首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
Purpose: Polymerase gamma (POLG) is the sole enzyme in the replication of mitochondrial DNA (mtDNA). Numerous mutations in the POLG1 gene have been detected recently in patients with various phenotypes including a classic infantile-onset Alpers-Huttenlocher syndrome (AHS). Here we studied the molecular etiology of juvenile-onset AHS manifesting with status epilepticus and liver disease in three teenagers.
Patients and Methods: We examined 14- and 17-year-old female siblings (patients 1 and 2) and an unrelated 15-year-old girl (patient 3) with juvenile-onset AHS, sequenced POLG1, and the entire mtDNA, examined mtDNA deletions by amplification of the full-length mtDNA with the long PCR method and used real-time PCR to quantify mtDNA in the tissue samples.
Results: The initial manifestations were migraine-like headache and epilepsy, and the terminal manifestations status epilepticus and hepatic failure. A homozygous W748S mutation in POLG1 was detected in the three patients. No deletions or pathogenic point mutations were found in mtDNA, but all three patients had mtDNA depletion.
Conclusions: POLG mutations should be considered in cases of teenagers and young adults with a sudden onset of intractable seizures or status epilepticus, and acute liver failure. The W748S POLG1 mutation seems to lead to tissue-specific, partial mtDNA depletion in patients with juvenile-onset Alpers syndrome. Valproic acid should be avoided in the treatment of epileptic seizures in these patients.  相似文献   

2.
BACKGROUND: Autosomal recessive mutations in deoxyguanosine kinase (DGUOK) have been identified in the hepatocerebral form of mitochondrial DNA (mtDNA) depletion syndrome. OBJECTIVES: To describe the clinical spectrum of DGUOK-related mtDNA depletion syndrome in 6 children and to summarize the literature. RESULTS: We identified pathogenic mutations in DGUOK in 6 children with the hepatocerebral form of mtDNA depletion syndrome. We describe the clinical, neuroradiologic, histologic, and genetic features in these children. All children showed severe hepatopathy, while involvement of other organs (skeletal muscle and brain) was variable. We identified 5 novel mutations (1 of them in 2 children) and 2 previously described mutations. Three different mutations affected the initial methionine, suggesting a mutational hot spot. One of our patients underwent liver transplantation; pathologic findings revealed (in addition to diffuse hepatopathy) a hepatocellular carcinoma, implying a possible link between mtDNA depletion syndrome and tumorigenesis. CONCLUSION: We studied 12 children with infantile hepatoencephalopathies and mtDNA depletion syndrome and found pathogenic DGUOK mutations in 6, suggesting that this gene defect is a frequent but not an exclusive cause of the hepatic form of mtDNA depletion syndrome.  相似文献   

3.
We have identified compound heterozygous missense mutations in POLG1, encoding the mitochondrial DNA polymerase gamma (Pol gamma), in 7 children with progressive encephalopathy from 5 unrelated families. The clinical features in 6 of the children included psychomotor regression, refractory seizures, stroke-like episodes, hepatopathy, and ataxia compatible with Alpers-Huttenlocher syndrome. Three families harbored a previously reported A467T substitution, which was found in compound with the earlier described G848S or the W748S substitution or a novel R574W substitution. Two families harbored the W748S change in compound with either of 2 novel mutations predicted to give an R232H or M1163R substitution. Muscle morphology showed mitochondrial myopathy with cytochrome c oxidase (COX)-deficient fibers in 4 patients. mtDNA analyses in muscle tissue revealed mtDNA depletion in 3 of the children and mtDNA deletions in the 2 sibling pairs. Neuropathologic investigation in 3 children revealed widespread cortical degeneration with gliosis and subcortical neuronal loss, especially in the thalamus, whereas there were only subcortical neurodegenerative findings in another child. The results support the concept that deletions as well as depletion of mtDNA are involved in the pathogenesis of Alpers-Huttenlocher syndrome and add 3 new POLG1 mutations associated with an early-onset neurodegenerative disease.  相似文献   

