首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have encapsulated the chemotherapeutic agent doxorubicin into biodegradable polymer microspheres, and incorporated these microspheres into gelatin scaffolds, resulting in a controlled delivery system. Doxorubicin was encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) using a double emulsion/solvent extraction method. Characterization of the microspheres including diameter, surface morphology, and in vitro drug release was determined. The release of doxorubicin up to 30 days in phosphate buffered solution was assessed by measuring the absorbance of the releasate solution. Gelatin scaffolds were crosslinked using glutaraldehyde and microspheres were added to gelatin during gelation. The murine mammary mouse tumor cell line, 4T1, was treated with various doses of doxorubicin. A propidium iodide assay was utilized to visualize dead cells. Using a Transwell basket assay, PLGA microspheres and gelatin constructs were suspended above 4T1 cells for 48 h. Viable cells were determined using the CyQUANT cell proliferation assay. Results indicate that the release was controlled by the incorporation of PLGA microspheres into gelatin constructs. A significant difference was seen in the cumulative release over days 5-16 (p < 0.05). The bioactivity of doxorubicin released from the microspheres and scaffolds was maintained as proven by significant reduction in viable cells after treatment with PLGA microspheres as well as with the gelatin constructs (p < 0.001). The drug-polymer conjugate can be used as a controlled drug delivery system in a biocompatible scaffold that could potentially promote preservation of soft tissue contour.  相似文献   

2.
Lactic/glycolic acid polymers (PLGA) are widely used for drug delivery systems. The microsphere formulation is the most interesting dosage form of the PLGA-based controlled release devices. In this study, the previously reported PLGA were used to prepare drug-containing microspheres. Progesterone was used as a model drug. The progesterone microspheres were prepared from PLGA having varied compositions and varied molecular weight. The microscopic characterization shows that the microspheres are spherical, nonaggregated particles. The progesterone-containing PLGA microspheres possess a Gaussian size distribution, having average size from 70-134 microm. A solvent extraction method was employed to prepare the microspheres. The microencapsulation method used in this study has high drug encapsulation efficiency. The progesterone release from the PLGA microspheres and the factors affecting the drug release were studied. The release of progesterone from the PLGA microspheres is affected by the properties of the polymer used. The drug release is more rapid from the microspheres prepared using the PLGA having higher fraction of glycolic acid moiety. The drug release from the microspheres composed of higher molecular weight PLGA is faster. The drug content in microspheres also has an effect on the drug release. Higher progesterone content in microspheres yields a quicker initial burst release of the drug.  相似文献   

3.
Wang L  Chaw CS  Yang YY  Moochhala SM  Zhao B  Ng S  Heller J 《Biomaterials》2004,25(16):3275-3282
The physostigmine-loaded poly(ortho ester) (POE), poly(dl-lactide-co-glycolide) (PLGA) and POE/PLGA blend microspheres were fabricated by a spray drying technique. The in vitro degradation of, and physostigmine release from, the microspheres were investigated. SEM analysis showed that the POE and POE/PLGA blend particles were spherical. They were better dispersed when compared to the pure PLGA microspheres. Two glass transition temperature ( Tg ) values of the POE/PLGA blend microspheres were observed due to the phase separation of POE and PLGA in the blend system. XPS analysis proved that POE dominated the surfaces of POE/PLGA blend microspheres, indicating that the blend microspheres were coated with POE. The encapsulation efficiencies of all the microspheres were more than 95%. The incorporation of physostigmine reduced the Tg value of microspheres. The Tg value of the degrading microspheres increased with the release of physostigmine. For instance, POE blank microspheres and physostigmine-loaded POE microspheres had a Tg value of 67 degrees C and 48 degrees C, respectively. After 19 days in vitro incubation, Tg of the degrading POE microspheres increased to 55 degrees C. Weight loss studies showed that the degradation of the blend microspheres was accelerated with the presence of PLGA because its degradation products catalyzed the degradation of both POE and PLGA. The release rate of physostigmine increased with increase of PLGA content in the blend microspheres. The initial burst release of physostigmine was effectively suppressed by introducing POE to the blend microspheres. However, there was an optimized weight ratio of POE to PLGA (85:15 in weight), below which a high initial burst was induced. The POE/PLGA blend microspheres may make a good drug delivery system.  相似文献   

4.
Vascularization into a poly(vinyl alcohol) (PVA) sponge was investigated using basic fibroblast growth factor (bFGF). This growth factor was impregnated into biodegradable gelatin microspheres for its sustained release and then the bFGF-containing microspheres or free bFGF were incorporated into PVA sponges. Following subcutaneous implantation into the back of mice, the bFGF-containing gelatin microspheres induced vascularization in and around the sponge to a significantly greater extent than that of free bFGF from 3 days after implantation. Significant ingrowth of fibrous tissue into the sponge was also observed when bFGF-containing microspheres were added to the sponge in contrast to free bFGF. Tissue ingrowth occurred into the deeper portion of the sponge over time while it accompanied formation of new capillaries. Empty gelatin microspheres had no effect on vascularization and the level of fibrous tissue ingrowth into the sponge was similar to that of the control group. It was concluded that incorporation of gelatin microspheres containing bFGF into the PVA sponge was effective in prevascularization of the sponge pores.  相似文献   

