FSH) and progesterone levels were estimated in serum of rats and activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and level of reduced glutathione (GSH) and lipid peroxidation (LPO) were estimated in ovary after oral administration of imidacloprid (5, 10, and 20 mg/kg/day) for 90 days. Decreased ovarian weight together with significant patho-morphological changes in follicles, antral follicles and atretic follicles were observed at 20 mg/kg/day. Imidacloprid at 5 and 10 mg/kg/day has not produced any significant changes in ovarian morphology, hormones and antioxidant status of ovary. However 20 mg/kg/day dose has produced significant alterations in the levels of LH, FSH and progesterone. Similarly significant changes in SOD, CAT, GPx, GSH, and LPO were observed at 20 mg/kg/day dose level. Therefore, it is concluded that imidacloprid at 20 mg/kg/day dose level has produced significant toxicological impact on ovary of female rats as evident by pathomorphological changes, hormonal imbalance and generating oxidative stress and can be considered primarily as Lowest Observed Effect Level (LOEL) for chronic study.  相似文献   

9.
首发精神分裂症患者脂质过氧化物及抗氧化酶水平的研究   总被引:1,自引:0,他引:1  
目的:探讨氧化应激在精神分裂症发病中的作用。方法:对首发且未服药的精神分裂症患者40例,行简明精神病评定量表(BPRS)评定,并测定氧化应激相关指标。药物治疗12周后,再次进行上述检测。取40例健康志愿者外周血,检测相同生化指标。结果:患者组丙二醛(MDA)和过氧化氢酶(CAT)较对照组显著升高(P〈0.01),而超氧化物歧化酶(SOD)及谷胱甘肽过氧化物酶(GSH-Px)显著降低(P〈0.01)。治疗后MDA和CAT较治疗前显著降低(P〈0.01),而SOD及GSH-Px显著升高(P〈0.01)。结论:精神分裂症患者处于氧化应激状态,自由基增加,抗氧化能力降低,这些可能与精神分裂症的病理机制有关。  相似文献   

10.
In the present study, the status of antioxidant response and molecular regulation in Chinese mitten crab, Eriocheir sinensis under the exposure of synthetic pyrethroid deltamethrin were investigated by means of measuring the antioxidative enzyme activity and relative mRNA expression of heat shock proteins (HSPs) in hepatopancreas. The results showed that activity of superoxide dismutase (SOD) and catalase (CAT) decreased remarkably in all treatments except the SOD activity at concentration of 0.073 μg/L. The oxidative stress products malondialdehyde (MDA) and hydrogen peroxide (H2O2) increased significantly at high concentrations while no significant difference was observed at concentrations of 0.073 and 0.146 μg/L throughout the experiment. Meanwhile, the relative mRNA expression of HSP 60, HSP 70 and HSP 90 was significantly up-regulated in all treatments at each time point. All resutls above indicated that deltamethrin has prominent toxic effect on E. sinensis based on antioxidative enzyme inhibition and oxidative products accumulation at environmental related concentrations, and a protective response by up-regulation of HSPs was carried out by animals to mitigate the oxidative stress. In addition, SOD, CAT, MDA, H2O2 and the expression of heat shock proteins, especially HSP 70 in hepatopancreas could be sensitive biomarkers in the assessment of toxic effect of deltamethrin on E.sinensis.  相似文献   

11.
《Inhalation toxicology》2013,25(13):659-672
Abstract

Sulfur mustard (SM) is a potent alkylating agent that targets several organs, especially lung tissue. Although pathological effects of SM have been widely considered, molecular and cellular mechanisms for these pathologies are not well understood, yet. General cellular and molecular events such as inflammation, DNA damage, cell membrane disintegrity, apoptosis and cell death were observed either in in vitro or in vivo models exposed to SM. However, it is not obvious that which specific molecules and signaling pathways are relevant to the pathogenesis of mustard lung. Oxidative stress (OS) and antioxidants depletion induced by SM seem to be one of these factors. SM can trigger several molecular and cellular pathways linked to oxidative stress and inflammation that can cause cell necrosis and apoptosis as well as loss of tissue structure and function. Identification of these signaling pathways and molecules gives us valuable information regarding the toxic mechanisms of SM on injured tissues and the way for developing a better clinical approach. In this review we aimed to discuss the proposed cellular and molecular mechanisms of SM on pulmonary damage, the importance of oxidative stress and the mechanisms by which SM induces OS and antioxidants depletion along with research on antioxidant therapy as a suitable antidote.  相似文献   

