首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An elaborate organization of luteinizing hormone-releasing hormone (LH-RH) immunoreactive (ir) cells and fibers was encountered in the olfactory system of Clarias batrachus. In addition to the ir structures in the olfactory nerve, peripheral area of the olfactory bulb, and the medial olfactory tract (MOT), ir cells and fibers were prominently seen in the lamellae of the olfactory organ. Perikarya showing varying degrees of intensity of immunoreaction were observed along the base of the forebrain in the nucleus preopticus basalis lateralis, nucleus preopticus periventricularis, nucleus preopticus, nucleus lateralis tuberis pars posterior, and the pituitary. Some cells were also noticed in the midbrain tegmentum. A well-defined system of ir fibers from the MOT penetrated the telencephalon and curved dorsocaudally into the pars supracommissuralis above the anterior commissure (AC); while some fibers decussate in the AC, others extended posteriorly into the diencephalon. A fairly dense network of beaded ir fibers was seen in the basal forebrain, conspicuous around the organum vasculosum laminae terminalis and caudally traceable as far as the neurohypophysis; some immunostained fibers appear to be directly contacting with the cells of the proximal pars distalis. Fibers were also witnessed in the optic chiasma and in the inner plexiform layer of the retina. Solitary fibers were noticed in certain circumscribed telencephalic areas, caudal hypothalamus, posterior commissure, midbrain tegmentum, cerebellum, and ventral medulla oblongata. The highly organized LH-RH containing system in C. batrachus is indicative of its elaborate role in synchronization of the reproductive processes and the environmental cues.  相似文献   

2.
Using two different antisera, one raised against total human pancreatic growth hormone releasing factor (hpGRF) coupled through a two-step glutaraldehyde method and the other one raised against rat hypothalamic growth hormone releasing factor 1-10 (rGRF1-10), GRF-like immunoreactivity was localized in the hypothalamo-hypophyseal system of the frog (Rana temporaria) and the sea bass (Dicentrarchus labrax). In the frog immunoreactive neurons were found in the nucleus preopticus, pars magnocellularis. The immunopositive fibers were localized in the lateral wall of the preoptic recess, the pars ventralis of the tuber cinereum, the internal and external zone of the median eminence, and the neural lobe. Positive-stained neurons in the sea bass were located in the preoptic nucleus, in the pars magnocellularis as well as in the pars parvocellularis, and in the nucleus lateralis tuberis, pars rostralis. GRF-ir nerve fibers, originating in the hypothalamus, projected to the rostral and proximal pars distalis, the posterior neurohypophysis, and the pars intermedia (PI). Double stainings with anti-GRF and anti-ACTH or anti-trout GH showed some close relationship between GRF immunoreactive nerve fibers and adenohypophyseal cell types. In the PI both the MSH and the PI "PAS" positive cells seemed to be directly innervated by the GRF-ir axons. These results show that a GRF-like system is present in the hypothalamo-hypophyseal system of amphibians and teleosts and that in these lower vertebrates GRF-like material may be secreted directly in the systemic circulation. The function of this GRF, however, is not yet clear.  相似文献   

3.
In the present study we investigated the distribution of gonadotropin-releasing hormones (GnRH) in the brain of Lates niloticus and their association with different pituitary cell types using immunohistochemical techniques. We found immunoreactive (ir) chicken GnRH-II (cGnRH-II) and mammalian GnRH (mGnRH) as the main components of the GnRH-ir system within the brain of the Nile perch. The results indicate that mGnRH and cGnRH are localized in different neurons: mGnRH-ir perikaria were observed in the preoptic region particularly in the organum vasculosum laminae terminalis (OVLT) and in the nucleus lateralis tuberis pars posterior (NLTP) of the mediobasal hypothalamus. These cell bodies are located along a continuum of ir-fibers that could be traced from the olfactory nerve to the pituitary. mGnRH-ir fibers were detected in many parts of the brain (olfactory bulbs, ventral telencephalon, hypothalamus, and mesencephalon) and in the pituitary. cGnRH-ir cell bodies are restricted to the optic tract, but few scattered fibers could be detected in different parts of the brain. The pituitary exhibited very few cGnRH-II ir fibers, contrasting with an extensive mGnRH innervation. Moreover, mGnRH-ir fibers were targeting the three areas of the pituitary gland: rostral pars distalis (RPD), proximal pars distalis (PPD), and pars intermedia (PI). Double immunolabeling studies showed GnRH-ir fibers in close proximity with prolactin (PRL)- and adrenocorticotropic hormone (ACTH)-producing cells in the RPD, growth hormone (GH)-producing cells in the PPD, gonadotropins (GTHs)-producing cells in the PPD in the external border of the PI, and with somatolactin (SL)- and alpha-melanocyte stimulating hormone (alpha-MSH)-producing cells in the PI. Our results showed direct morphological evidence for a close association of GnRH-ir fibers with the different adenohypophysial cell types. These results suggest a multiple role of GnRH in the regulation of various pituitary hormones' release.  相似文献   

