首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochromes P450 (CYP450) plays an extremely vital role in oxidation, reduction, and peroxidation of numerous endogenous and exogenous compounds, like drugs and procarcinogens. Mainly, expression occurs in the liver, in varying polymorphic forms. Therefore, proposed as biomarkers of susceptibility to carcinogenicity and toxicity. The objective of this study was to find the allelic frequencies of CYP3A5*2,*3,*4,*5,*6,*7, CYP3A4*1B, CYP3A7*1C and CYP1A2*1C, *1D, *1E, *1F enzymes in Jordanians, and to compare them with other ethnic groups. We used polymerase chain reaction-restriction fragment length (PCR-RFLP) to genotype alleles, and we calculated frequencies using Hardy Weinberg's equation (HWE). Allelic frequencies results were: CYP3A5*2 (0.2%), CYP3A5*3 (86.6%), CYP3A5*6 (1.7%), CYP*3A5*4,*5*7 not detected, CYP3A4*1B (11.7%), CYP3A7*1C (1.7%). Finally 6.5%, 18.2%, 6.0%, 67.3% were the results of CYP1A2*1C, 1D, 1E and 1F, respectively. In conclusion, genotyping method and results of this study can be adopted or used in pharmacotherapy, toxicity and carcinogenic studies in Jordan.  相似文献   

2.
Genetic polymorphisms of enzymes involved in the metabolism of carcinogens are suggested to modify an individual's susceptibility to lung cancer. The purpose of this study was to investigate the relationship between lung cancer cases in Japan and variant alleles of cytochrome P450 (CYP) 2A6 (CYP2A6*4), CYP2A13 (CYP2A13*1-*10), CYP4B1 (CYP4B1*1-*7), sulfotransferase 1A1 (SULT1A1*2), glutathione S-transferase M1 (GSTM1 null), and glutathione S-transferase T1 (GSTT1 null). We investigated the distribution of these polymorphisms in 192 lung cancer patients and in 203 age- and sex-matched cancer-free controls. The polymorphisms were analyzed using various techniques including allele-specific PCR, hybridization probe assay, multiplex PCR, denaturing high-performance liquid chromatography (DHPLC), and direct sequencing. We also investigated allele and genotype frequencies and their association with lung cancer risk, demographic factors, and smoking status. The prevalence of the CYP2A6*4/*4 genotype in lung cancer cases was 3.6%, compared with 9.4% in the controls (adjusted OR = 0.36, 95% CI = 0.15-0.88, P = 0.025). In contrast, there was no association between the known CYP2A13, CYP4B1, SULT1A1, GSTM1, and GSTT1 polymorphisms and lung cancer. These data indicate that CYP2A6 deletions may be associated with lung cancer in the Japanese population studied.  相似文献   

3.
Genetic variability in cytochrome P-450 (CYP) has the potential to modify pharmacological and toxicological responses to many chemicals. Both CYP2B6 and CYP2C19 are pharmacologically and toxicologically relevant due to their ability to metabolize multiple drugs and environmental contaminants, including the organophosphorus (OP) pesticide chlorpyrifos. The aim of this study was to determine the prevalence of CYP2B6 and CYP2C19 variants in an indigenous Egyptian population (n = 120) that was shown to be occupationally exposed to chlorpyrifos. Further, the genotyping data was compared for Egyptians with previously studied populations to determine between population differences. Allelic frequencies were CYP2B6 1459C > T (3.8%), CYP2B6 785A > G (30.4%), CYP2B6 516G > T (28.8%), CYP2C19 681G > A (3.8%), and CYP2C19 431G > A (0%). The most prevalent CYP2B6 genotype combinations were CYP2B6 *1/*1 (44%), *1/*6 (38%), *6/*6 (8%), and *1/*5 (6%). The frequency of the CYP2C19 genotype combinations were CYP2C19 *1/*1 (93%), *1/*2 (6%), and *2/*2 (1%). The frequency of the CYP2B6 516G > T and CYP2B6 785A > G polymorphisms in this Egyptian cohort is similar to that found North American and European populations but significantly different from that reported for West African populations, while that of CYP2B6 1459C > T is similar to that found in Africans and African Americans. The observed frequency of CYP2C19 681G > A in Egyptians is similar to that of African pygmies but significantly different from other world populations, while CYP2C19 431 G > A was significantly different from that of African pygmies but similar to other world populations.  相似文献   

