首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cyclic nucleotides (cAMP and cGMP) phosphodiesterase (PDE) activities and expression are altered in the cardiac muscle of cardiomyopathic heart failure, and PDE inhibitors improve the abnormal muscle condition through changing the cyclic nucleotide concentration. These observations prompted us to investigate the role of calmodulin (CaM) in the regulation of cyclic nucleotide PDE activities, and moreover to study the modulation of the PDE isozymes in heart failure, using cardiac muscles of cardiomyopathic hamster. The CaM concentrations in the heart muscle of the normal control and cardiomyopathic hamsters (each of three to four hamsters) varied with cell fraction and with the age of the animal. The CaM concentrations in the soluble fraction obtained from cardiomyopathic hamster tissue were significantly increased at 25 and 32 weeks of age (2.02 +/- 0.62 microg/mg protein (mean +/- S.E.), and 3.21 +/- 0.95) compared with that obtained from the control (0.60 +/- 0.04) or cardiomyopathic (0.95 +/- 0.12) hamsters at 8 weeks of age. The solubilized PDE isolated from the hamster heart muscle (three or four hamsters in each age) by column chromatography on diethylaminoethyl (DEAE)-cellulose revealed three peaks of activity, which may correspond to the isozymes of PDE classified recently, namely PDE I, II, and III. These three peaks of activity, particularly peak III, seen in the soluble fraction of cardiomyopathic hamster heart declined in proportion to the age of the animal compared with that of the control hamster heart. In the cGMP-PDE assay system, the concentration of CaM inhibitor W-7 required for 50% inhibition (IC(50)) of PDE I, II, and III peak activities was 140, 29, and 46 microM, respectively, suggesting that PDE II is more sensitive to W-7. These results suggest that alteration in these isozyme activities accompanied with changes of CaM concentration may influence the cardiac muscle contractility in cardiomyopathic hamster via changes of cyclic nucleotide concentration.  相似文献   

2.
Evaluation of the impact of therapeutic interventions in congestive heart failure (CHF) with compounds such as the phosphodiesterase (PDE) III inhibitors must include the determination of regional blood flow and functional changes. Thus, whereas PDE III inhibitors produce a significant increase in cardiac output and reduction of systemic vascular resistance, it is necessary to understand their effects on the kidney and neurohormonal parameters. The evaluation of these effects must take into consideration both the baseline renal and neurohormonal abnormalities in CHF, and the cellular actions of PDE III inhibition, which include an increase in cyclic adenosine monophosphate and cytosolic calcium. In a group of 13 patients with CHF, milrinone therapy for 1 month did not increase renal blood flow or glomerular filtration rate, or favorably affect neurohormonal parameters. However, forearm blood flow increased proportionately with cardiac output. Therefore PDE III inhibition produces a preferential increase in skeletal muscle blood flow, which may be a relative shunting of blood from the kidney. Alternatively, PDE III inhibition may activate renal cellular mechanisms that offset the anticipated favorable response to the increase of cardiac output produced by milrinone.  相似文献   

3.
Drugs that inhibit cyclic nucleotide phosphodiesterase activity act to increase intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) content. In total, 11 families of these enzymes—which differ with respect to affinity for cAMP and cGMP, cellular expression, intracellular localization, and mechanisms of regulation—have been identified. Inhibitors of enzymes in the PDE3 family of cyclic nucleotide phosphodiesterases raise intracellular cAMP content in cardiac and vascular smooth muscle, with inotropic and, to a lesser extent, vasodilatory actions. These drugs have been used for many years in the treatment of patients with heart failure, but their long-term use has generally been shown to increase mortality through mechanisms that remain unclear. More recently, inhibitors of PDE5 cyclic nucleotide phosphodiesterases have been used as cGMP-raising agents in vascular smooth muscle. With respect to cardiovascular disease, there is evidence that these drugs are more efficacious in the pulmonary than in the systemic vasculature, for which reason they are used principally in patients with pulmonary hypertension. Effects attributable to inhibition of myocardial PDE5 activity are less well characterized. New information indicating that enzymes from the PDE1 family of cyclic nucleotide phosphodiesterases constitute the majority of cAMP- and cGMP-hydrolytic activity in human myocardium raises questions as to their role in regulating these signaling pathways in heart failure.  相似文献   

