首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundOsteoporosis reduces the bone-screw purchase, potentially reducing pullout strength and other biomechanical properties. However, the existing pedicle screw approach may not compensate for the detrimental effects of decreased vertebral bone mineral density.MethodsTwo methods of screw insertion were performed in thirteen cadaveric osteoporotic lumbar vertebrae: Magerl's method in the left pedicle, and superior cortical screw method in the right (its entry point located vertically 3 mm above Magerl's point). Before screw fixations, the pedicle and its corresponding vertebral body were divided into six equal layers from cranial to caudal by performing micro-CT and tested for microstructure properties, such as bone mineral density, trabecular bone volume fraction, trabecular thickness, trabecular separation and trabecular number. Further, pedicle was horizontally divided into three regions and tested. After screw fixations, microstructure properties of the bone surrounding the screws were analyzed. Finally, the screw pullout strength was tested biomechanically.FindingsThe bone structure is denser in the upper third of the pedicle and its corresponding vertebral body. A similar microstructure is seen within the pedicle. This study reveals that the pullout strength is significantly correlated to the bone mineral density, trabecular bone volume fraction and trabecular thickness. Biomechanical test showed pullout strength in the superior cortical screw group with mean 613.3 N (SD 200.4) was 22.4% higher than that in the Magerl group with mean 501.2 N (SD 256.6).InterpretationThe superior cortical screw method can be a reliable alternative, to provide better pullout strength for posterior lumbar instrumentation, especially in osteoporotic patients.  相似文献   

2.
BackgroundIn pedicle screw fixation, the optimal depth and trajectory of insertion are controversial, and this might be because of the wide variations in specimens. The present study aimed to investigate the biomechanically optimal depth and trajectory of screw insertion using synthetic lumbar osteoporotic vertebrae.MethodsA total of 27 synthetic osteoporotic lumbar vertebrae (L3) were used to ensure standard vertebral quality and shape. Pedicle screws having two different lengths (unicortical: to the center of the vertebra; bicortical: to the anterior cortex of the vertebra) were inserted in the following three different trajectories: 1) straight-forward (parallel to the superior endplate), 2) cephalad (toward the anterosuperior corner), and 3) caudad (toward the anteroinferior corner). Maximum insertional torque and pull-out strength were measured.FindingsFor the straight-forward, cephalad, and caudad trajectories, the maximum insertional torque (Ncm) values of unicortical screws were 144.4, 143.1, and 148.9, respectively, and those of bicortical screws were 205.5, 156.2, and 207.8, respectively. The maximum insertional torque values were significantly higher for bicortical screws than unicortical screws (p < 0.001). Additionally, regarding bicortical screws, the maximum insertional torque values were significantly lower for the cephalad trajectory than other trajectories (p = 0.002). The pull-out strength (N) values of bicortical screws for the straight-forward, cephalad, and caudad trajectories were 703.3, 783.9, and 981.3, respectively. The pull-out strength values were significantly lower for the straight-forward trajectory than other trajectories (p = 0.034).InterpretationA bicortical pedicle screw in the caudad trajectory might be the best option to improve fixation in an osteoporotic lumbar vertebra.  相似文献   