4.
Cytochrome P450 (CYP) 1A1 and CYP3A4 are important phase I xenobiotic metabolizing enzymes involved in the metabolism of numbers of toxins, endogenous hormones and pharmaceutical drugs. Polymorphisms in these phase I genes can alter enzyme activity and are known to be associated with cancer susceptibility related to environmental toxins and hormone exposure. Their genotypes may also display ethnicity dependent population frequencies. The present study was aimed to determine the frequencies of commonly known functional polymorphisms of CYP1A1 and CYP3A4 in North Indian population. Allelic frequency of CYP1A1 polymorphisms, m1, m2 and m4 were observed to be 40.3, 31.2 and 0% respectively. Frequency of CYP3A4*1B polymorphism was 0%. We observed inter as well as intra ethnic variation in the distribution of frequency of these polymorphisms. Analysis of polymorphisms in these genes might help in predicting the risk of cancer. Our results emphasize the need for more such studies in "high risk populations".  相似文献   

5.
目的对中国汉族、回族健康人群细胞色素P450(CYP)3A4、CYP2C9、CYP2C19及CYP2D6进行基因多态性分析,比较汉族和回族健康人群基因表型和基因频率分布。方法多聚酶链反应-限制性片段长度多态性(PCR-RFLP)法,对300名志愿者的几种基因进行分型。结果汉族、回族CYP3A4*5等位基因频率均为0,CYP3A4*18等位基因频率分别为0.18,0.19;汉族、回族CYP2C9*2等位基因频率分别为0.01,0.05;CYP2C9*13等位基因频率均为0;汉族、回族CYP2C19*2等位基因频率分别为0.39,0.50;CYP2C19*3等位基因频率分别为0.05,0.05;汉族、回族CYP2D6*10等位基因频率分别为0.57,0.39。结论汉族、回族健康人群的CYP3A4*18、CYP2C9*2、CYP2C19*2、CYP2C19*3均没有显著性差异;在汉族、回族健康人群中未发现CYP3A4*5和CYP2C9*13突变;汉族、回族CYP2D6*10等位基因频率有显著性差异(P<0.01);回族人群CYP2D6中速代谢型(*10/*10)频率为13.4%,明显低于汉族的33.1%(P<0.01)。  相似文献   

6.
The development of prostate cancer is dependent on heredity, androgenic influences, and exposure to environmental agents. A high intake of dietary fat is associated with an increased risk of prostate cancer, either through influence on steroid hormone profiles or through production of carcinogenic compounds that require biotransformation by enzymes. The polymorphic glutathione S-transferase (GST), N-acetyltransferase (NAT), and cytochrome P450 (CYP) enzymes are of particular interest in prostate cancer susceptibility because of their ability to metabolize both endogenous and exogenous compounds, including dietary constituents. Association between different NAT2, CYP2D6, CYP2C19 and GSTP1 genotypes and prostate cancer was studied in a Swedish and Danish case-control study comprising 850 individuals. The combined Swedish and Danish study population was analysed by polymerase chain reaction for the NAT2 alleles *4, *5A, *5B, *5C, *6 and *7, and for the CYP2D6 alleles *l, *3 and *4. The Swedish subjects were also analysed for the CYP2C19 alleles *1 and *2, and the GSTP1 alleles *A, *B and *C. No association was found between prostate cancer and polymorphisms in NAT2, CYP2D6, CYP2C19 or GSTP1. An association between CYP2D6 poor metabolism and prostate cancer was seen among smoking Danes; odds ratio 3.10 (95% confidence interval 1.07; 8.93), P = 0.03, but not among smoking Swedes; odds ratio 1.19 (95% confidence interval 0.41; 3.42), P = 0.75. Smoking is not a known risk factor for prostate cancer, and the association between CYP2D6 poor metabolism and prostate cancer in Danish smokers may have arisen by chance.  相似文献   