4.
磷酸二酯酶(PDE)存在于许多炎症细胞及结构细胞中,目前已发现11种.PDE抑制剂主要抑制体内环磷酸腺苷(cAMP)及环磷酸鸟苷(cGMP)水解,使细胞内cAMP及cGMP浓度增加,引起一系列生理功能,如平滑肌舒张、减轻细胞炎症及免疫反应等.PDE4特异性水解cAMP,选择性PDE4抑制剂具有广泛抗炎作用,如抑制细胞趋化,抑制中性粒细胞、嗜酸粒细胞、巨噬细胞及T细胞细胞因子及化学趋化物质释放.第二代PDE4抑制剂Cilomilast和Roflumilast已进入临床实验阶段,并已证实对支气管哮喘(简称哮喘)及慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)有效.由于胃肠道副作用,这类药物临床应用受到一定限制.PDE5可特异性水解cGMP,对缺氧性肺动脉高压和血管重塑有效.PDE3和PDE7特异性水解cAMP,PDE7参与T细胞激活.目前其他PDE抑制剂与PDE4抑制剂混合制剂正在研发中.PDE4-PDE7双重抑制剂可能对哮喘及COPD更有效.PDE3-PDE4双重抑制剂具有更强的支气管舒张作用及气道保护作用.  相似文献   

5.
The second messengers, cAMP and cGMP, regulate a number of physiological processes in the myocardium, from acute contraction/relaxation to chronic gene expression and cardiac structural remodeling. Emerging evidence suggests that multiple spatiotemporally distinct pools of cyclic nucleotides can discriminate specific cellular functions from a given cyclic nucleotide-mediated signal. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing intracellular cyclic AMP and/or cyclic GMP, control the amplitude, duration, and compartmentation of cyclic nucleotide signaling. To date, more than 60 different isoforms have been described and grouped into 11 broad families (PDE1–PDE11) based on differences in their structure, kinetic and regulatory properties, as well as sensitivity to chemical inhibitors. In the heart, PDE isozymes from at least six families have been investigated. Studies using selective PDE inhibitors and/or genetically manipulated animals have demonstrated that individual PDE isozymes play distinct roles in the heart by regulating unique cyclic nucleotide signaling microdomains. Alterations of PDE activity and/or expression have also been observed in various cardiac disease models, which may contribute to disease progression. Several family-selective PDE inhibitors have been used clinically or pre-clinically for the treatment of cardiac or vascular-related diseases. In this review, we will highlight both recent advances and discrepancies relevant to cardiovascular PDE expression, pathophysiological function, and regulation. In particular, we will emphasize how these properties influence current and future development of PDE inhibitors for the treatment of pathological cardiac remodeling and dysfunction.  相似文献   

6.
In recent years several agents have been developed as selective inhibitors of the low Michaelis constant cyclic adenosine monophosphate (cAMP) phosphodiesterase (peak III), a fraction of the cyclic nucleotide phosphodiesterases that is specific for the metabolic breakdown of cAMP. These agents are often referred to as PDE III inhibitors and share similar pharmacologic profiles. The principal interest in these agents--the therapy of congestive heart failure--is based on the cardiovascular effects that result from sequential elevation of intracellular cAMP, cAMP-dependent protein kinase activation, phosphorylation of cellular proteins and change in cellular function. The selective PDE III inhibitors have a triad of cardiovascular activities that provide hemodynamic benefit to patients with congestive heart failure. As a representative drug from this class of compounds, milrinone increases myocardial contractility, increases the rate of ventricular relaxation, and unloads the heart by way of a peripheral vasodilator action. The selective PDE III inhibitors offer a new modality for oral therapy of congestive heart failure.  相似文献   