4.
BACKGROUND AND PURPOSE: Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with common features of adult-onset cerebellar ataxia. Many patients with clinically suspected SCA are subsequently diagnosed with common SCA gene mutations. Previous reports suggest some common mitochondrial DNA (mtDNA) point mutations and mitochondrial DNA polymerase gene (POLG1) mutations might be additional underlying genetic causes of cerebellar ataxia. We tested whether mtDNA point mutations A3243G, A8344G, T8993G, and T8993C, or POLG1 mutations W748S and A467T are found in patients with adult-onset ataxia who did not have common SCA mutations. METHODS: Four hundred seventy-six unrelated patients with suspected SCA underwent genetic testing for SCA 1, 2, 3, 6, 7, 8, 10, 12, 17, and DRPLA gene mutations. After excluding these SCA mutations and patients with paternal transmission history, 265 patients were tested for mtDNA mutations A3243G, A8344G, T8993G, T8993C, and POLG1 W748S and A467T mutations. RESULTS: No mtDNA A3243G, A8344G, T8993G, T8993C, or POLG1 W748S and A467T mutation was detected in any of the 265 ataxia patients, suggesting that the upper limit of the 95% confidence interval for the prevalence of these mitochondrial mutations in Chinese patients with adult-onset non-SCA ataxia is no higher than 1.1%. CONCLUSIONS: The mtDNA mutations A3243G, A8344G, T8993G, T8993C, or POLG1 W748S and A467T are very rare causes of adult-onset ataxia in Taiwan. Routine screening for these mutations in ataxia patients with Chinese origin is of limited clinical value.  相似文献   

5.
Progressive external ophthalmoplegia (PEO) with secondary accumulation of multiple deletions of mitochondrial DNA (mtDNA) clinically resembles disorders due to primary mutations of mtDNA but follows a Mendelian inheritance pattern. The disorder belongs to an interesting group of diseases in which both the nuclear and the mitochondrial genome are involved in the pathology. Both autosomal dominant (adPEO) and recessive (arPEO) variants of this disorder occur. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) patients may have multiple mtDNA deletions and/or depletion of mtDNA. Recent reports of mutations in Thymidine Phosphorylase in MNGIE, and of mutations in adenine nucleotide translocator (ANT1), Twinkle and mitochondrial DNA polymerase gamma (POLG) in adPEO, have lead to new insights in the pathogenesis of these disorders of mtDNA maintenance. We also identified POLG mutations in two families with arPEO, which underlines the crucial role of the mtDNA replication machinery for mtDNA maintenance.  相似文献   

6.
Mitochondrial DNA (mtDNA) is maternally inherited. After birth, secondary mtDNA defects can arise. MtDNA depletion is a reduction in the amount of mtDNA in particular tissues. Multiple deletions of mtDNA accumulate as somatic mutations in mainly postmitotic tissues. These disorders of mtDNA maintenance frequently show Mendelian inheritance. Positional cloning has identified several genes involved in the control of mtDNA stability. Recessive mutations in the genes ECGF1, dGK, TK2, SUCLA2 and POLG cause mtDNA depletion syndromes (MDS). Generally, MDS has infantile onset tissue specific features. Mutations in the genes ECGF1, ANT1, C10orf2 and POLG are associated with multiple mtDNA deletions. The nature of these mutations is dominant in ANT1, C10orf2 and POLG and recessive in ECGF1, C10orf2 and POLG. Mutations in these genes frequently cause progressive external ophthalmoplegia (PEO). However clinical heterogeneity results in different neurological syndromes with considerable overlap. The most common features are PEO, neuropathy, myopathy, ataxia, epilepsy and hepatopathy.  相似文献   