7.
1. The present study investigated the relationship between antituberculosis (anti-TB) drug-induced hepatotoxicity and genetic polymorphisms of two important drug-metabolizing enzymes involved in the metabolism of isoniazid, namely N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1). 2. A polymerase chain reaction direct sequencing approach was used to detect genetic polymorphisms of the NAT2 and CYP2E1 genes in tuberculosis (TB) patients with (n = 101) or without (n = 107) anti-TB drug-induced hepatotoxicity. Associations between various genetic polymorphisms and anti-TB drug-induced hepatotoxicity were then determined. 3. Patients with NAT2 (282TT , 590AA and 857GA) alleles had an increased susceptibility to anti-TB drug-induced hepatotoxicity. The slow acetylator NAT2 genotypes (especially NAT2*6A/7B and NAT2*6A/6A) were risk factors for hepatotoxicity (odds ratio (OR) 9.57 (P < 0.001) for NAT2*6A/7B; OR 5.24 (P = 0.02) for NAT2*6A/6A). 4. The CYP2E1 genotype per se was not significantly associated with the development of anti-TB drug-induced hepatotoxicity. However, the combination of the CYP2E1 C1/C1 genotype with a slow acetylator NAT2 genotype increased the risk of anti-TB drug-induced hepatotoxicity (OR 5.33; P = 0.003) compared with the combination of a rapid acetylator NAT2 genotype with either a C1/C2 or C2/C2 genotype. 5. Thus, slow acetylators with the NAT2*6A/7B and NAT2*6A/6A genotypes combined with the C1/C1 CYP2E1 genotype may be involved in the pathogenesis of anti-TB drug-induced hepatotoxicity. 6. The present findings may be explained, in part, by changes in the metabolism of the anti-TB drug isoniazid induced via NAT2 and CYP2E1, a metabolic process known to produce hepatotoxic intermediates.  相似文献   

8.
OBJECTIVES: The study was carried out to investigate the distribution of cytochrome P450 2D6 (CYP2D6) and CYP2C19 genotype frequencies in three African populations and to compare these frequencies between healthy individuals and psychiatric patients. METHODS: Three hundred and eighty-four subjects from South Africa (Venda), Tanzania, and Zimbabwe who consented to the study were genotyped for CYP2D6 (CYP2D6*1, *2, *3, *4, *5, and *17) and CYP2C19 (CYP2C19*1, *2, and *3) by PCR-RFLP (polymerase chain reaction restriction fragment length polymorphism) techniques. RESULTS: The genotypes for CYP2D6 predicted a poor metabolizer frequency of 2.3% (2/88) in Tanzanian psychiatric patients, 1.9% (2/106) in Tanzanian healthy controls and 2.6% (2/76) in the South African Venda. The low-activity CYP2D6*17 allele frequency was higher in psychiatric patients (30%, 53/176) than in healthy individuals (20%, 43/212) in Tanzanians. The frequencies for CYP2C19*2 genotypes were predictive of a low prevalence of poor metabolizers (PMs). The CYP2C19*3 allele was absent in the three populations studied. There was no difference in CYP2D6 or CYP2C19 PM genotype frequencies between psychiatric patients and healthy subjects. CONCLUSION: The genotype results predict a low prevalence of people with deficient CYP2D6 and CYP2C19 activity among linguistically (Bantu) related populations of East and Southern Africa. The high frequency of the low-activity CYP2D6*17 allele predicts that the Bantu people have a reduced capacity to metabolise drugs that are CYP2D6 substrates.  相似文献   

9.
BACKGROUND: The cytochrome P450 isoenzymes CYP2C19 and CYP2D6 catalyze reactions involved in the metabolism of many widely used drugs. Their polymorphisms give rise to important interindividual and interethnic variability in the metabolism and disposition of several therapeutic agents and may cause differences in clinical response to some drugs. Individuals who carry two null alleles of either gene are known as poor metabolizers (PMs), while those who carry more than two copies of the functional CYP2D6 gene are ultrarapid metabolizers (UMs). AIM: The aim of the current study was to genotype Israelis from four different ethnic backgrounds with respect to CYP2C19 and CYP2D6. STUDY DESIGN: Polymorphisms of the CYP2C19 and CYP2D6 genes were determined by genotyping the four ethnic groups using PCR and/or restriction fragment length polymorphism (RFLP) analysis. The groups consisted of three Jewish communities, Yemenite Jews (n = 36), Sephardic Jews (n = 47), Ethiopian Jews (n = 28), and one Arabian population, Bedouins (n = 50). RESULTS: CYP2C19*2 allele frequencies ranged from 12.0 to 19.6% among the four ethnic groups. Within the study population, the CYP2C19*3 gene was only found in one Bedouin individual, in the heterozygous state (CYP2C19*1/*3). In each group, one individual was homozygous for CYP2C19*2, and were predicted to be PMs. The data revealed a high prevalence of CYP2D6*2, *4, *10, *41, and gene duplication, followed by *5 and *17, while *3 was very rare. The frequencies of the CYP2D6*4, *10, and *17 alleles and CYP2D6 gene duplication were significantly different among the four groups. However, the CYP2D6*2, *3, and *5 and *41 alleles showed similar frequencies in the four groups. Four (8.5%) Sephardic Jews and one (2.0%) Bedouin were found with the genotype CYP2D6*4/*4 (two null alleles), and were thus presumably PMs. A total of 15 individuals, distributed in all groups, were found with functional CYP2D6 gene duplications. The frequencies of predicted UMs (duplication of CYP2D6) were 17.8% (5/28) and 12.8% (6/47) in Ethiopian Jews and Sephardic Jews, respectively, which were higher than that of Yemenite Jews (5.6%, 2/36) and Bedouins (4.0%, 2/50). CONCLUSIONS: This is the first study of the CYP2D6 gene polymorphism in Israeli ethnic groups, either Jewish or Arab. Furthermore, this is also the first study of the CYP2C19 gene polymorphism in Jewish or Arab subgroups living in Israel. The frequencies of various alleles for the CYP2D6 gene are significantly different among the ethnic groups in Israel. These new findings may have important clinical implications in administrating drugs metabolized by CYP2D6 and for CYP2D6-related adverse drug reactions in the Israeli population.  相似文献   

