首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Smoking throughout pregnancy can lead to complications during gestation, parturition and neonatal development. Thus, nicotine replacement therapies are a popular alternative thought to be safer than cigarettes. However, recent studies in rodents suggest that fetal and neonatal nicotine exposure alone results in cardiac dysfunction and high blood pressure. While it is well known that perinatal nicotine exposure causes increased congenital abnormalities, the mechanisms underlying longer‐term deficits in cardiac function are not completely understood. Recently, our laboratory demonstrated that nicotine impairs placental protein disulfide isomerase (PDI) triggering an increase in endoplasmic reticulum stress, leading us to hypothesize that this may also occur in the heart. At 3 months of age, nicotine‐exposed offspring had 45% decreased PDI levels in the absence of endoplasmic reticulum stress. Given the association of PDI and superoxide dismutase enzymes, we further observed that antioxidant superoxide dismutase‐2 levels were reduced by 32% in these offspring concomitant with a 26–49% decrease in mitochondrial complex proteins (I, II, IV and V) and tissue inhibitor of metalloproteinase‐4, a critical matrix metalloprotease for cardiac contractility and health. Collectively, this study suggests that perinatal nicotine exposure decreases PDI, which can promote oxidative damage and mitochondrial damage, associated with a premature decline in cardiac function.  相似文献   

2.
Tu M  Huang Y  Li HL  Gao ZH 《Toxicology》2012,299(1):60-68
Our previous work found that in the presence of nitrite, titanium dioxide nanoparticles can cause protein tyrosine nitration under UVA irradiation in vivo. In this paper, the human keratinocyte cells was used as a skin cell model to further study the photo-toxicity of titanium dioxide nanoparticles when nitrite was present. The results showed that nitrite increased the photo-toxicity of titanium dioxide in a dose-dependant manner, and generated protein tyrosine nitration in keratinocyte cells. Morphological study of keratinocyte cells suggested a specific apoptosis mediated by apoptosis inducing factor. It was also found the main target nitrated in cells was cystatin-A, which expressed abundantly in cytoplasm and functioned as a cysteine protease inhibitor. The stress induced by titanium dioxide with nitrite under UVA irradiation in human keratinocyte cells appeared to trigger the apoptosis inducing factor mediated cell death and lose the inhibition of active caspase by cystatin-A. We conclude that nitrite can bring new damage and stress to human keratinocyte cells with titanium dioxide nanoparticles under UVA irradiation.  相似文献   

3.
The intrauterine environment has a significant long-term impact on individual’s life, this study was designed to investigate the effect of stress during pregnancy on offspring’s learning and memory abilities and analyze its mechanisms from the expression of BDNF and Arc in the hippocampus of the offspring. A rat model of maternal chronic stress during pregnancy was mating from 3rd day during been subjecting to chronic unpredictable mild stress (CUMS). The body weights and behavioral changes were recorded, and plasma corticosterone levels were determined by radioimmunoassay. The learning and memory abilities of the offspring were measured by Morris water maze testing from PND 42. The expression of hippocampal BDNF and Arc mRNA and protein were respectively measured using RT-PCR and Western blotting. Results indicated that an elevation was observed in the plasma corticosterone level of rat model of maternal chronic stress during pregnancy, a reduction in the crossing and rearing movement times and the preference for sucrose. The body weight of maternal stress’s offspring was lower than the control group, and the plasma corticosterone level was increased. Chronic stress during pregnancy had a significant impact on the spatial learning and memory of the offspring. The expression of BDNF mRNA and protein, Arc protein in offspring of maternal stress during pregnancy was attenuated and some relationships existed between these parameters. Collectively, these findings disclose that long-time maternal stress during pregnancy could destroy spatial learning and memory abilities of the offspring, the mechanism of which is related to been improving maternal plasma corticosterone and reduced hippocampal BDNF, Arc of offspring rats.  相似文献   

4.
An in vitro blood-brain barrier (BBB) model being composed of co-culture with endothelial (bEnd.3) and astrocyte-like (ALT) cells was established to evaluate the toxicity and permeability of Ag nanoparticles (AgNPs; 8 nm) and TiO2 nanoparticles (TiO2NPs; 6 nm and 35 nm) in normal and inflammatory central nervous system. Lipopolysaccharide (LPS) was pre-treated to simulate the inflammatory responses. Both AgNPs and Ag ions can decrease transendothelial electrical resistance (TEER) value, and cause discontinuous tight junction proteins (claudin-5 and zonula occludens-1) of BBB. However, only the Ag ions induced inflammatory cytokines to release, and had less cell-to-cell permeability than AgNPs, which indicated that the toxicity of AgNPs was distinct from Ag ions. LPS itself disrupted BBB, while co-treatment with AgNPs and LPS dramatically enhanced the disruption and permeability coefficient. On the other hand, TiO2NPs exposure increased BBB penetration by size, and disrupted tight junction proteins without size dependence, and many of TiO2NPs accumulated in the endothelial cells were observed. This study provided the new insight of toxic potency of AgNPs and TiO2NPs in BBB.  相似文献   