7.
Multiple deletions of mitochondrial DNA (mtDNA) are associated with different mitochondrial disorders inherited as autosomal dominant and recessive traits. Causative mutations have been found in five genes, mainly involved in mtDNA replication and stability. They include POLG1, the gene encoding the catalytic subunit of mtDNA polymerase (pol gamma), POLG2 encoding its accessory subunit, ANT1 coding the adenine nucleotide translocator and PEO1 which codes for Twinkle, the mitochondrial helicase. Finally OPA1 missense mutations are involved in phenotypes presenting optic atrophy as a major feature.To define the relative contribution of POLG1, POLG2, ANT1 and PEO1 genes to the mtDNA multiple deletion syndromes, we analysed them in a cohort of 67 probands showing accumulation of multiple mtDNA deletions in muscle. The patients were predominantly affected with a mitochondrial myopathy with or without progressive external ophthalmoplegia (PEO). Genetic analysis revealed that 1) PEO1 has a major role in determining familial PEO, since it accounts for 26.8% of familial cases, followed by ANT1 (14.6%) and POLG1 (9.8%); 2) no mutations in any of the known genes were found in 53.7% of probands of this series. Six novel missense mutations contributing to the mutational load of PEO1 gene (p.R334P, p.W315S, p. S426N, p.W474S, p.F478I, p.E479K) were associated with an adult onset PEO phenotype.  相似文献   

8.
Sensory ataxic neuropathy with ophthalmoparesis caused by POLG mutations   总被引:1,自引:0,他引:1  
Mutations in POLG gene are responsible for a wide spectrum of clinical disorders with altered mitochondrial DNA (mtDNA) integrity, including mtDNA multiple deletions and depletion. Sensory ataxic neuropathy with ophthalmoparesis (SANDO) caused by mutations in POLG gene, fulfilling the clinical triad of sensory ataxic neuropathy, dysarthria and/or dysphagia and ophthalmoparesis, has described in a few reports. Here we described five cases of adult onset autosomal recessive sensory ataxic neuropathy with ophthalmoplegia. All patients had ataxia, neuropathy, myopathy, and progressive external ophthalmoplegia (PEO). The muscle pathology revealed ragged-red and cytochrome c oxidase (COX) negative fibers in three patients. However, deficiencies in the activities of mitochondrial respiratory chain enzyme complexes were not detected in any of the patients' muscle samples. Multiple deletions of mtDNA were detected in blood and muscle specimens but mtDNA depletion was not found. Due to these diagnostic difficulties, POLG-related syndromes are definitively diagnosed based on the presence of deleterious mutations in the POLG gene.  相似文献   

9.
Alpers syndrome is a fatal disorder due to mutations in the POLG gene encoding the catalytic subunit of mitochondrial DNA polymerase gamma (Pol gamma) involved in mitochondrial DNA (mtDNA) replication. We describe a case of Alpers syndrome due to POLG mutations, with rapidly progressive course, a fatal outcome, and an essentially normal brain MRI in the early oligo-symptomatic phase. Our observation suggests that Alpers syndrome should be considered even in patients with an initially unremarkable brain MRI. The patient was found to harbor the p.Q497H, p.W748S and p.E1143G mutations in cis on one allele, and a fourth mutation, the p.G848S on the other allele. Although the individual mutations detected in the presented case have been previously reported, the specific genotype formed by the particular combination of these is novel.  相似文献   

10.
Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene   总被引:3,自引:0,他引:3  
Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in the RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in seven infants from four families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at 3 months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exons 6, 8, and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy.  相似文献   

