首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhabdomyosarcoma (RMS) frequently exhibits concomitant activation of the PI3K/Akt/mTOR and the Ras/MEK/ERK pathways. Therefore, we investigated whether pharmacological cotargeting of these two key survival pathways suppresses RMS growth. Here, we identify a synthetic lethal interaction between PI3K/Akt/mTOR and Ras/MEK/ERK pathway inhibition in RMS. The dual PI3K/mTOR inhibitor PI103 and the MEK inhibitor UO126 synergize to trigger apoptosis in several RMS cell lines in a highly synergistic manner (combination index <0.1), whereas either agent alone induces minimal cell death. Similarly, genetic knockdown of p110α and MEK1/2 cooperates to induce apoptosis. Molecular studies reveal that cotreatment with PI103/UO126 cooperates to suppress PI3K/Akt/mTOR and Ras/MEK/ERK signaling, whereas either compound alone is not only less effective to inhibit signaling, but even cross-activates the other pathway. Accordingly, PI103 alone increases ERK phosphorylation, while UO126 enhances Akt phosphorylation, consistent with negative crosstalks between these two signaling pathways. Furthermore, PI103/UO126 cotreatment causes downregulation of several antiapoptotic proteins such as XIAP, Bcl-xL and Mcl-1 as well as increased expression and decreased phosphorylation of the proapoptotic protein BimEL, thus shifting the balance towards apoptosis. Consistently, PI103/UO126 cotreatment cooperates to trigger Bax activation, loss of mitochondrial membrane potential, caspase activation and caspase-dependent apoptosis. This identification of a synthetic lethal interaction between PI3K/mTOR and MEK inhibitors has important implications for the development of novel treatment strategies in RMS.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Rhabdomyosarcoma (RMS) is a common soft-tissue sarcoma in childhood with a poor prognosis, highlighting the need for new treatment strategies. Here we identify a synergistic interaction of the second-generation histone deacetylase inhibitor (HDACI) JNJ-26481585 and common chemotherapeutic drugs (i.e. Doxorubicin, Etoposide, Vincristine, Cyclophosphamide and Actinomycin D) to trigger apoptosis in RMS cells. Importantly, JNJ-26481585/Doxorubicin cotreatment also significantly suppresses long-term clonogenic survival of RMS cells and tumor growth in vivo in a preclinical RMS model. Mechanistically, JNJ-26481585/Doxorubicin cotreatment causes upregulation of the BH3-only proteins Bim and Noxa as well as downregulation of the antiapoptotic proteins Mcl-1 and Bcl-xL. These changes in the ratio of pro- and antiapoptotic Bcl-2 proteins contribute to JNJ-26481585/Doxorubicin-mediated apoptosis, since knockdown of Bim or Noxa significantly inhibits cell death. Also, JNJ-26481585 and Doxorubicin cooperate to stimulate activation of Bax and Bak, which is required for JNJ-26481585/Doxorubicin-induced apoptosis, since silencing of Bax or Bak protects against apoptosis. Consistently, overexpression of Bcl-2 significantly reduces JNJ-26481585/Doxorubicin-mediated apoptosis. JNJ-26481585/Doxorubicin cotreatment leads to caspase activation and caspase-dependent apoptosis, since the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) rescues cells from apoptosis. In conclusion, the second-generation HDACI JNJ-26481585 cooperates with chemotherapeutics to engage mitochondrial apoptosis in RMS cells, demonstrating that JNJ-26481585 represents a promising strategy for chemosensitization of RMS.  相似文献   

9.
10.
11.
12.
The activation of the PI3K/AKT/m TOR pathway plays a key role in ovarian cancer tumorigenesis, progression and chemotherapy resistance. This study aimed to explore the possible mechanism that PI-103, a dual inhibitor of phosphatidylinositide 3-kinase and m TOR, enhances the sensitivity of SKOV3/DDP ovarian cancer cell line to cisplatin chemotherapy. The results showed that PI-103 could significantly increase the sensitivity of SKVO3/DDP cells to cisplatin through inhibiting the activation of PI3K/Akt/m TOR signaling pathway and inducing cell cycle arrest and apoptosis.  相似文献   

13.

Background

Triple-negative breast cancer (TNBC) exhibits biologically aggressive behavior and has a poor prognosis. Novel molecular targeting agents are needed to control TNBC. Recent studies revealed that the non-canonical hedgehog (Hh) signaling pathway plays important roles in the regulation of cancer stem cells (CSCs) in breast cancer. Therefore, the anti-cell growth and anti-CSC effects of the non-canonical Hh inhibitor GANT61 were investigated in TNBC cells.