12.
The aim of the study was to investigate the influence of subacute exposure to lead on the glutathione-related antioxidant defense and oxidative stress parameters in 36 males occupationally exposed to lead for 40 ± 3.2 days.Blood lead level in the examined population increased significantly by 359% due to lead exposure. Simultaneously, erythrocyte glutathione level decreased by 16%, whereas the activity of glutathione-6-phosphate dehydrogenase in erythrocytes and leukocytes decreased by 28% and 10%, respectively. Similarly, the activity of glutathione-S-transferase in erythrocytes decreased by 45%. However, the activity of glutathione reductase in erythrocytes and leukocytes increased by 26% and 6%, respectively, whereas the total oxidant status value in leukocytes increased by 37%.Subacute exposure to lead results in glutathione pool depletion and accumulation of lipid peroxidation products; however, it does not cause DNA damage. Besides, subacute exposure to lead modifies the activity of glutathione-related enzymes.  相似文献   

13.
The present study describes the antioxidant activities of ethanol extract from Gymnema montanum (GLEt) which is an endemic plant of India. Antioxidant activity of the GLEt was studied in vitro based on scavenging of hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, reducing power and inhibition of lipid peroxidation estimated in terms of thiobarbituric acid reactive substances (TBARS). Further, we examined its protective effect against alloxan-induced oxidative stress in pancreatic β-cells, HIT-T15 by measuring the free radical generation, malonaldehyde formation and antioxidant levels such as CAT, GPx and GSH. Results showed that G. montanum leaves exhibited significant antioxidant activities measured by various in vitro model systems. The HIT-T15 cell line studies showed the tendency of GLEt to increase antioxidant levels meanwhile decrease the free radical formation and inhibit the lipid peroxidation. The antioxidant activity was found to be well correlated with the phenolic phytochemicals present in the extract. GC–MS analyses revealed the presence of few phenolic compounds in the extract. As this plant has already been demonstrated for a variety of medicinal properties from our laboratory, results of this study suggest that G. montanum is an interesting source for antioxidant compounds and useful for various therapeutic applications.  相似文献   

14.
The effect of dehydrotarplatin (DTP), a new antineoplastic drug analogous to cisplatin, and its metabolite (Triacid) on the hepatic, renal and testicular CYP and antioxidant enzymes of male rats was investigated. The rats were treated i.p. with a single dose of DTP (25 mg kg−1 day−1) or Triacid (17.5 mg kg−1 day−1) and analysed 3 or 7 days post treatment. Three days after treatment, both drugs reduced body and liver weights, which partially recovered the control level after 7 days. DTP and, to a less extent, Triacid caused a depletion of plasmatic testosterone content and a down regulation in the liver of androgen dependent male specific CYP 2C11, but not of CYP 1A and 2E1, as determined by a significant decrease of 2α- and 16α-testosterone hydroxylase activities (markers for CYP 2C11) and of apoprotein immunoreactive with anti-rat CYP 2C11 antibodies. However, the activity of testicular 17α-progesterone hydroxylase, a key reaction in steroidogenesis, was not altered by these drugs. The DTP and Triacid administration did not cause any alteration of the plasmatic urea nitrogen and creatinine, known as markers of kidney toxicity. However, treatment with DTP, not Triacid, either 3 and 7 days post treatment, caused in the kidney microsomes a significant increase of the total CYP content, the CYP 4A-dependent (ω)- and (ω − 1)-lauric acid hydroxylase activities and apoprotein immunoreactive with anti-rat CYP 4A1. The present study also examined the enzymatic antioxidant status of kidney and liver. Neither DTP nor Triacid administration induced, with respect to control values, any alteration of hepatic and renal glutathione reductase, glutathione S-transferase, catalase, superoxide dismutase activities, hepatic GSH level and renal microsomal lipid peroxidation level. Among the antioxidant enzymes assayed, only the renal activity of glutathione peroxidase was significantly increased after DTP but not Triacid treatment. These results indicate that DTP at a dose of 25 mg/kg and Triacid cause a feminization of the CYP enzymes in male rat liver similar to that reported for cisplatin when administered at a low dose (5 mg/kg). However, unlike cisplatin, DTP and its metabolite were unable to enhance BUN and creatinine and cause any depression of CYP activities and antioxidant enzymes in the kidney, suggesting that DTP may have low or even no potential in inducing nephrotoxicity.  相似文献   