4.
This report describes the distribution of corticotropin-releasing factor (CRF)-like immunoreactivity in the brain and the contiguous localization of CRF- and thyrotropin-stimulating hormone (TSH)-like immunoreactivity in the pituitary of hatchery-reared, juvenile chinook salmon (Oncorhynchus tshawytscha). Results show that CRF-immunoreactive cell bodies exist in the parvocellular and magnocellular nuclei of the preoptic area and in a ventral hypothalamic region corresponding to the nucleus lateralis tuberis. CRF-immunoreactive fibers are observed along the rostral edge of the hypothalamus, in the pituitary stalk, and in the pituitary gland. Within the pituitary, CRF-immunoreactive fibers, with terminal-like boutons, were distinguishable in the neurohypophysis, pars distalis (PD), and pars intermedia (PI). In the PD, the CRF-immunoreactive fibers terminate in regions that contain TSH-positive pituitary cells. From this study, we conclude that CRF-immunoreactive fibers travel through, and terminate in, the neurohypophysis. CRF-immunoreactive fibers were also observed to terminate within the basement membrane and within the PD and PI of the adenohypophysis. Furthermore, the contiguous localization of CRF-immunoreactive fibers and TSH-immunoreactive pituitary cells suggests that CRF may mediate release of TSH.  相似文献   

5.
Immunocytochemistry on frozen sections revealed that in both the trout and the carp, parvocellular neurones located in the medial basal hypothalamus (medial nucleus lateralis tuberis) were immunostained by antisera against three molecules known to be derived from the proopiomelanocortin (POMC) molecule, viz: alpha-melanocyte-stimulating hormone (alpha MSH), ACTH, and salmonid NPP--the whole N-terminal sequence preceding ACTH in the POMC precursor. Axons from these neurones extended into various regions of the brain but did not appear to project into the pituitary gland. Antiserum against salmonid melanin-concentrating hormone (MCH) immunostained magnocellular neurones in the lateral basal hypothalamus (lateral nucleus lateralis tuberis). Axons from some of these neurones projected into the brain while other axons extended into the pituitary gland. In the carp, but not in the trout, some MCH neurones were also immunostained by antisera against alpha MSH but not by antisera against the other POMC molecules.  相似文献   

6.
The localization of immunoreactive thyrotropin-releasing hormone (IR-TRH) in the forebrain and pituitary of carp was studied immunohistochemically using the peroxidase-antiperoxidase technique. In the hypothalamus. IR-TRH was present in the neuronal processes extending from the preoptic nucleus (NPO) to the nucleus recessus lateralis (NRL). Cell bodies appeared to be present in the inside of the medial NRL. Most of these neurons were fusiform and bipolar. Immunoreactive-beaded fibers streamed from the anterior part of the NRL toward the nucleus posterioris periventriculas and nucleus lateral tuberis pars posterioris. Vertical strands of the beaded fibers ran in the nucleus lateral tuberis pars anterioris. In the pituitary, the reaction product was found in the neural lobe, where intense immunoreactivity was evident along neural fibers entering the intermediate lobe. Staining could be detected only rarely in the anterior lobe. IR-TRH-beaded fibers were present in the olfactory stalk as well as in the caudal and inner parts of the olfactory bulb. In contrast to the high concentration of IR-TRH in the olfactory bulb, immunohistochemical data from this work indicated weak immunoreactivity in this region.  相似文献   