10.
Little is known about the impact of cytochrome P450 polymorphisms on the metabolism of trimipramine, which is still widely used as antidepressant due to its positive effect on sleep patterns. A single oral dose of 75 mg trimipramine was given to 42 healthy volunteers selected according to their CYP2D6, CYP2C19, and CYP2C9 genotypes. The reference group included 8 subjects with homozygous active wild-type genotypes of all 3 enzymes (EM). This group was compared with 7 intermediate (IM) with 1 and 7 poor metabolizers (PM) with zero active alleles of CYP2D6 and CYP2C19, respectively, and with 4 subjects with the genotype CYP2C9*3/*3. Pharmacokinetics of trimipramine and its demethylated metabolite strongly depended on the CYP2D6 genotype. Median oral clearance of trimipramine was 276 L/h (range 180-444) in the reference group but only 36 L/h (range 24-48) in CYP2D6 PMs (P < 0.001). These differences could only be explained by an effect of CYP genotypes on both parameters, systemic clearance and bioavailability, the latter being at least 3-fold higher in CYP2D6 PMs than in the reference group. The desmethyltrimipramine area under the concentration-time curve was 40-fold greater in CYP2D6 PMs than in the reference group (1.7 vs. 0.04 mg/L x h in EMs), but below the quantification limit in most carriers of deficiencies of CYP2C19 or CYP2C9. This indicates that both CYP2C enzymes contribute to the demethylation of desmethyltrimipramine and CYP2D6 to further metabolism.  相似文献   

11.
In-vitro data indicated a contribution of cytochrome P450 enzymes 1A2, 3A4, 2C9, 2C19 and 2D6 to biotransformation of doxepin. We studied the effects of genetic polymorphisms in CYP2D6, CYP2C9 and CYP2C19 on E- and Z-doxepin pharmacokinetics in humans. Doxepin kinetics was studied after a single oral dose of 75 mg in healthy volunteers genotyped as extensive (EM), intermediate (IM) and poor (PM) metabolizers of substrates of CYP2D6 and of CYP2C19 and as slow metabolizers with the CYP2C9 genotype *3/*3. E-, Z-doxepin and -desmethyldoxepin were quantified in plasma by HPLC. Data were analyzed by non-parametric pharmacokinetics and statistics and by population pharmacokinetic modeling considering effects of genotype on clearance and bioavailability. Mean E-doxepin clearance (95% confidence interval) was 406 (390-445), 247 (241-271), and 127 (124-139) l h(-1) in EMs, IMs and PMs of CYP2D6. In addition, EMs had about 2-fold lower bioavailability compared with PMs indicating significant contribution of CYP2D6 to E-doxepin first-pass metabolism. E-doxepin oral clearance was also significantly lower in carriers of CYP2C9*3/*3 (238 l h(-1) ). CYP2C19 was involved in Z-doxepin metabolism with 2.5-fold differences in oral clearances (73 l h(-1) in CYP2C19 PMs compared with 191 l h(-1) in EMs). The area under the curve (0-48 h) of the active metabolite -desmethyldoxepin was dependent on CYP2D6 genotype with a median of 5.28, 1.35, and 1.28 nmol l h(-1) in PMs, IMs, and EMs of CYP2D6. The genetically polymorphic enzymes exhibited highly stereoselective effects on doxepin biotransformation in humans. The CYP2D6 polymorphism had a major impact on E-doxepin pharmacokinetics and CYP2D6 PMs might be at an elevated risk for adverse drug effects when treated with common recommended doses.  相似文献   