3.
Biomechanical analysis of differing pedicle screw insertion angles   总被引:5,自引:0,他引:5  
BACKGROUND: Pedicle screw fixation to stabilize lumbar spinal fusion has become the gold standard for posterior stabilization. A significant percentage of surgical candidates are classified as obese or morbidly obese. For these patients, the depth of the incisions and soft tissue makes it extremely difficult to insert pedicle screws along the pedicle axis. As such, the pedicle screws can only be inserted in a much more sagittal axis. However, biomechanical stability of the angled screw insertion has been controversial. We hypothesized that the straight or parallel screw was a more stable construct compared to the angled or axially inserted screw when subjected to caudal cyclic loading. METHODS: We obtained 12 fresh frozen lumbar vertebrae from L3 to L5 from five cadavers. Schantz screws (6.0 mm) were inserted into each pedicle, one angled and along the axis of the pedicle and the other parallel to the spinous process. Fluoroscopic imaging was used to guide insertion. Each screw was then subjected to caudal cyclic loads of 50 N for 2000 cycles at 2 Hz. Analysis of initial damage, initial rate of damage, and total damage during cyclic loading was undertaken. FINDINGS: Average total fatigue damage for straight screws measured 0.398+/-0.38 mm, and 0.689+/-0.96 mm for angled screws. Statistical analysis for total fatigue damage ratio of angled to straight screws revealed that a significant stability was achieved in straight-screw construct (P<0.03). INTERPRETATION: This study showed that straight screw insertion results in a more stable pedicle-screw construct. The angled screw insertion technique resulted in more scattered values of damage indicating that the outcome from the angled screw fixation is less predictable. This validates the use of this technique to implant pedicle screws across the axis of the pedicle (parallel to the mid sagittal line) rather than along the axis, and has broad implications in instrumented posterior lumbar spinal surgery.  相似文献   

4.
背景:经椎间孔腰椎间融合非对称固定的生物力学稳定性研究,发现固定效果与双侧椎弓根螺钉接近,可满足临床应用所需生物力学要求。经关节突椎弓根螺钉参与经椎间孔腰椎间融合非对称固定的螺钉力学安全性又会怎样呢?目的:建立L4+s功能节段左侧经椎间孔腰椎间融合后,分别予以同侧椎弓根螺钉+对侧经关节突椎弓根螺钉、同侧椎弓根螺钉+对侧经椎板关节突螺钉及双侧椎弓根螺钉固定的三维有限元模型,施加相同的载荷,分析不同运动状态下螺钉应力分布特点,比较3种螺钉应力状况。方法:对一成人正常L4—5椎节段标本、椎间融合器、椎弓根螺钉和皮质骨螺钉进行64排螺旋CT扫描,通过Mimicsll.1建立左侧经椎间孔腰椎间融合后3种内固定组合(同侧椎弓根螺钉+对侧经椎板关节突螺钉、同侧椎弓根螺钉+对侧经关节突椎弓根螺钉及双侧椎弓根螺钉固定)的几何模型,利用Simpleware3.1软件分别建立三维有限元模型,模拟500N惦Nm载荷下前屈、后伸、左\右侧弯、左\右侧旋等6种运动状态,用Abaqus6.8软件进行螺钉应力变化和分布特点分析。结果与结论:由于经椎间孔腰椎间融合入路切除了左侧关节突,造成内植物应力分布不对称,对弹性模量大的内固定器械一椎弓根螺钉应力影响最大,尤其是在左旋运动时。在不对称组合内固定中,由于关节突关节螺钉的使用,使对侧椎弓根螺钉应力相应增加,以左旋运动时尤为明显,但关节突关节螺钉断裂的危险性增高不明显。提示为降低螺钉断裂的风险,经椎间孔腰椎间融合后路3种组合内固定均应严格限制旋转运动,尤其是关节突切除侧的旋转运动。  相似文献   

5.
BackgroundAim of this biomechanical study was to investigate the anchorage of pedicle screws in osteoporotic vertebrae using two different preparation techniques (probe versus drill-assisted).MethodsTwelve thoracic vertebrae were used for the study. The right and left pedicles of the vertebra were prepared with a thoracic probe or a 3.2 mm drill bit and divided into two groups. A standard titanium (diameter: 5.5 mm, length: 45 mm) pedicle screw was then inserted. All pedicle screws were initially loaded with −25 N to +25 N in the cranio-caudal direction. The load was increased by 5 N every 500 cycles up to a maximum load of 10,000 cycles. Loosening was defined as a displacement of the pedicle screw head of >5 mm. The two groups were compared in terms of maximum number of cycles and maximum force until loosening.FindingsThe pedicle screws prepared with the thoracic probe failed on average after 3819 cycles (SD 3281) and the pedicle screws prepared with the 3.2 mm drill after 3335 cycles (SD 3477). There was no significant difference between the two preparation techniques (P = .797). With regard to the maximum force until loosening, there was also no significant difference between the two techniques (thoracic probe: 61 N (SD 33), 3.2 mm drill bit: 56 N (SD 34), P = .791).InterpretationPreparation of the pedicle screw hole either with a probe or drill bit doesn't seem to have an influence on pedicle screw loosening rates in the osteoporotic spine.  相似文献   