15.
We explored the association between the activities of antioxidant enzymes and their metallic cofactors in rats treated with cisplatin. The antioxidant effects of aminoguanidine, and a combination of vitamins E and C were investigated. Plasma platin was significantly lower than liver and kidney. Cisplatin treatment caused significant increase in plasma Se-glutathione peroxidase activity. Activities of Se-glutathione peroxidase, glutathione S-transferase, catalase and Cu,Zn-superoxide dismutase have been found to be significantly decreased in liver and kidney compared to controls. Zn levels in these organs were diminished upon cisplatin treatment, while levels of Cu were unaffected. Interestingly, levels of iron, the cofactor of catalase, were found to be significantly increased in liver and kidney. Intervention with aminoguanidine or vitamins was generally prevented cisplatin-caused changes in the activity of enzymes and in the tissue levels of cofactor metals. These observations suggest that relation between activities of enzymes and levels of cofactor metals is multifactorial.  相似文献   

16.
17.
There is increasing evidence that oxidative stress is implicated in pathogenesis of various diseases, including alcoholic liver injury. In the present study, we investigated the comparative protective effects of leaf, bark, root and root bark extracts of Soymida febrifuga (Roxb.) A. Juss. (Meliaceae) against ethanol induced oxidative damage in HepG2 cells. Comparatively, methanolic and aqueous extracts of bark and leaf significantly attenuated the cytotoxicity of the ethanol, as determined by cytotoxicity, lipid peroxidation, lactate dehydrogenase, alanine aminotransferases and asparatate aminotransferases, than the root and root bark extracts. Ethanol induces liver toxicity through free radical generation so initially in vitro antioxidant activity of the extracts was evaluated. Methanolic and aqueous extracts of bark and leaf have shown higher total phenolic content, reducing power, metal chelating, superoxide, hydroxyl radical, hydrogen peroxide and nitric oxide (murine macrophage cells) scavenging activity than the root and root bark extracts.  相似文献   

18.
Oxidative mechanisms are thought to have a major role in cataract formation and diabetic complications. Antioxidant enzymes play an essential role in the antioxidant system of the cells that work to maintain low steady-state concentrations of the reactive oxygen species. When HLE-B3 cells, a human lens cell line were exposed to 50-100 mM glucose for 3 days, decrease of viability, inactivation of antioxidant enzymes, and modulation of cellular redox status were observed. Significant increase of cellular oxidative damage reflected by lipid peroxidation and DNA damage were also found. The glycation-mediated inactivation of antioxidant enzymes may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition and may contribute to various pathologies associated with the long term complications of diabetes.  相似文献   

19.
Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants and/or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidant stress plays a major role in several aspects of acute and chronic inflammation and is the subject of this review. Immunohistochemical and biochemical evidence demonstrate the significant role of reactive oxygen species (ROS) in acute and chronic inflammation. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATP-ase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of ROS. All these toxicities are likely to play a role in the pathophysiology of shock, inflammation and ischemia and reperfusion. (2) Treatment with either peroxynitrite decomposition catalysts, which selectively inhibit peroxynitrite, or with SODm's, which selectively mimic the catalytic activity of the human superoxide dismutase (SOD) enzymes, have been shown to prevent in vivo the delayed tissue injury and the cellular energetic failure associated with inflammation. ROS (e.g., superoxide, peroxynitrite, hydroxyl radical and hydrogen peroxide) are all potential reactants capable of initiating DNA single strand breakage, with subsequent activation of the nuclear enzyme poly (ADP ribose) synthetase (PARS), leading to eventual severe energy depletion of the cells, and necrotic-type cell death. Antioxidant treatment inhibits the activation of PARS, and prevents the organ injury associated with acute and chronic inflammation.  相似文献   

20.
It is important to acknowledge the harmful effects of environmental chemicals in human’s lives. The toxic effects of Diethylstilbestrol (DES), one of the endocrine-disrupting chemicals (EDCs), have been documented in many studies. As expected, DES affect male gendal hormone as well as female’s; therefore, epigenetic study should be considered. In this study, microarray technology was used to study harmful effects on the level of genomics, and here, two types of microarray chips- the Agilent mouse genome 4 × 44 K array for gene expression profiling and the Agilent mouse miRNA v13 for miRNA expression profiling-was used to study the relation between gene and miRNA expression profiles. As a result, we identified 4 miRNAs (miR 203, 350, 421, and 466i) that were similarly expressed at 3 hrs and 24 hrs of DES treat times. Twenty one genes matched between predicted target for 4 miRNAs and 118 genes expressed similarly. These genes have functions related to cell differentiation and cell cycle. Therefore, DES affects cellular function and induces toxicity in TM4 cells. In future studies, it is necessary to find more related functions and mechanisms of DES in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号