11.
The aim of the study was to determine the prevalence of MNGIE-like phenotype in patients with recessive POLG1 mutations. Mutations in the POLG1 gene, which encodes for the catalytic subunit of the mitochondrial DNA polymerase gamma essential for mitochondrial DNA replication, cause a wide spectrum of mitochondrial disorders. Common phenotypes associated with POLG1 mutations include Alpers syndrome, ataxia-neuropathy syndrome, and progressive external ophthalmoplegia (PEO). Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder characterized by severe gastrointestinal dysmotility, cachexia, PEO and/or ptosis, peripheral neuropathy, and leukoencephalopathy. MNGIE is caused by TYMP mutations. Rare cases of MNGIE-like phenotype have been linked to RRM2B mutations. Recently, POLG1 mutations were identified in a family with clinical features of MNGIE but no leukoencephalopathy. The coding regions and exon-intron boundaries of POLG1 were sequence analyzed in patients suspected of POLG1 related disorders. Clinical features of 92 unrelated patients with two pathogenic POLG1 alleles were carefully reviewed. Three patients, accounting for 3.3% of all patients with two pathogenic POLG1 mutations, were found to have clinical features consistent with MNGIE but no leukoencephalopathy. Patient 1 carries p.W748S and p.R953C; patient 2 is homozygous for p.W748S, and patient 3 is homozygous for p.A467T. In addition, patient 2 has a similarly affected sibling with the same POLG1 genotype. POLG1 mutations may cause MNGIE-like syndrome, but the lack of leukoencephalopathy and the normal plasma thymidine favor POLG1 mutations as responsible molecular defect.  相似文献   

12.
Alpers-Huttenlocher syndrome (AHS) is a very rare autosomal recessive disorder. AHS is caused by homozygous or compound heterozygous mutations in the nuclear gene encoding mitochondrial DNA polymerase gamma (POLG, chromosome 15q25). Most patients become symptomatic before the age of 2 years. We report 3 patients who were treated in our clinic between 2007 and 2010. All patients suffered from myoclonic seizures and had at least one refractory convulsive status which led to the diagnosis. All of them had varying degrees of developmental delay, 2 of them additionally ataxia. Gastrointestinal motility problems were severe in all patients despite only mildly deranged liver function. While in most aspects our patients present with typical AHS features, they also share intestinal problems, a feature that has not been recognized as typical for AHS before. AHS is a multisystem disorder that does affect all cell systems. Liver and brain are organs with the highest energy demand and are therefore usually affected early in the disease course of AHS. However, constipation and bowel obstruction should be regarded as typical complications in AHS and patients should be monitored and treated to improve quality of life. Regarding treatment options for epilepsy in AHS ketogenic diet as well as lacosamide might be considered.  相似文献   

13.
BACKGROUND: Both dominant and recessive mutations were reported in the gene encoding the mitochondrial (mt) DNA polymerase gamma (POLG) in patients with progressive external ophthalmoplegia (PEO). Phenotypes other than PEO were recently documented in patients with mutations in the POLG gene. OBJECTIVE: To screen patients with mitochondrial disease and multiple mtDNA deletions in muscle for mutations in the coding regions of the POLG, PEO1, and SLC25A4 genes. DESIGN: To identify the underlying molecular defect in a group of patients with multiple mtDNA deletions comparing their molecular genetic findings with those of healthy controls. PATIENTS: Twenty-four patients (16 men and 8 women) diagnosed with mitochondrial disease and having multiple mtDNA deletions in muscle by Southern blot analysis. Thirteen patients had PEO; 2 had PEO alone, 4 had PEO and myopathy, and 5 had PEO and multisystem involvement. Four patients had multisystem disease without PEO. The remaining 9 patients had isolated myopathy. DNA from 100 healthy individuals was also studied. RESULTS: No mutation was identified in the PEO1 or SLC25A4 genes. Nine POLG mutations were observed in 6 of 24 patients. Four novel mutations were detected and mapped in the linker region (M603L) and in the pol domain of the enzyme (R853W; D1184N; R1146C). Five patients with PEO had mutations: 2 were compound heterozygotes, 1 was homozygous, and another showed a mutation in a single allele. The remaining patient also showed a sole mutation and had an unusual phenotype lacking ocular involvement. CONCLUSIONS: POLG molecular defects were found in 25% of our patients with multiple mtDNA deletions and mitochondrial disease. The uncommon phenotype found in 1 of these patients stresses the clinical variability of patients harboring POLG mutations. Molecular studies in the POLG gene should be addressed in patients with mitochondrial disease, particularly in those with PEO, and multiple mtDNA deletions.  相似文献   