6.
BackgroundAim of this biomechanical investigation was to compare the biomechanical effects of a carbon fiber reinforced PEEK and titanium pedicle screw/rod device in osteoporotic human cadaveric spine.MethodsTen human fresh-frozen cadaveric lumbar spines (L1-L5) have been used and were randomized into two groups according to the bone mineral density. A monosegmental posterior instrumentation (L3-L4) using titanium pedicle screws and rods was carried out in group A and using carbon fiber reinforced PEEK in group B. A cyclic loading test was performed at a frequency of 3 Hz, starting with a peak of 500 N for the first 2000 cycles, up to 950 N for 100,000 cycles under a general preload with 100 N. All specimens were evaluated with regard to a potential collapse of the implanted pedicle screws. A CT supported digital measurement of cavities around the pedicle at 3 defined measuring points was performed. Finally, the maximum zero-time failure load of all specimens was determined using a universal testing machine (80% Fmax).FindingsRegarding maximum axial force (group A: 2835 N, group B: 3006 N, p = 0.595) and maximum compression (group A: 11.67 mm, group B: 15.15 mm, p = 0.174) no statistical difference could be shown between the two groups. However, significant smaller cavity formation around the pedicle screws could be observed in group B (p = 0.007), especially around the screw tip (p < 0.001).InterpretationCarbon fiber reinforced PEEK devices seem to be advantageous in terms of microscopic screw loosening compared to titanium devices.  相似文献   

7.
BackgroundsA variety of improved surgical methods were adopted in the transforaminal lumbar interbody fusion. A mechanical stability provides an ideal environment for the formation of a fusion mass and is the basis of their good outcomes. The object of this study is to evaluate the initial similarities and differences of four commonly-used posterior surgical procedures biomechanically.MethodsBiomechanical testing was performed at L3–4 motion segment in 6 fresh-frozen human cadaveric lumbar spines (L2–L5), including the following sequentially tested configurations: 1) intact motion segment; 2) bilateral pedicle screw fixation; 3) unilateral pedicle screw fixation; 4) unilateral pedicle screw plus contralateral translaminar facet joint screw fixation according to the Magerl technique; and 5) bilateral pedicle screw fixation with bilateral facetectomies. The range of motion, neutral zone and stiffness of each method and intact segment were collected and compared.FindingsAll of four methods reduce the range of motion significantly in flexion and extension and lateral bending but not in axial torsion compared with the native segment. There is no significant difference among four procedures about the range of motion in all loading modes. All of methods increase the stiffness of segmental motion compared with intact segment in all loading modes, but only bilateral pedicle screw fixation showed significant increases in stiffness in flexion and extension(p = 0.02) and lateral bending(p = 0.023). The stiffness offered by instrumented constructs in different methods showed no significant difference in all loading modes.InterpretationThe stiffness offered by four different posterior fixations in single segmental transforaminal lumbar interbody fusion is not significantly different.  相似文献   

8.
BackgroundThe purpose of this study is to investigate effects of different fixation methods on the physical stress on allospacers, endplate-vertebral body, and implants using finite element model analyses.MethodsStress distribution and subsidence risk according to the fixation methods under the condition of hybrid motion control were analyzed. The detailed finite element model of a previously validated, three-dimensional, intact cervical spinal segment model, with C5–C6 segmental fusion using allospacer, was used to evaluate the biomechanical characteristics of different fixation combinations, such as anterior plate/screws, lateral mass screw, and posterior pedicle screw.FindingsThe load sharing on allospacers increased in extension in order of posterior pedicle screws (21.4%), lateral mass screws (31.5%), and anterior plate/screws (56.6%). lateral mass screw demonstrated the highest load sharing (68.1%) on the allospacer in flexion. The Peak von Mises stress of the allospacer was the lowest in flexion and axial rotation but the highest in extension with anterior plate/screws. Allospacer subsidence risk was the lowest in extension, lateral bending, and axial rotation with posterior pedicle screws but the lowest in flexion with anterior plate/screws. The bone-screw loosening risk was the lowest in all modes with posterior pedicle screws but the highest with anterior plate/screws.InterpretationPosterior pedicle screws demonstrated the best mechanical stability of allospacer failure-subsidence and the lowest risk of screw loosening. Different motion restrictions depending on the fixation method should be considered for implant and allospacer safety.  相似文献   