7.
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that is important in the regulation of energy homeostasis. MCH signals via a seven-transmembrane G protein-coupled receptor, which is coupled to Galpha(i). This receptor was initially cloned in rat and human and designated SLC-1 because of its homology to the somatostatin receptor. In rat brain, it is expressed in a pattern that mirrors the previously described pattern of projections of MCH-immunoreactive fibers. In the present study we cloned the mouse MCH receptor (MCH-R) ortholog by a rapid amplification of 5'- and 3'-cDNA ends approach and have found it to be 98% homologous with the rat sequence. We have characterized MCH-R messenger RNA distribution in the mouse brain by in situ hybridization and have shown MCH-R to be expressed in diverse brain areas implicated in the regulation of feeding, body adiposity, and sensory integration of smell and gustatory inputs, including the hypothalamus [paraventricular nucleus (magnocellular part) and dorsomedial, ventromedial, and arcuate nucleus], areas of the olfactory pathway, and the nucleus of the solitary tract. We also studied MCH-R regulation and found that MCH-R expression is increased 7-fold by 48-h fasting or genetic leptin deficiency (ob/ob mice) and is completely blunted by leptin administration. In contrast, MCH-R messenger RNA expression remains unaltered in genetic MCH deficiency. Our findings suggest that MCH-R constitutes a central target of leptin action in the mammalian brain.  相似文献   

8.
9.
A unique neuronal system was detected in the rat central nervous system by immunohistochemistry and radioimmunoassay with antibodies to salmon melanin-concentrating hormone (MCH). MCH-like immunoreactive (MCH-LI) cell bodies were confined to the hypothalamus. MCH-LI fibers were found throughout the brain but were most prevalent in hypothalamus, mesencephalon, and pons-medulla regions. High concentrations of MCH-LI were measured in the hypothalamic medial forebrain bundle (MFB), posterior hypothalamic nucleus, and nucleus of the diagonal band. Reversed-phase high-performance liquid chromatography of MFB extracts from rat brain indicate that MCH-like peptide from the rat has a different retention time than that of the salmon MCH. An osmotic stimulus (2% NaCl as drinking water for 120 hr) caused a marked increase in MCH-LI concentrations in the lateral hypothalamus and neurointermediate lobe. The present studies establish the presence of MCH-like peptide in the rat brain. The MCH-LI neuronal system is well situated to coordinate complex functions such as regulation of water intake.  相似文献   

10.
The role of beta-endorphin in modulating the gonadotropic action of gonadotropin-releasing hormone (GnRH) is well established in mammals. Although the information from teleosts also suggests that endogenous opioids modulate GnRH secretion and influence gonadotropic hormone release, the anatomical substrate in which opiate peptides and GnRH may interact has not been studied. Herein we describe the mammalian GnRH- and beta-endorphin-like immunoreactivities in the olfactory system, forebrain, and pituitary of the teleost, Clarias batrachus, using the double immunocytochemical method. While several olfactory receptor neurons showed beta-endorphin- or GnRH-like immunoreactivity, some neurons with dual immunoreactivities were also seen. GnRH- and/or beta-endorphin-like immunolabeled fascicles were seen in the olfactory nerves as they run caudally to the olfactory bulb and spread in the periphery. Several fascicles branch profusely to form tufts organized as spherical neuropils in the glomerular layer. Frequently, the innervation of the glomeruli showed a distinct pattern. While the fascicles on the medial side showed a predominance of beta-endorphin-like fibers, the majority of the fascicles on the lateral side of the bulb showed dual immunoreactivities. Several GnRH- and beta-endorphin-like immunoreactive fibers were seen in the medial olfactory tract as it extends through the telencephalon in the area ventralis telencephali/pars supracommissuralis; individual fibers with dual staining were also seen. The nucleus lateralis tuberis showed beta-endorphin- as well as GnRH-like immunoreactive neurons. While GnRH-containing cells were seen in the proximal pars distalis and pars intermedia, beta-endorphin-like cells were located throughout the pituitary; some cells in the pars intermedia showed dual immunoreactivity. The high degree of overlapping suggests the possibility of profound interplay between GnRH- and beta-endorphin-like immunoreactive systems at different levels of the neuraxis.  相似文献   