12.
Abstract: The cytochrome P450 enzyme CYP2C8 appears to have a major role in pioglitazone metabolism. The present study was conducted to further clarify the role of individual CYPs and of the CYP2C8/9 polymorphisms in the primary metabolism of pioglitazone in vitro. Pioglitazone (2–400 μM) was incubated with isolated cytochrome P450 enzymes or human liver microsomes, some of them carrying either the CYP2C8*3/*3 genotype (and also the CYP2C9*2/*2 genotype) or the CYP2C8*1/*1 genotype (five samples each). The formation of the primary pioglitazone metabolite M‐IV was monitored by HPLC. Enzyme kinetics were estimated assuming a single binding site. Mean intrinsic clearance of pioglitazone to the metabolite M‐IV was highest for CYP2C8 and CYP1A2 with 58 pmol M‐IV/min/nmol CYP P450/μM pioglitazone each, 53 for CYP2D6*1, 40 for CYP2C19*1, and 34 for CYP2C9*2, respectively. CYP2A6, CYP2B6, CYP2C9*1, CYP2C9*3, CYP2E1, CYP3A4 and CYP3A5 did not form quantifiable amounts of M‐IV. CYP2C8*1/*1 microsomes (25 ± 4 pmol M‐IV/min/mg protein/μM pioglitazone) showed lower intrinsic clearance of pioglitazone than CYP2C8*3/*3 microsomes (35 ± 9, p = 0.04). In all samples, metabolite formation showed substrate inhibition, while pioglitazone did not inhibit CYP2C8‐mediated paclitaxel metabolism. CYP2C8, CYP1A2 and CYP2D6 are major CYPs forming M‐IV in vitro. The higher activity of CYP2C8*3/CYP2C9*2 microsomes may result from a contribution of CYP2C9*2, or from differences in CYP2C8 expression. The evidence for substrate‐specific inhibitory effects of pioglitazone on CYP2C‐mediated metabolism needs to be tested in further studies.  相似文献   

13.
AIMS: To investigate the distribution of cytochrome P450 2C9 (CYP2C9) and 2C19 (CYP2C19) genotype frequencies in the Beninese and Belgian Caucasian populations. METHODS: Beninese (n = 111) and Belgian (n = 121) were genotyped for CYP2C9*2, *3, *4, *5, and *11 as well as for CYP2C19*2 and*3. RESULTS: The distribution of alleles was: CYP2C9*1: 95.5 vs. 82.2% (P < 0.001); CYP2C9*2: 0 vs. 10% (P < 0.001); CYP2C9*3: 0 vs. 7.4% (P < 0.01); CYP2C9*4: both 0%; CYP2C9*5: 1.8 vs. 0% (P = 0.05); and CYP2C9*11: 2.7 vs. 0.4% (P < 0.05). The frequencies of the CYP2C19*2 allele were 13 vs. 9.1%, respectively. CYP2C19*3 was not detected in either population. The 95% confidence intervals for the differences of frequencies of CYP2C9*1, CYP2C9*2, CYP2C9*3, CYP2C9*4, CYP2C9*5, CYP2C9*11, CYP2C19*1, CYP2C19*2 and CYP2C19*3 between Belgian and Beninese were 7%, 19%; - 14%, - 6%; - 11%, - 4%; - 1%, 1%; 0%, 4%; 0%, 5%; - 10%, 2%; - 2%, 10%; - 1%; respectively. The distributions of CYP2C9 genotypes in the Beninese and Belgian individuals were: CYP2C9*1/*1: 91 vs. 67% (P < 0.00001); CYP2C9*1/*2: 0 vs. 18.2% (P < 0.0001); CYP2C9*1/*3: 0 vs. 11.6% (P < 0.001); CYP2C9*1/*5: 3.6 vs. 0% (P = 0.05); CYP2C9*1/*11: 5.4 vs. 0.8% (P = 0.05); CYP2C9*2/*3: 0 vs. 1.6% (NS); CYP2C9*3/*3: 0 vs. 0.8% (NS). The distributions of CYP2C19 genotypes between these ethnic groups were: CYP2C19*1/*1: 73.9 vs. 83.5% (NS); CYP2C19*1/*2: 26.1 vs. 14.9% (P < 0.05); CYP2C9*2/*2: 0 vs. 1.6% (NS). CONCLUSIONS: Differences of allele frequencies between Beninese and Belgian populations were statistically significant for CYP2C9*2, *3, *5 and *11, but not for CYP2C9*4 or for CYP2C19*2 and *3.  相似文献   