7.
Platelets contain two cyclic adenosine monophosphate (cAMP) phosphodiesterases (PDEs) that regulate the level of cAMP, the major inhibitor of platelet activation pathways. PDE3A hydrolyzes cAMP to 5' AMP with a low K (m). PDE3A is inhibited by cyclic guanosine monophosphate (cGMP), which provides a feedback control and controls basal levels of cAMP. In contrast, PDE2A hydrolyzes both cAMP and cGMP with a high K (m), is allosterically stimulated by cGMP at moderate levels, and may control the stimulated levels of cAMP. Using affinity labeling, chemical modification, and site-directed mutagenesis of highly conserved amino acids, the amino acids required for catalytic activity and/or metal binding are H752 and H756. The singular binding sites for cAMP include N845, E971, and F972, whereas the unique amino acids interacting with cGMP are Y751, H836, H849, and D950. Residues E866 and F1004 are present in both the overlapping cGMP and cAMP sites. Two inhibitors of PDE3A are used in clinical medicine: milrinone and cilostazol. Three amino acids, Y751, D950, and F1004, show decreased sensitivity to both inhibitors (increased K (i)). These inhibitors mimic cGMP as an inhibitor of PDE3A rather than compete for cAMP binding. New nonhydrolyzable affinity labels inactivate PDE3A and are protected by Sp-cAMPS, a nonhydrolyzable substrate of the enzyme. These compounds have the potential to identify amino acids that are unique for PDE3A. An inhibitor of platelet PDE2A increases cAMP more than inhibitors of PDE3A but has much less effect on platelet activation, suggesting that these enzymes are present in different compartments of the cell.  相似文献   

8.
Jensen BO  Selheim F  Døskeland SO  Gear AR  Holmsen H 《Blood》2004,104(9):2775-2782
The thrombin-induced platelet shape change was blocked by nitric oxide (NO), as revealed by scanning electron microscopy, light transmission, and resistive-particle volume determination. The inhibitory effect of NO was accompanied by an increase in levels of both cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) and phosphorylation of the vasodilator-stimulated phosphoprotein (VASP). However, the inhibition of the shape change was only mimicked by cAMP analogs (Sp-5,6-DClcBIMPS, 8-AHA-cAMP, and 8-CPT-cAMP) and not by cGMP analogs (8-Br-PET-cGMP, 8-Br-cGMP, and 8-pCPT-cGMP). The effect of NO on the thrombin-induced shape change was prevented by the protein kinase A (PKA) antagonists Rp-8-Br-cAMPS and Rp-cAMPS. The protein kinase G (PKG) antagonist Rp-8-CPT-cGMPS strongly inhibited PKG-mediated 46-kDa VASP Ser239 phosphorylation, but did not inhibit the thrombin-induced shape change or the PKA-mediated VASP Ser157 phosphorylation. Whereas an inhibitor of cyclic nucleotide phosphodiesterase (PDE) 3A (milrinone) mimicked the effect of NO, inhibitors of PDE2 (erythro-9-(2-hydroxy-3-nonyl)adenine) and PDE5 (dipyridamole) were poorly effective. We concluded that (1) NO was a potent and reversible inhibitor of the platelet shape change, (2) the shape change was reversible, (3) the inhibitory effect of NO was mediated through activation of PKA, (4) the onset of the NO effect coincided with VASP Ser157 phosphorylation, and (5) removal of NO and platelet shape change coincided with VASP Ser157 dephosphorylation. These findings are compatible with elevation of cGMP by NO in a compartment close to PDE3A, PKA, and VASP, leading to a local increase of cAMP able to block thrombin-induced shape change.  相似文献   