11.
Rainbow trout were reared in black or off-white coloured tanks for up to 18 months of age to achieve maximum differences in the synthesis of the neuropeptide, melanin-concentrating hormone (MCH). White-reared fish had greatly increased MCH concentrations in their pituitary glands, in their MCH perikarya and in the presumptive neuromodulatory fibres of the dorsal hypothalamus/thalamus when compared with black-reared and commercially reared trout. Following transfer to brighter white tanks, white-reared fish showed a significant increase in plasma MCH concentration and a reduction of MCH in the pituitary and MCH perikarya. The additional challenge of repeated stress further increased plasma MCH concentration in these fish and also reduced MCH in the dorsal hypothalamus/thalamus. In black-reared fish transferred to white tanks, plasma MCH concentrations were significantly raised after transfer, although they were lower after 11 days than in white-reared counterparts. Transfer from black to white background caused a fall in the MCH concentration in all regions--pituitary gland, perikarya and dorsal hypothalamus/thalamus; if transfer was accompanied by repeated stress, the hormone in the pituitary gland and MCH perikarya became so depleted that plasma MCH concentrations declined. Within each experimental situation (control, background transfer and transfer with stress) there was in inverse correlation between plasma MCH concentrations of black- and white-reared fish and the cortisol concentration. MCH had no direct effect on the secretion of cortisol by interrenal tissue but incubated hypothalami, in which endogenous MCH had been immunoabsorbed, provided evidence that MCH can depress the release of corticotrophin-releasing bioactivity.  相似文献   

12.
In addition to its novel, colour-regulating hormonal role in teleosts, the melanin-concentrating hormone (MCH) serves as a neuromodulatory peptide in all vertebrate brains. In gnathostome vertebrates, it is produced in several neuronal cell groups in the hypothalamus. The present work examines the organisation of the MCH system in the brain of lampreys, which separated from gnathostome vertebrates at an early stage in evolution. In all three lamprey genera examined-Petromyzon, Lampetra, and Geotria spp.-MCH perikarya were found in one major anatomical site, the periventricular dorsal hypothalamic nucleus of the posterior hypothalamus. Axons from these cell bodies projected medially into the ventricular cavity, and laterally to the neuropile of the lateral hypothalamus. From here, they extended anteriorly and posteriorly to the fore- and hindbrain. Other fibres extended dorsomedially to the habenular nucleus. In Lampetra, but not in Petromyzon, MCH fibres were seen in the pituitary neurohypophysis, most prominantly above the proximal pars distalis. The hypothalamic region in which the MCH perikarya are found forms part of the paraventricular organ (PVO), which is rich in monoamines and other neuropeptides. The association of MCH neurones with the PVO, which occurs also in many other nonmammalian vertebrates, may reflect the primary location of the MCH system. These MCH neurones were present in ammocoetes, postmetamorphic juveniles, and adults. They were more heavily granulated in adults than in young lampreys but showed no marked change in secretory appearance associated with metamorphosis or experimental osmotic challenge to indicate a role in feeding or osmoregulation. In sexually maturing Lampetra fluviatilis, however, a second group of small MCH neurones became detectable in the telencephalon, suggesting a potential role in reproduction and/or behaviour.  相似文献   

13.
Melanin-concentrating hormone (MCH) exerts a positive regulation on appetite and binds to the G protein-coupled receptors, MCH1R and MCH2R. In rodents, MCH is produced by neurons in the lateral hypothalamus with projections to various hypothalamic and other brain sites. In the present study, MCH1R was shown, by immunocytochemistry, to be present in the human infundibular nucleus/median eminence, paraventricular nucleus, lateral hypothalamic area, and perifornical area, although in the latter two regions, only a few MCH1R-containing cells were found. In addition, MCH1R staining was found in nerve fibers in the periventricular nucleus, dorsomedial and ventromedial nucleus, suprachiasmatic nucleus, and tuberomammillary nucleus. A significant 1.6 times increase in the number of MCH1R cell body staining was found in the infundibular nucleus in postmortem brain material of cachectic patients, compared with matched controls, supporting a role for this receptor in energy homeostasis in the human.  相似文献   