9.

Background

Pedicle screw fixation, the standard surgical care for posterior stabilization in the thoraco-lumbar spine has a high rate of failure in osteoporotic individuals. Screw design factors and insertion techniques have been shown to influence the biomechanical performance of pedicle screws. Our objective was to investigate the biomechanical characteristics of pedicle screw fixation in osteoporotic bone by comparing standard screws with newly designed differential crest thickness dual lead screws.

Methods

An in-vitro spinal-level paired factorial study design was used to examine thoraco-lumbar spine biomechanical outcomes for differential pedicle screw thread designs. Six cadaveric human spines (T8-L5) were tested for six groups (n = 20) consisting of 2 different crest thickness and 3 different insertion techniques. Bone mineral density was assessed and peak insertion torque measured while placing one screw of new design and control on the contralateral side. Screw pullout properties were measured from classical American Society for Testing and Materials protocols.

Findings

The screws designed specifically for osteoporotic bone showed significantly larger insertion torque compared with the standard screw design irrespective of insertion technique. Much of the variability in pullout failure and stiffness was explained by bone mineral density. The osteoporotic screws of different crest thickness were statistically similar to each other in all outcome measures.

Interpretation

Compared with standard pedicle screws, the dual lead osteoporotic-specific pedicle screws demonstrated significantly larger insertion torques and similar pullout properties. Non-significant increased biomechanical strength was observed for thin crest compared to thick crest dual lead pedicle screws indicating their enhanced purchase in osteoporotic bone.  相似文献   

10.
BackgroundScrew loosening is a major complication following spondylodesis. While several modifications increase screw stability, some, such as screw augmentation, are associated with potential complications; new techniques are needed to minimize the risk of screw loosening without increasing complication rates.Methods13 fresh-frozen human lumbar vertebral bodies (L1 to L5) were dissected. In group 1 (n = 7), pedicle screws were implanted conventionally, while in group 2 (n = 6), the screws were positioned divergent in the sagittal pathway. Screw stability was tested under cyclic axial load; one testing-cycle included 1000 repetitions. The first cycle started with a load of 100 N while the load was increased by +20 N in each following cycle until failure. Failure was defined by either a >5 mm movement of the screw heads or triggering of the switch-off threshold.FindingsAverage number of cycles until failure was increased in group 2 compared with group 1 (12,046 vs 9761 cycles), as was the average load to failure (Fmax 313 N vs 260 N). Overall, in group 2, the number of cycles until screw loosening or failure increased by 23% (p = 0.28), while the required force increased by 20% (p = 0.3). Statistically significant correlation between BMD and increased number of cycles completed as well as with increased load (p < 0.01) could be observed.InterpretationThe results demonstrate, that divergent screw-drift of pairs of screws in the sagittal plane tends to increase stability, especially in vertebral bodies with lower bone density. Moreover, we could demonstrate a correlation between BMD and stability of screw-fixation.  相似文献   