9.
Zhang W  Colman RW 《Blood》2007,110(5):1475-1482
Thrombin-induced cyclic AMP (cAMP) reduction potentates several steps in platelet activation, including Ca(++) mobilization, cytoskeletal reorganization, and fibrinogen receptor conformation. We now reinvestigate the signaling pathways by which intracellular cAMP content is controlled after platelet activation by thrombin. When washed human platelets were stimulated with thrombin, cAMP-dependent phosphodiesterase (PDE3A) activity was significantly increased. A nonselective PDE inhibitor, 3-isobutyl-1-methylxanthine (IBMX), and the PDE3 selective inhibitors milrinone and cilostazol each suppressed thrombin-induced cAMP-dependent PDE responses, but not 2 different PDE2 inhibitors. Selective inhibition of PDE3A resulted in reversal of thrombin-induced cAMP reduction, indicating that thrombin activated PDE3A. In synergy with inhibition of adenylate cyclase by thrombin, activated PDE3A accelerates cAMP hydrolysis and maximally reduces the cAMP content. Thrombin-induced PDE3A activation was diminished concomitantly with dephosphorylation of PDE3A by protein phosphatase 1 (PP1). An Akt inhibitor blocked PDE3A activation and constrained thrombin-induced cAMP reduction. A P2Y(12) inhibitor also reduced thrombin-induced cAMP reduction. The combination of both reversed cAMP decrease by thrombin. Thrombin-mediated phosphorylated PDE3A was isolated by liquid chromatography, detected by a monoclonal antibody against Akt-phosphorylated substrate, and verified by immunoprecipitation study. The predominant isoform phosphorylated by Akt was the 136-kDa species. We suggest that activation/phosphorylation of PDE3A via Akt signaling pathway participates in regulating cAMP during thrombin activation of platelets.  相似文献   

10.
We investigated the basis for the difference in the cardiotonic effects of the PDE3 inhibitors cilostazol and milrinone in the rabbit heart. Cilostazol displayed greater selectivity than milrinone for inhibition of cAMP-PDE activity in microsomal vs cytosolic fractions from rabbit heart. This difference was due to the inhibition of significantly less cytosolic cAMP-PDE activity by cilostazol compared to milrinone. A combination of cilostazol (>15 M) and the PDE4 selective inhibitor, rolipram (5 M), inhibited levels of cytosolic cAMP-PDE activity similar to those inhibited by milrinone on its own. This suggested that milrinone inhibited PDE4 in addition to PDE3 activity. In isolated rabbit cardiomyocytes, milrinone (>10 M) caused greater elevations in intracellular cAMP and calcium than cilostazol. In the presence of rolipram, however, the cAMP and calcium elevating effects of cilostazol and milrinone were similar. Therefore, in rabbit heart, partial inhibition of PDE4 by milrinone contributed to greater increases in cardiomyocyte cAMP and calcium levels than cilostazol. PDE4 activity in failing human heart was lower than in rabbit heart and there was no significant difference in the inhibition of human cytosolic cAMP-PDE by cilostazol and milrinone. Our results suggest that in normal rabbit heart inhibition of PDE4 by milrinone may partly contribute to the greater cardiotonic effect of milrinone when compared to cilostazol. However, the lower level of PDE4 activity in failing human heart suggests that factors other than inhibition of PDE4 by milrinone may contribute to differences in cardiotonic action when compared to cilostazol.  相似文献   

11.
In vitro studies in rat mastocytes and human monocytes suggested that reproterol (a selective beta(2)-adrenoceptor agonist with a theophylline moiety) exerts anti-inflammatory actions through inhibition of cyclic AMP (cAMP) PDE activity. Thus, reproterol was tested for its ability to inhibit cAMP PDE in cultured mouse mastocytoma P-815 cells. cAMP PDE activity was measured in intact cells by spectrofluorometry using the fluorescent substrate 2'-O-anthraniloyl cAMP. Reproterol was more potent than theophylline to inhibit cAMP PDE (pIC(50)=4.28+/-0.25 vs. 3.16+/-0.05). This contrasted with disrupted cells, where the PDE inhibitory potency of reproterol was low (pIC(50)=2.85+/-0.03) and similar to that of theophylline (pIC(50)=2.66+/-0.19). No cAMP PDE inhibition was found with other beta(2)-agonists tested (fenoterol, salbutamol, salmeterol and formoterol). Finally, the selective PDE inhibitors calmidazolium (100 nM), milrinone (5 microM) and rolipram (50 microM) inhibited cAMP PDE activity by approximately 20, 30 and 25% respectively. In conclusion, reproterol potently and non-specifically inhibited intracellular cAMP phosphodiesterases in intact mastocytoma cells. This can explain the previously reported beta(2)-adrenoceptor-independent anti-inflammatory actions of reproterol in vitro. Further studies are required to define the anti-inflammatory potential of reproterol in asthma.  相似文献   