14.
Effects of background color on gonadotropin-releasing hormone (GnRH) and melanin-concentrating hormone (MCH) levels in the brain of the barfin flounder Verasper moseri were monitored to investigate the interaction of GnRH and MCH in the brain. Fish were reared in white or black tanks from one month after hatching for about 7 months. MCH levels in the brain and pituitary were higher in the white tank fish. In contrast, chicken GnRH-II (cGnRH-II) levels in the brain were higher in the black tank fish. No significant differences between background colors were observed in the brain concerning salmon GnRH and seabream GnRH levels. Furthermore, six-month-old fish that had been reared in white tank were transferred to another white or black tank. Brain cGnRH-II levels were higher in black tank fish than those in white tank at 2 and 7 days after the transfer. Double-staining immunohistochemistry showed that some cGnRH-II-immunoreactive (ir) fibers were in close contact with MCH-ir cell bodies in the hypothalamus. These results indicate that background color affects not only MCH levels but also cGnRH-II levels in the brain and suggest that cGnRH-II may play a role in the regulation of MCH neural function, food intake, in the brain of the barfin flounder.  相似文献   

15.
The distribution of galanin (GAL) and somatotropin-release-inhibiting-factor (SRIF) immunoreactivity in the hypothalamus and pituitary of the sea bream (Sparus aurata) was studied by immunocytochemistry. An extensive system of neurons immunoreactive with antisera to the two peptides was identified throughout the brain with staining particularly in the hypothalamus. In the hypothalamus, GAL immunoreactive perikarya were detected principally in the nucleus preopticus and nucleus tuberis. Major nerve tracts were observed to sweep down from the hypothalamic nuclei and reached the pituitary via the preoptico-hypophysial tract. Many of the fibers had varicose swellings indicating they were secretory. SRIF immunoreactivity was distributed similarly to GAL but the network of nerve fibers was less dense; no colocalization of these two peptides was seen. SRIF immunoreactive perikarya were present in the preoptic nucleus, the tuberal nucleus, and the basolateral hypothalamus. These perikarya were large and densely staining and were predominately bipolar, although some multipolar perikarya were observed. In the pituitary GAL and SRIF immunoreactivities were confined principally to the pars distalis where fibers infiltrated between growth hormone, prolactin, and adrenocorticotrophic cells. More of the fibers were immunoreactive for SRIF than for GAL. There was no immunoreaction for GAL or SRIF in any of the pituitary cells. There is thus morphological evidence for a neuroendocrine control of the pars distalis by GAL and SRIF and for a possible functional interaction between these two systems.  相似文献   

16.
17.
Neurons containing melanin-concentrating hormone (MCH) are codistributed with neurons containing orexin (Orx or hypocretin) in the lateral hypothalamus, a peptide and region known to be critical for maintaining wakefulness. Evidence from knockout and c-Fos studies suggests, however, that the MCH neurons might play a different role than Orx neurons in regulating activity and sleep–wake states. To examine this possibility, neurons were recorded across natural sleep–wake states in head-fixed rats and labeled by using the juxtacellular technique for subsequent immunohistochemical identification. Neurons identified as MCH+ did not fire during wake (W); they fired selectively during sleep, occasionally during slow wave sleep (SWS) and maximally during paradoxical sleep (PS). As W-Off/Sleep-On, the MCH neurons discharged in a reciprocal manner to the W-On/Sleep-Off Orx neurons and could accordingly play a complementary role to Orx neurons in sleep–wake state regulation and contribute to the pathophysiology of certain sleep disorders, such as narcolepsy with cataplexy.  相似文献   