5.
Purpose: The aim of this study was to evaluate and compare the toxicity of six different types of titanium dioxide (TiO2) nanoparticles (NP) on human epidermal keratinocytes (HEK).

Materials and methods: Six TiO2 NP (A (10?nm), A*(32?nm), B (27.5?nm), C (200?nm), C*(30–40?nm), and D*(200–400?nm)) were suspended in water or culture medium and characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). In addition, these NP were assayed with cell viability, cytokine release and cellular uptake in HEK.

Results: TiO2NP did not change in shape in the culture medium when visualized by TEM. There was an increase in agglomeration with all TiO2NP in the medium when measured by DLS. Since TiO2NP interfered with the CellTiter 96®AQueous One and MTT assays but had a minimal effect on alamar Blue (aB). The aB viability assay was selected to assess all six types of TiO2NP and sample B had a statistically significant decrease in viability at 0.4?mg/ml. A slight increase in TNF-α was noted in sample A*, C, and D* at as low as 0.05?mg/ml. Sample A* and B at certain concentrations showed an increase in Interleukin (IL)-6. IL-10 and IL-1β release for all TiO2NP were noted around the detection limit with no significant changes compared to control. A statistically significant decrease in IL-8 was noted for all TiO2NP at the highest concentrations due to the adsorption of IL-8 by TiO2. All TiO2NP were localized within cytoplasmic vacuoles of HEK and the element Ti was detected by energy-dispersive x-ray spectroscopy analysis.

Conclusions: Based on cell viability, only sample B was slightly cytotoxic to HEK and samples B and A* have the potential to cause inflammation indicated by an increase in IL-6.  相似文献   

6.
Bisphenol A (BPA) is widely used in the manufacture of plastics and epoxy resins, and is known to affect reproductive organ growth and development. However, the effects of BPA on hippocampal neurogenesis are unclear in young adult mice. Therefore, the present study was conducted to examine the effects of BPA on hippocampal neurogenesis and learning as well as memory performance in young adult mice. BPA (1, 5, and 20 mg/kg/day) was administered orally to mice for 2 weeks. It was found that high-dose BPA (20 mg/kg/day) decreased the number of newly generated cells in hippocampus, but that low-dose BPA (1 mg/kg) increased the survival of newly generated cells in hippocampi of young mice. Furthermore, high-dose BPA (20 mg/kg/day) was found to impair learning and memory performance significantly. However, no significant differences were observed between high- and low-dose treated mice in terms of levels of brain-derived neurotrophic factor (BDNF) or reactive oxygen species production in hippocampus. In addition, BPA treatment did not induce neuronal loss or damage or astrocyte activation. These data suggest that exposure to BPA causes fluctuations in hippocampal neurogenesis in young adult mice that result in spatial learning and memory impairment via a BDNF-independent pathway.  相似文献   

7.
《Nanotoxicology》2013,7(5):568-578
Abstract

There is a great interest in a better knowledge of the health effects caused by nanomaterials exposures and, in particular to those induced by titanium dioxide nanoparticles (nano-TiO2) due to its high use and increasing presence in the environment. To add new information on its potential genotoxic/carcinogenic risk, we have carried out experiments using chronic exposures (up to 4 weeks), low doses, and the BEAS-2B cell line that, as a human bronchial epithelium cells, can be considered a good cell target. Cell uptake has been assessed by transmission electron microscopy (TEM) and flow cytometry (FC); genotoxicity was evaluated using the comet and the micronucleus (MN) assays; and cell-transforming ability was evaluated using the soft-agar assay to detect anchorage-independent cell growth. Results show an important cell uptake at all the tested doses and sampling times used (except for 1?µg/mL and 24-h exposure). Nevertheless, no genotoxic effects were observed in the comet and in the MN assays. This lack of genotoxic effect agrees with the FC results showing no induction of intracellular reactive oxygen species (ROS), the data from the comet assay with formamidopyrimidine DNA glycosylase (FPG) enzyme showing no induction of oxidized bases, and the lack of induction of expression of heme-oxygenase (HO-1) gene both at the RNA and protein level. On the contrary, significant increases in the number of clones growing in an anchorage-independent way were observed. This study would indicate a potential carcinogenic risk associated to nano-TiO2 exposure, not mediated by a genotoxic mechanism.  相似文献   