12.
13.
RATIONALE: Phosphodiesterase Type 5 (PDE5) inhibition represents a novel strategy for the treatment of pulmonary hypertension. OBJECTIVES: Our aim was to establish the distribution of PDE5 in the pulmonary vasculature and effects of PDE5 inhibition on pulmonary artery smooth muscle cells (PASMCs). METHODS AND MEASUREMENTS: PDE5 expression was examined by immunohistochemistry and Western blotting, in both normal and hypertensive lung tissues. DNA synthesis, proliferation, PDE activity, and apoptosis were measured in distal human PASMCs treated with soluble guanylyl cyclase activators (nitric oxide donors and BAY41-2272) and sildenafil. MAIN RESULTS: Cells containing PDE5 and alpha-smooth muscle actin occurred throughout the pulmonary vasculature, including obstructive intimal lesions. Three molecular forms of PDE5 were identified and protein expression was greater in hypertensive than control lung tissue. Most cyclic guanosine monophosphate hydrolysis (about 80%) in cultured cells was attributed to PDE5. Sildenafil induced a greater elevation of intracellular cyclic guanosine monophosphate levels compared with nitric oxide donors and BAY41-2272 (about 10-fold versus about 2-fold) and cotreatment had a synergistic effect, increasing cyclic nucleotide levels up to 50-fold. Dual stimulation of soluble guanylyl cyclase and inhibition of PDE5 activities also had significant downstream effects, increasing phosphorylation of vasodilator-stimulated phosphoprotein, reducing DNA synthesis and cell proliferation, and stimulating apoptosis, and these effects were mimicked by cyclic guanosine monophosphate analogs. CONCLUSIONS: Phosphodiesterase Type 5 is the main factor regulating cyclic guanosine monophosphate hydrolysis and downstream signaling in human PASMCs. The antiproliferative effects of this signaling pathway may be significant in the chronic treatment of pulmonary hypertension with PDE5 inhibitors such as sildenafil.  相似文献   

14.
Treatment of heart failure (HF) is a challenging task. An impaired nitric oxide pathway contributes to several abnormal cardiac and vascular phenotypes typical of the failing cardiovascular system. Inhibition of phosphodiesterase-5 (PDE5) is a new therapeutic strategy for overexpressing nitric oxide signaling by increasing the availability of cyclic guanosine monophosphate (cGMP). A number of background studies support the use of PDE5 inhibitors in HF. Treatment of pulmonary hypertension secondary to left ventricular dysfunction appears to be a primary target by virtue of the high PDE5 selectivity for the pulmonary circulation. Basic studies suggest that increased cGMP activity by PDE5 inhibition has potentially favorable direct myocardial effects that may block adrenergic, hypertrophic, and proapoptotic signaling. Furthermore, studies in humans have underscored the benefits of acute PDE5 inhibition on lung diffusion capacity, systemic endothelial function, muscle perfusion, and exercise performance. Despite promising initial data, larger controlled trials are necessary to define the safety, tolerability, and potential impact of PDE5 inhibitors on morbidity and mortality across the wide spectrum of patients with HF.  相似文献   