14.
Mitochondrial DNA depletion syndrome is a clinically heterogeneous group of disorders characterized by a reduction in mitochondrial DNA copy number. The recent discovery of mutations in the deoxyguanosine kinase (dGK) gene in patients with the hepatocerebral form of mitochondrial DNA depletion syndrome prompted us to screen 21 patients to determine the frequency of dGK mutations, further characterize the clinical spectrum, and correlate genotypes with phenotypes. We detected mutations in three patients (14%). One patient had a homozygous GATT duplication (nucleotides 763-766), and another had a homozygous GT deletion (nucleotides 609-610); both mutations lead to truncated proteins. The third patient was a compound heterozygote for two missense mutations (R142K and E227K) that affect critical residues of the protein. These mutations were associated with variable phenotypes, and their low frequencies suggests that dGK is not the only gene responsible for mitochondrial DNA depletion in liver. The patient with the missense mutations had isolated liver failure and responded well to liver transplantation, which may be a therapeutic option in selected cases.  相似文献   

15.
Occipital stroke and occipital epilepsy are possible manifestations of mitochondrial diseases. A previous study in northern Finland suggested a frequency of 10% for mitochondrial disorder in young patients with stroke. Here we studied the epidemiology of occipital brain infarcts in a defined population in southwestern Finland. Patients diagnosed with brain infarct or visual field defect with onset at the ages of 18–45 years were identified from the discharge files at the Turku University Hospital. We further ascertained those patients with an occipital brain infarct in brain imaging or homonymous hemianopia with no signs of other etiology in brain imaging. We reviewed the clinical data for known stroke risk factors and analyzed samples for the m.3243A > G and m.8344A > G mutations in mitochondrial DNA (mtDNA), and determined mtDNA haplogroups and five common mutations in the gene encoding polymerase γ (POLG1). Migraine was more common in young patients with occipital brain infarct than in the general population, especially among women. None of the patients harboured the m.3243A > G or m.8344A > G mutation in mtDNA or any of the five common mutations in POLG1. Interestingly, 17% of the men and 33% of the women belonged to the mtDNA haplogroup Uk, while its frequency in the general population is 17%. Our results suggest that mtDNA haplogroup Uk is associated with increased risk of occipital stroke in young women. POLG1 mutations have been associated with occipital epilepsy, but we did not find the common mutations in patients with occipital stroke.  相似文献   

16.
Mitochondrial disorders is a group of clinical entities associated with abnormalities of the mitochondrial respiratory chain (MRC), which carries out the oxidative phosphorylation (OXPHOS) of ADP into ATP. As the MRC is the result of genetic complementation between two separate genomes, nuclear and mitochondrial, OXPHOS failure can derive from mutations in either nuclear‐encoded, or mitochondrial‐encoded, genes. Epilepsy is a relatively common feature of mitochondrial disease, especially in early‐onset encephalopathies of infants and children. However, the two most common entities associated with epilepsy include MERRF, for Myoclonic Epilepsy with Ragged Red Fibers, and AHS, or Alpers‐Huttenlocher syndrome, also known as hepatopathic poliodystrophy. Whilst MERRF is a maternally inherited condition caused by mtDNA mutations, particularly the 8344A>G substitution in the gene encoding mt‐tRNALys, AHS is typically caused by recessive mutations in POLG, encoding the catalytic subunit of polymerase gamma, the only mtDNA polymerase in humans. AHS is the most severe, early‐onset, invariably fatal syndrome within a disease spectrum, which also include other epileptogenic entities, all due to POLG mutations and including Spino‐cerebellar Ataxia and Epilepsy (SCAE). This review reports the main clinical, neuroimaging, biochemical, and molecular features of epilepsy‐related mitochondrial syndrome, particularly MERRF and AHS.  相似文献   