18.
A simple bioassay method for the teleost melanin-concentrating hormone (MCH) is described. Using this assay and also the Anolis bioassay for melanocyte-stimulating hormone (MSH) the work compares the relative concentrations of MSH and MCH in the pituitary of various teleost species and their pattern of distribution after polyacrylamide gel electrophoresis. Neurointermediate lobes from trout were cultured and various factors [cold, cycloheximide, ethyleneglycol bis(β-aminoethyl ether)N,N′-tetraacetic acid) (EGTA), and high K ion concentration] were examined for their effect on MSH and MCH secretion. EGTA and high K+ both inhibited MSH release; cold and cycloheximide appeared to reduce MSH synthesis. Whereas these effects on MSH were predictable and consistent, the response of MCH was erratic and unpredictable. In contrast to MSH, there was no evidence for MCH synthesis in vitro. The hypothalamus of the trout contains as much MCH as the pituitary, and the concentration of MCH in the hypothalamus varies with the background colour on which the fish is kept. The evidence as a whole suggests that MCH is an hypothalamic secretion which is stored and released by the neurohypophysis.  相似文献   

19.
Using immunofluorescence, evidence of a somatostatin (SRIF)-like antigen has been found in the brain and digestive tract of rainbow trout. In the diencephalon, periventricular SRIF immunoreactive hypendymocytes are located in the region dorsal to the nucleus preopticus (NPO). SRIF immunoreactive perikarya are concentrated anterior to the NPO in the nucleus preopticus periventricularis, scattered in small cells in the nucleus lateralis tuberis (NLT) pars anterior, and in a few cells located in an unnamed nucleus in the dorsomedial hypothalamus. In the pituitary SRIF immunoreactive material is located in the neurohypophysial tissue in the proximal pars distalis. In the gut, SRIF cells have been found in the endocrine pancreas and in the gastric mucosa. Comparatively, material immunoreactive for luteinizing hormone-releasing hormone has the same distribution in the pituitary as SRIF, whereas neurophysin immunoreactivity was found in only the neurophysial tissue of the neurointermediate lobe. A few cells reacting with anti-α-endorphin were seen in the NLT in the pituitary stalk region. All the pars intermedia cells in the neurointermediate lobe react with anti-α-endorphin.  相似文献   

20.
The organization of glucagon-like immunoreactivity (GLI) in the olfactory system, forebrain, and pituitary was investigated in the teleost Clarias batrachus. Weak to moderate GLI was seen in some olfactory receptor neurons and basal cells of the olfactory epithelium. Intense GLI was seen in the olfactory nerve fascicles that ran caudally to the bulb, spread over in the olfactory nerve layer, and profusely branched in the glomerular layer to form tufts organized as spherical neuropils; some of the immunoreactive fibers seem to closely enfold the mitral cells. In the inner cell layer of the bulb, some granule cells were intensely immunoreactive. Although there were thick fascicles of immunoreactive fibers in the medial olfactory tracts (MOT), the lateral olfactory tracts were generally devoid of immunoreactivity. Immunoreactive fibers in the medial olfactory tract penetrated into the telencephalon from its rostral pole and entered into the area ventralis telencephali/pars ventralis where the compact fiber bundles loosen somewhat and course dorsocaudally into the area ventralis telencephali/pars supracommissuralis just above the anterior commissure. While some immunoreactive fibers decussated in the anterior commissure, fine fibers were seen in the commissure of Goldstein. Isolated immunoreactive fibers of the medial olfactory tract were traced laterally into the area dorsalis telencephali/pars lateralis ventralis and mediodorsally into the area dorsalis telencephali/pars medialis. However, a major component of the MOT continued dorsocaudally into the thalamus and terminated in the habenula. Two immunoreactive neuronal groups and some isolated cells were seen in the periventricular region of the thalamus. Although nucleus preopticus showed no immunoreactivity, some neurons of the nucleus lateralis tuberis displayed moderate GLI. Several immunoreactive cells were seen in the pars intermedia of the pituitary gland; few were encountered in the rostral pars distalis and proximal pars distalis. Immunoreactive fibers were seen throughout the pituitary gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号