15.
Cytosolic and particulate Type IV (high-affinity) cAMP phosphodiesterase (PDE) activities were isolated from the ventricular myocardium of newborn (NB; 24 to 48 h), immature (IM; 14 to 16 days) and adult (AD; 6 to 8 months) rabbits. Cytosolic activity from each age group was resolved into three distinct peaks of activity by DEAE cellulose anion exchange chromatography. Type IV PDE activity was identified as a predominant activity in the cytosolic peak III activity in all three age groups when measured with 0.25 microM cAMP as substrate. A particulate Type IV PDE activity was associated with the sarcoplasmic reticulum (SR) fractions in each age group. No significant age-related changes in the affinity of the particulate enzyme for cAMP (apparent Km = 0.3 to 0.5 microM) were evident, but the Vmax for this SR-associated activity increased from 553 +/- 7 pmol/min/mg in the NB to 725 +/- 9 pmol/min/mg in the IM and 2450 +/- 33 pmol/min/mg in the AD. In each age group, milrinone, imazodan, piroximone and indolidan were more potent inhibitors of the SR-associated activity as compared with the cytosolic peak III activity. In contrast, RO 20-1724 and rolipram were relatively more selective inhibitors of the cytosolic peak III activity. Age-related differences in the sensitivity of type IV PDE to inhibition was dependent upon the selectivity of the inhibitor and the subcellular enzymic distribution. Cytosolic peak III PDE activity was further resolved by gel filtration chromatography into two peaks. Hydrolysis of cAMP by the higher molecular weight peak was inhibitable by cGMP (IC50 = 0.25 +/- 0.07 microM in NB and 0.07 +/- 0.01 microM in AD) whereas the lower molecular weight peak activity was relatively insensitive to inhibition by cGMP (IC50 greater than 100 microM). The lower molecular weight peak constituted a relatively greater proportion of the total peak III activity in the NB as compared to the AD. Analysis of the kinetics of cGMP inhibition of high-affinity cAMP hydrolysis was consistent with the presence of a greater number of high-affinity (presumably drug-sensitive) binding sites in the SR-associated activity as compared to the cytosolic peak III activity in both NB and AD. These results support the hypothesis that the cGMP-inhibitable Type IV PDE activity may be the primary site of action for certain newer cardiotonic drugs. Differences in drug action in young versus adult myocardium may be related to the selectivity of the cardiotonic drugs for this specific isozyme and its lower specific activity during the early stages of maturation.  相似文献   

16.
Phosphodiesterase‐4 (PDE4) hydrolyses cyclic adenosine monophosphate (cAMP), a crucial secondary messenger for cellular adaptation to diverse external stimuli. The activity of PDE4 is tightly controlled by post‐translational regulation, structure‐based auto‐regulation and locus specific ‘compartmentalization’ of PDE4 with its interactive proteins (signalsomes). Through these mechanisms, PDE4 regulates cAMP levels and shapes the cAMP signalling, directing signals from the diverse external stimuli to distinct microenvironments exquisitely. Derangement of the PDE4‐cAMP signalling represents a pathophysiologically relevant pathway in metabolic disorders as demonstrated through a critical role in the processes including inflammation, disordered glucose and lipid metabolism, hepatic steatosis, abnormal lipolysis, suppressed thermogenic function and deranged neuroendocrine functions. A limited number of PDE4 inhibitors are currently undergoing clinical evaluation for treating disorders such as type 2 diabetes and non‐alcoholic steatohepatitis. The discovery of novel PDE4 allosteric inhibitors and signalsome‐based strategies targeting individual PDE4 variants may allow PDE4 isoform selective inhibition, which may offer safer strategies for chronic treatment of metabolic disorders. © 2016 World Obesity  相似文献   