11.
BackgroundRecent minimal-invasive posterior fusion devices are supposed to provide stability and obtain fusion in combination with interbody cages in the instrumented segment. The aim of the present study is to evaluate the primary stability of two minimal-invasive posterior prototypes compared to an established spinous process plate and standard pedicle screw instrumentation.MethodsSeven fresh frozen human cadaver lumbar spines (L2–L5) were tested in a spinal testing device with a moment of 7.5 Nm. Spinal stability was determined as mean range of motion (RoM) in the segment L3/L4 during extension-flexion, lateral bending and axial rotation. The RoM was measured during five conditions: 1. intact; 2. working prototype composed of an interspinous device and process plates; 3. an established spinous process fixation device 4. working prototype of facet fixation and 5. pedicle screw fixation.FindingsAll devices caused a significant reduction of RoM during extension-flexion. The RoM during lateral bending was significantly reduced to 37% (of intact) by pedicle screws and 68% by facet fixation prototype. During axial rotation the RoM was significantly reduced to 52% by pedicle screws and to 86% by facet fixation prototype. The other devices had no significant influence on RoM during lateral bending and axial rotation.InterpretationThe facet fixation prototype provided less primary stability compared to pedicle screws, but had significant advantages over spinous process fixation techniques. The results encourage further testing of this implant as a minimal-invasive approach for posterior fixation.  相似文献   

12.
BackgroundScrews are the most commonly inserted orthopaedic implants. However, several variables related to screw insertion and tightening have not been evaluated. This study aimed firstly to assess the effect of insertion variables on screw tightness, secondly to improve methodologies used by researchers when testing screw insertion techniques and thirdly to assess for any learning or fatigue effects when inserting screws.MethodsTwo surgeons tightened a total of 2280 non-locking, 3.5 mm cortical screws, with 120 screws inserted to what they felt to be optimum tightness whilst varying each of the following factors: different screwdrivers for measuring torque, screwdriver orientation, gloves usage, dominant/non-dominant hand usage, awareness to the applied torque (blinded, unblinded and re-blinded), four bone densities and seven cortical thicknesses. Screws were tightened to failure to determine stripping torque, which was used to calculate screw tightness – ratio between stopping and stripping torque.FindingsScrew tightness increased with glove usage, being blinded to the applied torque and with denser artificial bone and with thinner cortices. Considering all the insertions performed, the two surgeons stopped tightening screws at difference values of tightness ((77% versus 66% (p < 0.001)). A learning effect was observed with some parameters including sterile gloves usage and non-dominant hand application.InterpretationDifferent insertion conditions frequently changed screw tightness for both surgeons. Given the influence of screw tightness on fixation stability, the variables investigated within this study should be carefully reported and controlled when performing biomechanical testing alongside practicing screw insertion under different conditions during surgical training.  相似文献   

13.
背景:作者未查及使用乏维有限元方法分析椎弓根螺钉内阚定并自体髂召’植骨或椎间融合器植骨后螺钉应力情况的相关报道。目的:在L4~L5节段有限元模型上建立椎弓根螺钉内吲定并椎间双枚椎间融合器置入和椎弓根螺钉内固定并椎间自体髂骨植骨的模型,分析两种不同方法植骨后螺钥的应力分布情况。方法:选择1名健康男性,年龄20岁,借助CT扫描和有限元软件,建立L4-Ls节段的三维有限元模型。在验证有效的模型上建立后路椎弓根乍钉棒系统内固定+双枚椎间融合器植骨模型(模型A)和后路椎弓根钉棒系统内固定+椎间自体髂骨植骨有限元模型(模型B),然后在各模型上分别施加载倚,观察螺钉应力分布情况。结果与结论:建立两种不同后路内固定并植骨融合术式三维有限元模型,在不同载荷情况下,发现模型B螺钉应力值均大于模型A,且差异具有显著性意义(P〈0.05),差值最大部位为螺钉尾部。结果提示后路椎弓根钉棒系统内固定+椎间自体骼骨植骨后更容易出现椎弓根螺钉断裂情况。  相似文献   