8.
Park EJ  Yi J  Chung KH  Ryu DY  Choi J  Park K 《Toxicology letters》2008,180(3):222-229
As the applications of industrial nanoparticles are being developed, the concerns on the environmental health are increasing. Cytotoxicities of titanium dioxide nanoparticles of different concentrations (5, 10, 20 and 40mug/ml) were evaluated in this study using a cultured human bronchial epithelial cell line, BEAS-2B. Exposure of the cultured cells to nanoparticles led to cell death, reactive oxygen species (ROS) increase, reduced glutathione (GSH) decrease, and the induction of oxidative stress-related genes such as heme oxygenase-1, thioredoxin reductase, glutathione-S-transferase, catalase, and a hypoxia inducible gene. The ROS increase by titanium dioxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that titanium dioxide nanoparticles exert cytotoxicity by an apoptotic process. Furthermore, the expressions of inflammation-related genes such as interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), TNF-a, and C-X-C motif ligand 2 (CXCL2) were also elevated. The induction of IL-8 by titanium dioxide nanoparticles was inhibited by the pre-treatment with SB203580 and PD98059, which means that the IL-8 was induced through p38 mitogen-acitvated protein kinase (MAPK) pathway and/or extracellular signal (ERK) pathway. Uptake of the nanoparticles into the cultured cells was observed and titanium dioxide nanoparticles seemed to penetrate into the cytoplasm and locate in the peri-region of the nucleus as aggregated particles, which may induce direct interactions between the particles and cellular molecules, to cause adverse biological responses.  相似文献   

9.
Perinatal undernutrition has adverse effects on brain physiology as well as learning and memory activity. However, the mechanism is still incompletely understood. Nitric oxide (NO) synthesized by neuronal nitric oxide synthase (nNOS) has important roles in neuronal survival and synaptic plasticity as well as contributes to the learning and memory task. The aims of the present study were to investigate whether 50% perinatal food restriction (FR50) produced deleterious effects on the population of nNOS neurons in CA1 and CA3 and the dentate gyrus (DG) region of the hippocampus using ABC immunohistochemical method. The results showed FR50 reduced body weight of offspring on postnatal day (PD)1, PD7, PD10, PD14 and PD21, and this type of food restriction impaired learning and memory of adult male offspring rats (postnatal day 70) and decreased the density of nNOS-positive cells in the CA1, CA3 and DG region of the hippocampus. These findings suggest that perinatal undernutrition affects the activity of nNOS in hippocampus. Thus, these changes in the density of nNOS neurons may partly explain learning and memory disturbances commonly observed in undernourished rats and provide clues to the knowledge of malnutrition effects upon the brain.  相似文献   

10.
A number of studies have investigated the adverse toxic effects of titanium dioxide (TiO2) nanoparticles (NPs) or zinc oxide (ZnO) NPs. Information on the potential genotoxic effects of the interactions of TiO2 NPs and ZnO NPs in vivo is lacking. Therefore, this study was designed to investigate the cytogenotoxicity of TiO2 NPs or ZnO NPs alone or their mixtures using the bone marrow micronucleus assay, and mechanism of damage through the evaluation of oxidative stress parameters in the liver and kidney tissues of Swiss mice. Intraperitoneal administration of doses between 9.38 and 150.00 mg/kg of TiO2 NPs or ZnO NPs or TiO2 NPs + ZnO NPs was performed for 5 and 10 days, respectively. TiO2 NPs alone induced a significant (P < 0.05) increase in micronucleated (Mn) polychromatic erythrocytes (PCEs) at the applied doses compared with the negative controls, with a significant difference between 5 and 10 days for TiO2 NPs alone and TiO2 NPs + ZnO NPs. Concurrently, TiO2 NPs alone for 5 days and TiO2 NPs and TiO2 NPs + ZnO NPs for 10 days significantly (P < 0.05) decreased the percentage PCE: normochromatic erythrocyte (NCE) indicating cytotoxicity; with a significant difference between the two periods. Significant (P < 0.001) changes in the activities of superoxide dismutase (SOD) and catalase (CAT), and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were observed in the liver and kidney of mice exposed to TiO2 NPs or ZnO NPs alone or their mixtures. These results suggest that TiO2 NPs alone was genotoxic; TiO2 NPs and TiO2 NPs + ZnO NPs were noticeably cytotoxic while ZnO NPs was not cytogenotoxic. The individual NPs or their mixtures induced oxidative stress.  相似文献   