Methods

The effects of GANT61 on cell growth, cell cycle progression, apoptosis, and the proportion of CSCs were investigated in three TNBC cell lines. Four ER-positive breast cancer cell lines were also used for comparisons. The expression levels of effector molecules in the Hh pathway: glioma-associated oncogene (GLI) 1 and GLI2, were measured. The combined effects of GANT61 and paclitaxel on anti-cell growth and anti-CSC activities were also investigated.

Results

Basal expression levels of GLI1 and GLI2 were significantly higher in TNBC cells than in ER-positive breast cancer cells. GANT61 dose-dependently decreased cell growth in association with G1–S cell cycle retardation and increased apoptosis. GANT61 significantly decreased the CSC proportion in all TNBC cell lines. Paclitaxel decreased cell growth, but not the CSC proportion. Combined treatments of GANT61 and paclitaxel more than additively enhanced anti-cell growth and/or anti-CSC activities.

Conclusions

The non-canonical Hh inhibitor GANT61 decreased not only cell growth, but also the CSC population in TNBC cells. GANT61 enhanced the anti-cell growth activity of paclitaxel in these cells. These results suggest for the first time that GANT61 has potential as a therapeutic agent in the treatment of patients with TNBC.
  相似文献   

14.
The aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway has been reported to correlate with adverse clinical outcome in human glioblastoma in vivo. However, the question of how this survival network can be successfully targeted to restore the sensitivity of glioblastoma to apoptosis induction has not yet been answered. Here, we report that inhibition of PI3K by LY294002 broadly sensitizes wild-type and mutant PTEN glioblastoma cells to both death receptor- and chemotherapy-induced apoptosis, whereas mammalian target of rapamycin (mTOR) inhibition is not sufficient to restore apoptosis sensitivity. LY294002 significantly enhances apoptosis triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), agonistic anti-CD95 antibodies, or several anticancer drugs (i.e., doxorubicin, etoposide, and vincristine) in a highly synergistic manner. In addition, LY294002 cooperates with TRAIL or doxorubicin to suppress colony formation, thus also showing a strong effect on long-term survival. Similarly, genetic knockdown of PI3K subunits p110alpha and/or p110beta by RNA interference (RNAi) primes glioblastoma cells for TRAIL- or doxorubicin-mediated apoptosis. In contrast to PI3K inhibition, pharmacologic or genetic blockade of mTOR by RAD001 (everolimus), rapamycin, or RNAi fails to enhance TRAIL- or doxorubicin-induced apoptosis. Analysis of apoptosis pathways reveals that PI3K inhibition acts in concert with TRAIL or doxorubicin to trigger mitochondrial membrane permeabilization, caspase activation, and caspase-dependent apoptosis, which are abolished by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Most importantly, PI3K inhibition by LY294002 sensitizes primary cultured glioblastoma cells obtained from surgical specimens to TRAIL- or chemotherapy-induced cell death. By showing that PI3K inhibition broadly primes glioblastoma cells for apoptosis, our findings provide the rationale for using PI3K inhibitors in combination regimens to enhance TRAIL- or chemotherapy-induced apoptosis in glioblastoma.  相似文献   

15.
目的:探讨细胞角蛋白13(cytokeratin 13,CK13)对鼻咽癌HNE1细胞放疗敏感性的影响及其作用机制。方法:将HNE1细胞分为对照组、anti-CK13#a组及anti-CK13#b组(敲减CK13)、对照组+西罗莫司处理组(100 nmol/L的西罗莫司处理1 h)、anti-CK13#a+西罗莫司处理组(100 nmol/L的西罗莫司处理1 h),经放疗处理(200 c Gy/min剂量照射5 min)后,用CCK-8法检测各组细胞的增殖能力,用流式细胞术检测各组细胞的凋亡率,q PCR法检测PI3K/AKT/mTOR信号通路相关基因PTEN的表达,WB法检测PI3K/AKT/mTOR信号通路相关蛋白的表达。结果:经放疗处理后,与对照组相比,敲减CK13后HNE1细胞增殖能力明显增强(P<0.01),细胞凋亡率明显降低(P<0.01);细胞中c-caspase-3和γH2AX的表达明显降低(均P<0.01)、p-AKT和p-S6K表达明显升高(P<0.01)、PTEN蛋白表达明显降低(P<0.01)。敲减CK13+西罗莫司(PI3K/AKT/mTOR信号通路抑制剂)处理可以回复敲减CK13导致的细胞增殖能力增强(P<0.05)和细胞凋亡率降低(P<0.01)。结论:敲减CK13通过下调PTEN蛋白水平进而增强PI3K/AKT/mTOR信号通路活性,最终降低HNE1细胞的放疗敏感性。  相似文献   