14.
BackgroundMillions of non-locking screws are manually tightened during surgery each year, but their insertion frequently results in overtightening and damage to the surrounding bone. We postulated that by calculating the torque limit of a screw hole, using bone and screw properties, the risk of overtightening during screw insertion could be reduced. Additionally, predicted maximum torque could be used to identify optimum screw torque, as a percentage of the maximum, based on applied compression and residual pullout strength.MethodsLongitudinal cross-sections were taken from juvenile bovine tibial diaphyses, a validated surrogate of human bone, and 3.5 mm cortical non-locking screws were inserted. Fifty-four samples were used to define the association between stripping torque and cortical thickness. The relationship derived enabled prediction of insertion torques representing 40 to 100% of the theoretical stripping torque (Tstr) for a further 170 samples. Screw-bone compression generated during insertion was measured, followed immediately by axial pullout testing.FindingsScrew-bone compression increased linearly with applied torque up to 80% of Tstr (R2 = 0.752, p < 0.001), but beyond this, no significant further compression was generated. After screw insertion, with all screw threads engaged, more tightening did not create any significant (R2 = 0.000, p = 0.498) increase in pullout strength.InterpretationIncreasing screw tightness beyond 80% of the maximum did not increase screw-bone compression. Variations in torques below Tstr, did not affect pullout forces of inserted screws. Further validation of these findings in human bone and creation of clinical guidelines based on this research approach should improve surgical outcomes and reduce operative costs.  相似文献   

15.
背景:有研究表明,影响椎弓根螺钉置入机体后固定效果的因素有螺钉的结构形态、螺纹参数、骨密度,手术时螺钉拧紧力矩大小,以及进钉的深度等.脊柱椎弓根螺钉并横向牵引装置的把持力与外倾角是否也有一定关系?目的:观察不同外倾角对椎弓根螺钉并横向牵引装置的把持力的影响.设计:重复测量实验.单位:南京医科大学第一附属医院骨关节中心.对象:实验于2003-06/11在河海大学材料力学实验室完成,选择18 只成人干燥腰椎(L1-5节段)椎体标本,标本均为南京医科大学解剖 学教研室提供,实验经过医院伦理委员会批准.实验用椎弓根螺钉为 不锈钢材料,直径5.5 mm,螺纹参数相同,钉长150 mm,其中螺纹 部分长50 mm.EW型电子万能材料实验机为河海大学材料力学实验室提供.方法:用单光子骨密度测定仪测定骨密度后按骨密度编号,完全随机法将椎体分为外倾角5.组、外倾角15.组及外倾角30.组,每组6只.①椎弓根螺钉及夹具的安装:在同一腰椎两侧进针点按Wein-stein法,取外倾角5.组外倾角5.,外倾角15.组外倾角15.,外倾角30.组外倾角30..针孔准备用3.0mm钻头打孔深50mm,拧入椎弓根螺钉50mm,钉尾部用横向牵引装置连接.用特制夹具固定脊椎椎体和DTTs.②把持力测定及椎弓根和椎体损伤观察:分别将已安装好椎弓根螺钉及横向牵引装置的脊椎椎骨连同夹具一起安置到EW型电子万能材料实验机上,测定椎弓根螺钉的把持力.传感器与电脑相连,并绘出力一位移曲线.以曲线波峰为最大把持力.同时观察椎弓根螺钉拔出时椎弓根和椎体损伤情况.主要观察指标:把持力检测结果及椎弓根和椎体损伤情况.结果:①最大把持力:外倾角5.组、外倾角15.组及外倾角30.组椎弓根螺钉平均最大把持力分别为0.878 167,1.420 333,2.154 167 KN.组间比较差异有显著性意义(F=12.554 22,P<0.01).②椎弓根和椎体损伤情况:外倾角5.组4例椎弓根入口处骨皮质骨折,2例椎弓根与椎体后缘交界区断裂:外倾角15.组1例椎弓根入口处骨皮质骨折,4例椎弓根与椎体后缘交界区断裂,1例椎体后缘冠状面断裂;外倾角30.组1例椎弓根入口处骨皮质骨折,2例椎弓根与椎体后缘交界区断裂,3例椎体后缘冠状面断裂.组间秩和检验,差异有显著性意义(P<0.01).结论:在应用经椎弓根螺钉置入机体内固定并加用横向牵引装置时,适当增加外倾角,可增大螺钉的把持力,提高固定强度,外倾角过大则易对椎体造成破坏.  相似文献   