17.
18.
Cyclic AMP phosphodiesterases in human lymphocytes   总被引:4,自引:0,他引:4  
The function of lymphocytes, like platelets, has been shown to be inhibited by agents which increase intracellular cyclic AMP. Two high-affinity cAMP phosphodiesterases (PDEs), the cyclic GMP-inhibited cAMP phosphodiesterase, PDE3, and the cAMP-specific phosphodiesterase PDE4, are known to regulate cAMP concentration in haemopoietic cells by degrading cAMP to AMP. We characterized the relative contribution of the two PDEs to total lymphocyte PDE activity. We then determined which of the different gene products, PDE3A, typical of myocardium and platelets, or PDE3B, typical of adipocytes, were present in lymphocytes. The PDE3-specific inhibitor, milrinone, and the PDE4 inhibitor, rolipram, suppressed hydrolysis by 70% and 30% respectively, which indicated that both PDE4 and PDE3 were present, and that PDE3 was predominant. RT-PCR yields the expected size fragment for the primer pair PDE3B and not for PDE3A. The DNA sequence obtained had > 95% identity with PDE3B. PDE3B appears to be the major cAMP PDE in lymphocytes. In contrast to human platelets, human lymphocytes appear to contain the PDE3B subtype. Since PDE3B in adipocytes is subject to hormonal regulation, lymphocytes may be similarly modulated. Understanding the role of cAMP regulation and the involvement of cAMP in lymphocyte function may have important implications in drug development.  相似文献   

19.
Increases in cyclic adenosine monophosphate and cyclic guanosine monophosphate content accompany relaxation of isolated strips of opossum and canine lower oesophageal sphincter muscle. The aim of this investigation was to characterise these responses in isolated muscle from the human lower oesophageal sphincter. Electrical stimulation of enteric neurons produced a frequency dependent relaxation of the human lower oesophageal sphincter that was sensitive to tetrodotoxin. Furthermore, as previously shown in the opossum and canine lower oesophageal sphincter, cyclic guanosine monophosphate content was significantly raised in muscle strips frozen during maximum electrical field stimulation whereas cyclic adenosine monophosphate content was unchanged. In addition, sodium nitroprusside (EC50 = 0.1 microM) produced a concentration dependent relaxation of human lower oesophageal sphincter, significantly increased cyclic guanosine monophosphate content, but did not alter cyclic adenosine monophosphate content. Zaprinast (M&B 22948) and SK&F 94120, selective inhibitors of cyclic guanosine monophosphate and cyclic adenosine monophosphate phosphodiesterases, respectively, both relaxed human lower oesophageal sphincter with a potency similar to that seen in the dog or opossum lower oesophageal sphincter. Finally, the 8-bromo analogues of both cyclic adenosine monophosphate (EC50 = 420 microM) and cyclic guanosine monophosphate (EC50 = 100 microM) relaxed the human lower oesophageal sphincter. These studies suggest that in the human, as well as the canine and opossum lower oesophageal sphincter, increases in cyclic nucleotide content are associated with relaxation and increases in cyclic guanosine monophosphate are associated with the relaxation induced by stimulation of enteric neurons.  相似文献   

20.
To investigate the response of myosin isozyme transition in specialized myocardium to cardiac overload, we examined immunohistochemically the distribution of myosin isozymes in sinus node cells of overloaded canine atria, using the monoclonal antibodies CMA19 and HMC14, which are specific for atrial myosin heavy chain (alpha-HC) and ventricular myosin heavy chain (beta-HC), respectively. Overloading in canine right atria was induced by artificial tricuspid valve regurgitation and pulmonary stenosis. Right atrial mean pressure rose to 15-20 mm Hg (n = 4) 2 months after surgery. In the working myocardium, cardiac overload caused redistribution of myosin isozymes, alpha-HC to beta-HC. Compared with the normal right atria, fewer myocytes were labeled with CMA19, but more were labeled with HMC14. However, the reactivity of sinus node cells with CMA19 and HMC14 was not changed between normal and overloaded right atria, indicating no redistribution of myosin heavy chain isozymes, alpha-HC to beta-HC. These results suggest that isozymes in myosin heavy chains in the specialized myocardium are protected from overload effects by their firm cytoskeletal framework or other mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号