17.
Different mutations, or combinations of mutations, in POLG1, the gene encoding pol gammaA, the catalytic subunit of mitochondrial DNA polymerase, are associated with a spectrum of clinical presentations including autosomal dominant or recessive progressive external ophthalmoplegia (PEO), juvenile-onset ataxia and epilepsy, and Alpers-Huttenlocher syndrome. Parkinsonian features have been reported as a late complication of POLG1-associated dominant PEO. Good response to levodopa or dopamine agonists, reduced dopamine uptake in the corpus striatum and neuronal loss of the Substantia Nigra pars compacta have been documented in a few cases. Here we report two novel mutations in POLG1 in a compound heterozygous patient with autosomal recessive PEO, followed by pseudo-orthostatic tremor evolving into levodopa-responsive parkinsonism. These observations support the hypothesis that mtDNA dysfunction is engaged in the pathogenesis of idiopathic Parkinson's disease.  相似文献   

18.
To verify the impact of mutations in ANT1, Twinkle, and POLG1 genes in sporadic progressive external ophthalmoplegia associated with multiple mitochondrial DNA (mtDNA) deletions, DNA samples from 15 Italian and 12 British patients were screened. Mutations in ANT1 were found in one patient, in Twinkle in two patients, and in POLG1 in seven patients. Irrespective of the inheritance mode, screening of these genes should be performed in all patients with progressive external ophthalmoplegia with multiple mtDNA deletions.  相似文献   

19.
Background Progressive external ophthalmoplegia (PEO) is a mitochondrial disorder associated with defective enzymatic activities of oxidative phosphorylation (OXPHOS), depletion of mitochondrial DNA (mtDNA) and/or accumulation of mtDNA mutations and deletions. Recent positional cloning studies have linked the disease to four different chromosomal loci. Mutations in POLG1 are a frequent cause of this disorder. Methods We describe two first–cousins: the propositus presented with PEO,mitochondrial myopathy and neuropathy, whereas his cousin showed a Charcot– Marie–Tooth phenotype. Neurophysiological studies, peroneal muscle and sural nerve biopsies, and molecular studies of mtDNA maintenance genes (ANT1, Twinkle, POLG1, TP) and non dominant CMT–related genes (GDAP1, LMNA, GJB1) were performed. Results A severe axonal degeneration was found in both patients whereas hypomyelination was observed only in the patient with PEO whose muscle biopsy specimen also showed defective OXPHOS and multiple mtDNA deletions. While no pathogenetic mutations in GDAP1, LMNA, and GJB1 were found, we identified a novel homozygous POLG1 mutation (G763R) in the PEO patient. The mutation was heterozygous in his healthy relatives and in his affected cousin. Conclusions A homozygous POLG1 mutation might explain PEO with mitochondrial abnormalities in skeletal muscle in our propositus, and it might have aggravated his axonal and hypomyelinating sensory–motor neuropathy. Most likely, his cousin had an axonal polyneuropathy with CMT phenotype of still unknown etiology.  相似文献   

20.
Disorders of mitochondrial DNA (mtDNA) maintenance are clinically and genetically heterogeneous, embracing recessive mtDNA depletion syndromes affecting children and adult-onset multiple mtDNA deletion disorders. Here we show that mutation of MPV17 - a gene implicated in severe, infantile hepatocerebral mtDNA depletion disorders characterised by a loss of mtDNA copies - can also cause clonally-expanded mtDNA deletion and focal cytochrome c oxidase (COX) deficiency in skeletal muscle associated with an adult presentation of neuropathy and leukoencephalopathy. The mpv17 protein is therefore intimately involved in both the mtDNA replication and repair processes and associated with both quantitative and qualitative mtDNA abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号