16.
Copy number gains and increased expression levels of cellular Inhibitor of Apoptosis protein (cIAP)1 and cIAP2 have been identified in primary diffuse large B-cell lymphoma (DLBCL) tissues. Second mitochondria-derived activator of caspases (Smac) mimetics were designed to antagonize IAP proteins. However, since their effect as single agents is limited, combination treatment represents a strategy for their clinical development. Therefore, we investigated the Smac mimetic BV6 in combination with proteasome inhibitors and analyzed the molecular mechanisms of action. We discovered that BV6 treatment sensitizes DLBCL cells to proteasome inhibition. We show a synergistic decrease in cell viability and induction of apoptosis by BV6/Carfilzomib (CFZ) treatment, which was confirmed by calculation of combination index (CI) and Bliss score. BV6 and CFZ acted together to trigger activation of BAX and BAK, which facilitated cell death, as knockdown of BAX and BAK significantly reduced BV6/CFZ-mediated cell death. Activation of BAX and BAK was accompanied by loss of mitochondrial membrane potential (MMP) and activation of caspases. Pretreatment with the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) rescued BV6/CFZ-induced cell death, confirming caspase dependency. Treatment with CFZ alone or in combination with BV6 caused accumulation of NOXA, which was required for cell death, as gene silencing by siRNA or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-mediated NOXA inactivation inhibited BV6/CFZ-induced cell death. Together, these experiments indicate that BV6 and CFZ cooperatively induce apoptotic cell death via the mitochondrial pathway. These findings emphasize the role of Smac mimetics for sensitizing DLBCL cells to proteasome inhibition with important implications for further (pre)clinical studies.  相似文献   

17.
Estradiol (E2) increases not only the cell growth but also the cancer stem cell (CSC) proportion in estrogen receptor (ER)‐positive breast cancer cells. It has been suggested that the non‐canonical hedgehog (Hh) pathway activated by E2 plays an important role in the regulation of CSC proportion in ER‐positive breast cancer cells. We studied anti‐CSC activity of a non‐canonical Hh inhibitor GANT61 in ER‐positive breast cancer cells. Effects of GANT61 on the cell growth, cell cycle progression, apoptosis and CSC proportion were investigated in four ER‐positive breast cancer cell lines. CSC proportion was measured using either the mammosphere assay or CD44/CD24 assay. Expression levels of pivotal molecules in the Hh pathway were measured. Combined effects of GANT61 with antiestrogens on the anti‐cell growth and anti‐CSC activities were investigated. E2 significantly increased the cell growth and CSC proportion in all ER‐positive cell lines. E2 increased the expression levels of glioma‐associated oncogene (GLI) 1 and/or GLI2. GANT61 decreased the cell growth in association with a G1‐S cell cycle retardation and increased apoptosis. GANT61 decreased the E2‐induced CSC proportion measured by the mammosphere assay in all cell lines. Antiestrogens also decreased the E2‐induced cell growth and CSC proportion. Combined treatments of GANT61 with antiestrogens additively enhanced anti‐cell growth and/or anti‐CSC activities in some ER‐positive cell lines. In conclusion, the non‐canonical Hh inhibitor GANT61 inhibited not only the cell growth but also the CSC proportion increased by E2 in ER‐positive breast cancer cells. GANT61 enhanced anti‐cell growth and/or anti‐CSC activities of antiestrogens in ER‐positive cell lines.  相似文献   