11.
Hair arsenic and cadmium from 339 women with congenital heart defect (CHD)-affected pregnancies (case women) and 333 women with normal live births (control women) in China were estimated using inductively coupled plasma mass spectrometry. The median levels of hair arsenic and cadmium in the case women were 98.30 (74.30–136.30) ng/g and 14.60 (8.30–32.50) ng/g, respectively, which were significantly higher than the levels in the control group (P < 0.05). Arsenic concentrations ≥62.03 ng/g were associated with increased risk for almost every CHD subtype, with a dose-response relationship. However, only the group with the highest cadmium levels (≥25.85 ng/g) displayed an increased risk of CHDs (AOR 1.96; 95% CI 1.24–3.09), with a 2.81-fold increase found for the occurrence of conotruncal defects in their offspring. Furthermore, an interaction between arsenic and cadmium was observed. Our findings suggest that maternal exposure to arsenic and cadmium may be a significant risk factor for CHDs in offspring. Cadmium may have an enhancing effect on the association between arsenic and the risk of CHDs in offspring.  相似文献   

12.
Despite that applications of titanium dioxide nanoparticles (TiO2-NPs) have been developed in the fields of paints, waste water treatment, sterilization, cosmetics, food additive, bio-medical ceramic and implant biomaterials and so on, relatively few studies have been conducted to determine the neurotoxicity of TiO2-NPs exposure. In the present study, we investigated the cytotoxicity of TiO2-NPs using PC12 cells and intended to clarify the molecular mechanisms underlying the biological effects of TiO2-NPs. PC12 cell is a type of cells, which have been used as an in vitro model of dopaminergic neurons for neurodegenerative diseases research. In addition, the roles of the particle size and crystal structure of TiO2-NPs to the neurotoxicity were also investigated. The anatase TiO2-NPs displayed a dose-dependent behavior on decreasing cell viability, increasing levels of lactate dehydrogenase (LDH), activating oxidative stress, inducing apoptosis, disturbing cell cycle, triggering JNK- and p53-mediated signaling pathway. In comparison to anatase TiO2-NPs, the rutile TiO2-NPs showed moderately toxic effect on neuron cells. The micron-sized TiO2 did not exhibit any toxic response. It is suggested from our results that reactive oxygen species (ROS) have a mediation effect to oxidative stress and up-regulation of JNK and P53 phosphorylation involved in mechanistic pathways of TiO2-NPs can induce apoptosis and cell cycle arrest in PC12 cells. In addition, both the size and crystal structure of TiO2-NPs exposure contributed to the neurotoxicity. Nanoparticles were more toxic than micrometer-sized particles and the anatase form were more toxic than the rutile.  相似文献   

13.
14.
Existing literature pointed out that the liver may be the target organ of toxicity induced by titanium dioxide nanoparticles (TiO2 NPs) via oral exposure. Gender differences in health effects widely exist and relevant toxicological research is important for safety assessment. To explore the gender susceptibility of TiO2 NP‐induced hepatic toxicity and the underlying mechanism, we examined female and male Sprague‐Dawley rats administrated with TiO2 NPs orally at doses of 0, 2, 10 and 50 mg/kg body weight per day for 90 days. The serum biochemical indicators and liver pathological observation were used to assess hepatic toxicity. We found significant hepatic toxicity could be induced by subchronic oral exposure to TiO2 NPs, which was more obvious and severe in female rats. No accumulation of TiO2 NPs in the liver was observed, indicating that hepatic toxicity may not be caused through direct pathways. Oxidized glutathione, lipid peroxidation products increased significantly and reduced glutathione decreased significantly in the liver of rats in repeated TiO2 NP‐exposed groups. Hematological parameters of white blood cells and inflammatory cytokines in serum including interleukin 1α, interleukin 4 and tumor necrosis factor also increased significantly. Indirect pathways through initiating oxidative stress and inflammatory responses were suggested as the possible mechanism of the hepatic toxicity in this experiment. The higher sensitivity to redox homeostasis imbalance and inflammation of female rats may be the main reason for gender differences. Our research suggested that gender should be a susceptible factor for identifying and monitoring long‐term oral toxicity of TiO2 NPs.  相似文献   