16.
BackgroundHorizontal medial malleolus fractures are caused by the application of rotational force through the ankle joint in several orientations. Multiple techniques are available for the fixation of medial malleolar fractures.MethodsHorizontal medial malleolus osteotomies were performed in eighteen synthetic distal tibiae and randomized into two fixation groups: 1) two parallel unicortical cancellous screws or 2) two Acutrak 2 headless compression screws. Specimens were subjected to offset axial tension loading. Frontal plane interfragmentary motion was monitored.FindingsThe headless compression group (1699 (SD 947) N/mm) had significantly greater proximal-distal stiffness than the unicortical group (668 (SD 298) N/mm), (P = 0.012). Similarly, the headless compression group (604 (SD 148) N/mm) had significantly greater medial-lateral stiffness than the unicortical group (281 (SD 152) N/mm), (P < 0.001). The force at 2 mm of lateral displacement was significantly greater in the headless compression group (955 (SD 79) N) compared to the unicortical group (679 (SD 198) N), (P = 0.003). At 2 mm of distal displacement, the mean force was higher in the headless compression group (1037 (SD 122) N) compared to the unicortical group (729 (SD 229) N), but the difference was not significant (P = 0.131).InterpretationA headless compression screw construct was significantly stiffer in both the proximal-distal and medial-lateral directions, indicating greater resistance to both axial and shear loading. Additionally, they had significantly greater load at clinical failure based on lateral displacement. The low-profile design of the headless compression screw minimizes soft tissue irritation and reduces need for implant removal.  相似文献   

17.
Background: The aim of this comparative biomechanical human cadaveric study was to investigate the anchorage of augmented screws with two different volumes of bone cement. For this purpose the effect of cranio-caudal loadings on pedicle screws was evaluated and axial pullout tests were performed.Methods: A total of 50 pedicle screws (25 augmented/25 non-augmented) were instrumented into osteoporotic vertebra of fresh human cadavers. The augmented screws were grounded by two different volumes of bone cement (1.5cm3 vs 4cm3). Biomechanical performance was assessed by performing a cyclic loading protocol (frequency: 3 Hz, load range: 20–200 N, number of cycles: 100,000), followed by axial pullout (13 augmented/11 non-augmented) or by either directly measuring axial pullout strength (12 augmented/12 non-augmented).Findings: The median T-score of the specimens was − 4.25 (range: − 6.38 to − 2.4). Pullout tests with and without cyclic preloading showed significantly increased pullout strength in augmented screws (Fmax: augmented: 1159 N (SD 395 N); non-augmented: 532 N (SD 297 N); p < 0.05). No significant difference in the pullout strength was found concerning the quantity of cement (Fmax (direct pullout): 4.0 cm3: 1463 N (SD 307 N); 1.5 cm3: 1214 N (SD 236 N); p > 0.05). The pullout strength significantly decreased in high-volume augmented screws after cyclic loading (Fmax (4.0 cm3): direct pullout 1463 N (SD 307 N); cyclic preload: 902 N (SD 435 N); p < 0.05).Interpretation: Biomechanical advantages of augmented pedicle screws can also be found after cyclic preload. However, our results indicate that the anchoring stability of high-volume augmented pedicle screws after cyclic loading is disadvantageous compared to moderate augmented screws; thus high-volume augmentation should be avoided.  相似文献   