14.
AIMS: CYP2D6 and CYP2C19 are polymorphically expressed enzymes that show marked interindividual and interethnic variation. The aim of this study was to determine the frequency of the defective alleles in CYP2D6 and CYP2C19 in Africans and to test whether the genotype for CYP2C19 is better correlated with the proguanil/cylcoguanil ratio than the mephenytoin S/R ratio. METHODS: Two hundred and sixteen black Tanzanians were phenotyped for CYP2D6 with the use of sparteine, and for CYP2C19 with the use of mephenytoin and proguanil. Of these 196 subjects were also genotyped for CYP2D6 (including the CYP2D6*1, CYP2D6*3 and CYP2D6*4 alleles) and 195 were genotyped for CYP2C19 (including the CYP2C19*1, CYP2C19*2 and the CYP2C19*3 alleles). Furthermore 100 subjects were examined for the allele duplication in CYP2D6, leading to ultrarapid metabolism, with long PCR. RESULTS: The sparteine metabolic ratio (MR) was statistically significantly higher in the Tanzanian group of homozygous, extensive metabolizers compared to a historical control group of white Danish extensive metabolizers. Only one poor metabolizer for CYP2D6 (MR=124 and genotype CYP2D6*1/CYP2D6*4 ) was found. The gene frequencies were 0.96 for the CYP2D6*1 allele and 0.04 for the CYP2D6*4 allele. No CYP2D6*3 alleles were found. Nine subjects had an allele duplication in CYP2D6 (9%). For CYP2C19 there were seven subjects (3. 6%) who were phenotyped as poor metabolizers, but only three subjects (1.5%) had a genotype (CYP2C19*2/CYP2C19*2 ) indicative of poor metabolism. The gene frequencies were 0.90 for the CYP2C19*1 allele and 0.10 for the CYP2C19*2 allele. No CYP2C19*3 alleles were found. The mephenytoin S/R ratios were not bimodally distributed. CONCLUSIONS: Both the genotyping and phenotyping results show that there is a substantial difference between an African black population and a Caucasian population in the capacity to metabolize drugs via CYP2D6 and CYP2C19.  相似文献   

15.
AIMS: To investigate the frequencies of CYP2C19*1, CYP2C19*2 and CYP2C19*3 alleles and CYP2C19 genotypes in a Tamilian population. METHODS: The study was conducted in 112 unrelated healthy human volunteers. DNA was extracted from leucocytes and analyzed by the PCR-RFLP protocol. The PCR product was digested with restriction enzymes (SmaI and BamH1) and then separated electrophoretically using polyacrylamide gel. RESULTS: The frequencies of the CYP2C19*1, *2 and *3 alleles were 0.598 [95% confidence interval (CI) 0.507, 0.689], 0.379 (95% CI, 0.350,0.407) and 0.022 (95% CI -0.005, 0.049), respectively. The distribution of CYP2C19*1/*1,*1/*2, *1/*3, *2/*2 and *2/*3 genotypes were 0.295 (95% CI, 0.210, 0.379), 0.580 (95% CI, 0.488, 0.671), 0.027 (95% CI -0.003, 0.057), 0.080 (95% CI 0.030, 0.130) and 0.018 (95% CI -0.006, 0.042), respectively. CONCLUSIONS: The distribution of CYP2C19*1/*1 in the Tamilian population is lower than that in Caucasians, Africans and the North Indian population. The CYP2C19*1/*2 is significantly higher in Tamilians when compared with other populations. The CYP2C19*1/*3 allele, which was not reported in the North Indian and Caucasian populations has been identified in 2.7% of the Tamilian population.  相似文献   