15.
Methamphetamine (METH) is a highly addictive stimulant. The effect of maternal exposure of METH on apoptosis in rat hippocampus was evaluated. Wistar rats were randomly divided into: 1&;2) Rats were given METH during pregnancy or breastfeeding (5?mg/kg i.p.), 3&;4) Rats injected with normal saline and 5&;6) Rats served as control. TUNEL method was used to evaluate apoptotic cells. Mean number of apoptotic cells was significantly increased in CA1, CA3 and DG regions. The CA1 field was significantly improved in the experimental pregnancy and breastfeeding groups. The study showed that METH causes apoptosis in all three hippocampal fields, especially CA1 region.  相似文献   

16.
17.
《Nanotoxicology》2013,7(1):12-29
Abstract

The rapid increase in the number of consumer products containing engineered nanoparticles (ENP) raises concerns about an appropriate risk assessment of these products. Along with toxicological data, exposure estimates are essential for assessing risk. Currently, cosmetics and personal care products (C&PCP) represent the largest ENP-containing consumer product class on the market. We analyzed factors influencing the likelihood that ENP-containing products are available to consumers. We modelled potential external exposure of German consumers, assuming a maximum possible case where only ENP-containing products are used. The distribution of exposure levels within the population due to different behavior patterns was included by using data from an extensive database on consumer behavior. Exposure levels were found to vary significantly between products and between consumers showing different behavior patterns. The assessment scheme developed here represents a basis for refined exposure modelling as soon as more specific information about ENPs in C&PCP becomes available.  相似文献   

18.
The present study has investigated developmental neurotoxicity of Metam sodium (MS), from gestational day 6 and throughout the gestation period until delivery. Therefore, mated female mice were orally exposed on a daily basis to 0 (control), 50, 100 or 150 mg of MS/kg of body weight and their standard fertility and reproductive parameters were assessed. The offspring were examined for their sensorimotor development, depression and cognitive performance. Our results showed that MS exposure during pregnancy led to one case of mortality, two cases of abortion and disturbed fertility and reproductive parameters in pregnant dams. In offspring, MS induced an overall delay in innate reflexes and sensorimotor performances. Furthermore, all prenatally treated animals showed an increased level of depression-like behavior as well as a pronounced cognitive impairment in adulthood. These results demonstrated that prenatal exposure to MS causes a long-lasting developmental neurotoxicity and alters a wide range of behavioral functions in mice.  相似文献   

19.
Engineered nanoparticles (ENPs) are increasingly detected in water supply due to environmental release of ENPs as the by‐products contained within the effluent of domestic and industrial run‐off. The partial recycling of water laden with ENPs, albeit at ultra‐low concentrations, may pose an uncharacterized threat to human health. In this study, we investigated the toxicity of three prevalent ENPs: zinc oxide, silver, and titanium dioxide over a wide range of concentrations that encompasses drinking water‐relevant concentrations, to cellular systems representing oral and gastrointestinal tissues. Based on published in silico‐predicted water‐relevant ENPs concentration range from 100 pg/L to 100 µg/L, we detected no cytotoxicity to all the cellular systems. Significant cytotoxicity due to the NPs set in around 100 mg/L with decreasing extent of toxicity from zinc oxide to silver to titanium dioxide NPs. We also found that noncytotoxic zinc oxide NPs level of 10 mg/L could elevate the intracellular oxidative stress. The threshold concentrations of NPs that induced cytotoxic effect are at least two to five orders of magnitude higher than the permissible concentrations of the respective metals and metal oxides in drinking water. Based on these findings, the current estimated levels of NPs in potable water pose little cytotoxic threat to the human oral and gastrointestinal systems within our experimental boundaries. © 2014 Wiley Periodicals, Inc. Environ Toxicol 30: 1459–1469, 2015.  相似文献   

20.
目的 观察续断提取物对血管性痴呆大鼠学习记忆能力及海马神经元的影响.方法 采用反复夹闭、再通双侧颈总动脉的同时于腹腔注射硝普钠,建立大鼠血管性痴呆模型;观察续断提取物对模型大鼠学习记忆能力、血清中超氧化物歧化酶(SOD)的活力、丙二醛(MDA)的含量以及谷胱甘肽过氧化物酶(GSH-Px)水平和海马中Bcl-2、Bax蛋白表达的影响.结果 与模型组比较,中、高剂量续断提取物能提高大鼠的学习记忆能力以及血清中GSH-Px的水平和SOD的活性,降低MDA的含量;增加海马中抗凋亡蛋白Bcl-2的表达和抑制促凋亡蛋白Bax的表达.结论 续断提取物能够改善血管性痴呆大鼠的记忆障碍,对海马神经元具有一定的保护作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号