18.
BackgroundCement augmentation of pedicle screws to prevent screw loosening is associated with significant complications, such as cement leakage or bone necrosis. Therefore, an alternative strategy to improve pedicle screw anchorage has been recently developed: Polymer reinforcement of pedicle screws uses an in situ melted polymer sleeve in order to enhance screw anchorage. This biomechanical study evaluated the effect of polymer-reinforcement by comparing polymer-reinforced pedicle screws to non-augmented as well as cement-augmented screws under cyclic loading.MethodsFor each of the two comparisons (polymer-reinforced vs. non-augmented screws and polymer-reinforced vs. cement-augmented screws), polymer-reinforced screws and control screws were placed into the left and right pedicle of seven vertebrae (mean age: 74.0 (SD 9.3) years) to allow for pairwise left–right comparisons. Each screw was subjected to cyclic cranio-caudal loading with an initial load ranging from −50 N to +50 N and with stepwise increasing compressive loads (5 N every 100 cycles) until screw loosening.FindingsPolymer-reinforced pedicle screws resisted a higher number of load cycles until loosening than the contralateral non-augmented control screws (4300 SD 2018 vs. 2457 SD 1116 load cycles, p = 0.015). Screw anchorage of polymer-reinforced pedicle screws was comparable to that of cement augmented control screws (3857 (SD2085) vs. 4300 (SD1257) load cycles until failure, p = 0.64).InterpretationOur findings indicate that polymer-reinforcement significantly enhances pedicle screw anchorage in low quality bone and that its effect is similar in size than that of cement augmentation.  相似文献   

19.

Background

Transfacet pedicle screws are scarcely used in primary posterior fixation, and have limited use unilaterally or with existing anterior instrumentation. Nevertheless, the incomplete literature suggests equivalent or better performance of ipsilateral, bilateral, facet screws compared to bilateral pedicle screws.

Methods

Two groups of seven human cadaver spines (L3-S1) were tested under pure moments of 6 Nm. Each specimen was tested in a primary and circumferential fixation (Spacer, Spacer + Plate) environment. Both transfacet and bilateral pedicle screws were used as posterior fixation, in separate groups. Motion was obtained at L4-L5 for single-level constructs in flexion-extension, lateral bending and axial rotation modes.

Findings

In primary fixation, both transfacet and bilateral pedicle screws reduced motion below intact levels. Statistically, the level of circumferential fixation (anterior, posterior, or both) proved to be more influential than the type of posterior fixation. Incorporating a spacer and plate with pedicle screws provided a greater relative gain in stability than with facet screws. The interpretation is explained through a model describing the location of fixation with respect to the center-of-rotation of the vertebral bodies. In lateral bending and axial rotation, bilateral pedicle screw constructs were stiffer than transfacet pedicle screw constructs as a trend.

Interpretation

Transfacet pedicle screws provided similar fixation to bilateral pedicle screws in primary and circumferential fixations during flexion-extension. In the other modes, transfacet screw rigidity is, on average, less than bilateral pedicle screws when used alone, but with the addition of other anterior instrumentation the differences are minimized. Therefore, facet screws are warranted based on the surgical effect desired, and in the presence of additional anterior fixation.  相似文献   

20.
背景:经椎板关节突关节螺钉固定、椎问植骨融合治疗脊柱疾患是一种独特的固定方法,可用于退变性腰椎的融合。目的:比较采用微创经腰椎间孔椎体融合联合单侧椎弓根螺钉及经椎板关节突螺钉固定与常规开放后路腰椎体间融合术联合双侧椎弓根螺钉固定治疗下腰痛疾病的临床效果。方法:纳入2010年6月至2012年6月于武警广东总队医院就诊的腰椎间盘突出伴腰椎轻度不稳患者49例,均采用后路减压椎间融合器植骨内固定治疗。其中24例采用微创经椎间孔椎体融合术联合单侧椎弓根螺钉及经椎板关节突螺钉固定,25例采用常规开放后路腰椎体间融合术联合双侧椎弓根螺钉固定,比较两种固定方法的临床疗效。结果与结论:两种固定方法术后椎体融合率、日本矫形外科协会评分及疼痛目测类比评分改善率差异均无显著性意义(P〉0.05)。可见对无严重不稳的单节段退变性腰椎疾病患者,两种治疗方法的效果相当,均能有效提高椎间融合率,使小关节稳定,解除临床症状,门诊随访满意。但采用微创经椎间孔椎体融合术联合单侧椎弓根螺钉及经椎板关节突螺钉固定的患者手术切口长度、手术时间、术中出血量、术后切口引流液量明显减少(P〈0.05),说明该方法具有创伤小、操作简单的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号