18.
Rhabdomyosarcoma (RMS) typically arises from skeletal muscle. Currently, RMS in patients with recurrent and metastatic disease have no successful treatment. The molecular pathogenesis of RMS varies based on cancer sub-types. Some embryonal RMS but not other sub-types are driven by sonic hedgehog (Shh) signaling pathway. However, Shh pathway inhibitors particularly smoothened inhibitors are not highly effective in animals. Here, we show that Shh pathway effectors GLI1 and/or GLI2 are over-expressed in the majority of RMS cells and that GANT-61, a specific GLI1/2 inhibitor dampens the proliferation of both embryonal and alveolar RMS cells-derived xenograft tumors thereby blocking their growth. As compared to vehicle-treated control, about 50% tumor growth inhibition occurs in mice receiving GANT-61 treatment. The proliferation inhibition was associated with slowing of cell cycle progression which was mediated by the reduced expression of cyclins D1/2/3 & E and the concomitant induction of p21. GANT-61 not only reduced expression of GLI1/2 in these RMS but also significantly diminished AKT/mTOR signaling. The therapeutic action of GANT-61 was significantly augmented when combined with chemotherapeutic agents employed for RMS therapy such as temsirolimus or vincristine. Finally, reduced expression of proteins driving epithelial mesenchymal transition (EMT) characterized the residual tumors.  相似文献   

19.
Background: Previous studies have reported that Hizikia fusiforme, an edible brown seaweed, has diverse health-promoting effects; however, evidence for its anti-cancer potential is still lacking. In this study, we examined the effect of ethanol extract of H. fusiforme (EHF) on the proliferation of B16F10 mouse melanoma cells. Methods: Analyses of cell viability and apoptosis were performed to study the actions of EHF on B16F10 cells. Cellular reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) were measured using a flow cytometer. Western blot analysis was carried out to measure apoptosis and phosphoinositide 3-kinase (PI3K)/Akt signaling related proteins. Results: EHF treatment significantly decreased B16F10 cell viability, which was associated with induction of apoptosis. EHF activated caspase-8 and caspase-9, which are involved in the initiation of extrinsic and intrinsic apoptosis pathways, respectively, and also increased caspase-3 activity, a typical effect caspase, subsequently leading to poly (ADP-ribose) polymerase cleavage. In addition, EHF destroyed the integrity of mitochondria and increased Bax/Bcl-2 ratio, which contributed to cytosolic release of cytochrome c. EHF further enhanced intracellular levels of ROS and the addition of N-acetyl cysteine (NAC), a ROS inhibitor, significantly diminished EHF-induced mitochondrial dysfunction and growth inhibition. Moreover, EHF inactivated the PI3K/Akt signaling pathway and LY294002, a PI3K/Akt inhibitor, increased the apoptosis-inducing effect of EHF. However, increased apoptosis and reduced cell viability by simultaneous treatment of EHF and LY294002 were significantly attenuated in the presence of NAC. Conclusion: These results indicate that EHF induces apoptosis through activation of extrinsic and intrinsic apoptotic pathways and ROS-dependent inactivation of PI3K/Akt signaling in B16F10 cells.  相似文献   

20.
Although HER2 targeted therapies have substantially improved outcomes in HER2 overexpressing (HER2+) breast cancer, resistance to these therapies remains a clinical challenge. To better understand the mechanisms of resistance to lapatinib, a HER2 and EGFR dual kinase inhibitor, we treated HER2+ breast cancer cells with lapatinib for an extended period to generate a lapatinib-resistant (LapR) cell line model and examined cancer-promoting signaling activation in LapR cells. We found that LapR cells possess enhanced mTOR activation, which was independent of PI3K and other known mTOR activators. Lapatinib resistance could be reversed by mTOR kinase inhibition. Intriguingly, LapR cells had constitutive cytosolic cytochrome C, indicating that LapR cells suppress lapatinib-induced apoptosis downstream of cytochrome C release from mitochondria into the cytosol rather than by preventing its release into the cytosol. Consistent with this notion, LapR cells possessed increased levels of 2 of the inhibitors of apoptosis (IAPs), survivin and c-IAP-2, which are reported to block caspase activation downstream of cytosolic cytochrome C release. Further, treatment with the mTOR kinase inhibitor AZD8055 or the Hsp90 inhibitor 17-AAG reversed expression of IAPs and overcame lapatinib resistance in LapR cells. Together, these data suggest that suppression of apoptosis downstream of cytosolic cytochrome C release, possibly through increased expression of IAPs or other caspase-suppressing proteins, may promote lapatinib resistance. Further, PI3K is thought to be the main driver of lapatinib resistance, but our findings indicate that PI3K inhibitors may be ineffective in some lapatinib-resistant HER2+ breast cancers with PI3K-independent activation of mTOR kinase, which may instead benefit from mTOR or Hsp90 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号