16.
Objective The frequency of functionally important mutations and alleles of genes coding for xenobiotic metabolizing enzymes shows a wide ethnic variation. However, little is known of the frequency distribution of the major allelic variants in the Russian population.Methods Using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) genotyping assays and the real-time PCR with fluorescent probes, the frequencies of functionally important variants of the cytochromes P450 (CYP) 2C9, 2C19, 2D6, 1A1 as well as arylamine N-acetyltransferase 2 (NAT2) and P-glycoprotein (MDR1) were determined in a sample of 290 Russian volunteers derived from Voronezh area.Results CYP2C9*2 and *3 alleles were found with allelic frequencies of 10.5% and 6.7%, respectively. The novel intron-2 T>C mutation at exon 2 +73 bp occurred in 24.8% of alleles. CYP2C19*2 and *3 alleles occurred in 11.4% and 0.3%, respectively. Six persons (2.1%) carried two of these CYP2C19 alleles responsible for poor metabolizing activity. Of all subjects, 5.9% were CYP2D6 poor metabolizers, whereas 3.4% were addressed to ultra-rapid metabolizers (CYP2D6*1×2/*1). The CYP1A1*2A allele was found in 4.7%, *2B in 5.0%, *4 in 2.6%, and the 5-mutations –3219C>T, –3229G>A, and the novel –4335G>A in 6.0%, 2.9% and 26.0% of alleles, respectively. Genotyping of eight different single nucleotide polymorphisms in the NAT2 gene provided in 58.0% a genotype associated with slow acetylation. The MDR1 triple variants G2677T and G2677A in exon 21 had an allelic frequency of 41.9% and 3.3%, respectively, and the variant C3435T in exon 26 one of 54.3%. Frequencies of functionally important haplotypes were calculated.Conclusion The overview of allele distribution of important xenobiotic-metabolizing enzymes among a Russian population shows similarity to other Caucasians. The data will be useful for clinical pharmacokinetic investigations and for drug dosage recommendations in the Russian population.  相似文献   

17.
The present study investigated the role of specific human cytochrome P450 (CYP) enzymes in the in vitro metabolism of valproic acid (VPA) by a complementary approach that used individual cDNA-expressed CYP enzymes, chemical inhibitors of specific CYP enzymes, CYP-specific inhibitory monoclonal antibodies (MAbs), individual human hepatic microsomes, and correlational analysis. cDNA-expressed CYP2C9*1, CYP2A6, and CYP2B6 were the most active catalysts of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA formation. The extent of 4-OH-VPA and 5-OH-VPA formation by CYP1A1, CYP1A2, CYP1B1, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP4A11, CYP4F2, CYP4F3A, and CYP4F3B was only 1-8% of the levels by CYP2C9*1. CYP2A6 was the most active in catalyzing VPA 3-hydroxylation, whereas CYP1A1, CYP2B6, CYP4F2, and CYP4F3B were less active. Correlational analyses of VPA metabolism with CYP enzyme-selective activities suggested a potential role for hepatic microsomal CYP2A6 and CYP2C9. Chemical inhibition experiments with coumarin (CYP2A6 inhibitor), triethylenethiophosphoramide (CYP2B6 inhibitor), and sulfaphenazole (CYP2C9 inhibitor) and immunoinhibition experiments (including combinatorial analysis) with MAb-2A6, MAb-2B6, and MAb-2C9 indicated that the CYP2C9 inhibitors reduced the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA by 75-80% in a panel of hepatic microsomes from donors with the CYP2C9*1/*1 genotype, whereas the CYP2A6 and CYP2B6 inhibitors had a small effect. Only the CYP2A6 inhibitors reduced VPA 3-hydroxylation (by approximately 50%). The extent of inhibition correlated with the catalytic capacity of these enzymes in each microsome sample. Overall, our novel findings indicate that in human hepatic microsomes, CYP2C9*1 is the predominant catalyst in the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA, whereas CYP2A6 contributes partially to 3-OH-VPA formation.  相似文献   

18.
Tolbutamide is known to be metabolized by cytochrome P450 2C9 (CYP2C9), and the effects of the CYP2C9 amino acid polymorphisms *2 (Arg144Cys) and *3 (Ile359Leu) could be important for drug treatment with tolbutamide and for use of tolbutamide as a CYP2C9 test drug.Tolbutamide pharmacokinetics and plasma insulin and glucose concentrations were studied in 23 healthy volunteers with all six combinations of the CYP2C9 alleles *1, *2 and *3, including two subjects with the combined CYP2C9*1/*1 and CYP2C19*2/*2 genotype. Volunteers received a single oral dose of 500 mg tolbutamide, followed by 75 g oral glucose at 1, 4.5 and 8 h after tolbutamide administration. Pharmacokinetic analysis was performed using a computer program for regression analysis of nonlinear mixed effects models.The mean oral clearances of tolbutamide were 0.97 (95% confidence interval [CI] 0.89-1.05), 0.86 (95% CI 0.79-0.93), 0.75 (95% CI 0.69-0.81), 0.56 (95% CI 0.51-0.61), 0.45 (95% CI 0.41-0.49) and 0.15 (95% CI 0.14-0.16) l/h in carriers of CYP2C9 genotypes 1/*1, *1/*2, *2/*2, *1/*3, *2/*3 and *3/*3, respectively. Tolbutamide pharmacokinetics in carriers of the functionally deficient CYP2C19*2/*2 genotype were not different from those in the CYP2C19 highly active genotype. Elimination in the six CYP2C9 genotype groups could be expressed as the linear combination of three constants (0.05, 0.04, 0.01 h(-1), which were specific to the respective CYP2C9 alleles *1, *2 and *3, thus indicating a co-dominant mode of inheritance. Insulin and glucose concentration-time curves did not change with differing CYP2C9 genotypes.Tolbutamide was confirmed as a substrate of the genetically polymorphic enzyme CYP2C9. The pronounced differences in pharmacokinetics due to the amino acid variants did not significantly affect plasma insulin and glucose concentrations in healthy volunteers.  相似文献   

19.
The mechanism by which diclofenac-induced hepatotoxicity occurs is unclear, even though covalent modification of proteins by diclofenac metabolites appears to be important in pathogenesis, either by altering protein function or by eliciting an immune response. Adduct formation may be due to metabolism of diclofenac via an alternative pathway rather than via its major 4'-hydroxylation pathway mediated by the cytochrome P450 CYP2C9. We hypothesized that possession of variant CYP2C9 alleles might be a risk factor for diclofenac-induced hepatotoxicity, since the allelic variants CYP2C9*2 and CYP2C9*3 may be associated with impaired metabolism compared to the wild-type (CYP2C9*1). To investigate in more detail the effects of the polymorphisms on diclofenac metabolism in human liver, the kinetics of diclofenac 4-hydroxylation by human liver microsomes of known CYP2C9 >genotype were examined. An overall difference in Vmax and Vmax/Km between samples homozygous for CYP2C9*1 and heterozygous for CYP2C9*2 or CYP2C9*3 was detected (P = 0.044). However, on subgroup analysis, there was no significant difference between samples homozygous for CYP2C9*1 and heterozygous for CYP2C9*2, although there was a borderline difference between the samples homozygous for CYP2C9*1 and those heterozygous for CYP2C9*3 (P = 0.057). The relationship between CYP2C9 genotype and susceptibility to diclofenac-induced hepatotoxicity was further examined by genotyping 24 patients with diclofenac-induced hepatotoxicity together with 100 healthy controls for the CYP2C9*2 and CYP2C9*3 alleles. CYP2C9 genotype frequencies for CYP2C9*2 and CYP2C9*3 were similar in patients and controls. To assess whether diclofenac-induced hepatotoxicity was due to rare CYP2C9 mutations, the upstream sequence (-1 to -1000) and all exons and exon-intron boundaries of CYP2C9 from four subjects who had suffered severe hepatotoxicity was determined. However, no new polymorphisms were detected. We therefore found no evidence that polymorphism in CYP2C9 is a determinant of diclofenac-induced hepatotoxicity.  相似文献   

20.
Polymorphisms of cytochrome P450 (CYP) enzymes can affect enzymatic activity, drug metabolism and drug interactions. Although the potential for drug interactions is especially important when co-administering drugs with strong inductive or inhibitory potential towards drug-metabolizing enzymes, the relationship between CYP genotypes and the extent of the inductive or inhibitory effects remain poorly understood. We investigated the effects of rifampicin (inductive) and fluvoxamine (inhibitory) on metabolism of omeprazole and CYP2C19 enzymatic activity in 19 healthy Japanese subjects. Pharmacokinetic analyses of the CYP2C19 probe drug, omeprazole, were performed before and after rifampicin or fluvoxamine administration. The allele frequencies of the CYP2C19*1, CYP2C19*2 and CYP2C19*3 genotypes were 65.8%, 26.3% and 7.9%, respectively. Subjects with the CYP2C19*1 allele displayed higher levels of omeprazole metabolism than those without the CYP2C19*1 allele. Rifampicin increased omeprazole metabolism in all subjects irrespective of genotype, which suggested that CYP2C19 enzymatic activity was induced by rifampicin administration for all genotypes. Conversely, while fluvoxamine reduced omeprazole metabolism in subjects carrying the CYP2C19*1 allele, it had no impact on omeprazole pharmacokinetics in subjects without this allele. The genotyping of CYP2C19 may be useful for predicting drug interactions with metabolic inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号