5.
Mesoporous bioactive glass (MBG) and composite microspheres with MBG particles embedded in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) matrix have been prepared and used to load gentamicin (GS). The in vitro drug release experiments from both MBG and composite microspheres were conducted in distilled water and phosphate buffered saline (PBS) solution at 37 degrees C for more than 30 days. In both water and PBS, GS release from the MBG was very fast with about 60 wt % of the loaded drug released in the first 24 h, and more than 80 wt % released in two days. MBG/PLGA composite microspheres showed an initial release of about 33 wt % in the first day, and 48 wt % in 2 days, and a subsequent sustained release lasting for more than 4 weeks in PBS. MBG/PLGA composite microspheres may be used as an alternative drug release system, especially as a bone void filler for bone repair due to their combined advantages of sustained release of antibiotics and apatite-forming ability.  相似文献   

6.
Vascularization into a poly(vinyl alcohol) (PVA) sponge was investigated using basic fibroblast growth factor (bFGF). This growth factor was impregnated into biodegradable gelatin microspheres for its sustained release and then the bFGF-containing microspheres or free bFGF were incorporated into PVA sponges. Following subcutaneous implantation into the back of mice, the bFGF-containing gelatin microspheres induced vascularization in and around the sponge to a significantly greater extent than that of free bFGF from 3 days after implantation. Significant ingrowth of fibrous tissue into the sponge was also observed when bFGF-containing microspheres were added to the sponge in contrast to free bFGF. Tissue ingrowth occurred into the deeper portion of the sponge over time while it accompanied formation of new capillaries. Empty gelatin microspheres had no effect on vascularization and the level of fibrous tissue ingrowth into the sponge was similar to that of the control group. It was concluded that incorporation of gelatin microspheres containing bFGF into the PVA sponge was effective in prevascularization of the sponge pores.  相似文献   

7.
DeFail AJ  Chu CR  Izzo N  Marra KG 《Biomaterials》2006,27(8):1579-1585
Transforming growth factor-beta1 (TGF-beta1) is of great relevance to cartilage development and regeneration. A delivery system for controlled release of growth factors such as TGF-beta1 may be therapeutic for cartilage repair. We have encapsulated TGF-beta1 into poly(DL-lactide-co-glycolide) (PLGA) microspheres, and subsequently incorporated the microspheres into biodegradable hydrogels. The hydrogels are poly(ethylene glycol) based, and the degradation rate of the hydrogels is controlled by the non-toxic cross-linking reagent, genipin. Release kinetics of TGF-beta1 were assessed using ELISA and the bioactivity of the released TGF-beta1 was evaluated using a mink lung cell growth inhibition assay. The controlled release of TGF-beta1 encapsulated within microspheres embedded in scaffolds is better controlled when compared to delivery from microspheres alone. ELISA results indicated that TGF-beta1 was released over 21 days from the delivery system, and the burst release was decreased when the microspheres were embedded in the hydrogels. The concentration of TGF-beta1 released from the gels can be controlled by both the mass of microspheres embedded in the gel, and by the concentration of genipin. Additionally, the scaffold permits containment and conformation of the spheres to the defect shape. Based on these in vitro observations, we predict that we can develop a microsphere-loaded hydrogel for controlled release of TGF-beta1 to a cartilage wound site.  相似文献   

8.
The purpose of the study was to design and develop unique drug delivery systems with controllable multiple burst releases of drugs for treating osteoarthritis. Chondroitin sulfate (CS) was encapsulated into four types of PLGA materials, that is, PLGA 50:50, PLGA 65:35, PLGA 75:25, and PLGA 85:15. The effects of microsphere size and various combinations of blend PLGA microspheres on CS release were investigated. The cytotoxicity of the CS-encapsulated microspheres was investigated according to the ISO 10993 guideline. Our study showed that the encapsulation efficiency of CS into PLGA 50:50 microspheres varied with the size of microspheres; however, the encapsulation efficiencies of CS into PLGA microspheres were independent of the types of PLGA materials. The size of PLGA microspheres was shown to affect the rate of CS release. With the increase of microsphere size from 75-150 μm to 300-355 μm, the initial CS release decreased. Further increase in microsphere size led to an increase in the initial CS release. In addition, combination of different types of PLGA microspheres was shown to be capable of achieving multiple burst CS releases. Moreover, the CS encapsulated PLGA microspheres were shown to be non-cytotoxic. This study proved the concept of multiple burst drug releases that were achieved by encapsulating CS into different types of PLGA microspheres and delivering CS from systems consisting of mixed types of PLGA microspheres, which may be applied to treat osteoarthritis by mimicking multiple intra-joint injection of therapeutic agents.  相似文献   

9.
Vascular access grafts implanted in dialysis patients are prone to failure in the long-term because of stenosis and occlusion caused by neointimal hyperplasia. Local delivery of antiproliferative drugs may be effective to prevent this consequence while minimizing the systemic side effects they cause. We developed a combination of poly(lactide-co-glycolide) (PLGA) microspheres with ReGel, an injectable copolymer, as a sustained-release system for perivascular delivery of an antiproliferative drug, dipyridamole. Dipyridamole-incorporated PLGA microspheres with various molecular weights (MWs) of PLGA were prepared by oil-in-water emulsion method. Encapsulation efficiency and surface morphology of microspheres were characterized. In vitro release kinetics of dipyridamole from ReGel or from microspheres/ReGel was experimentally determined. Without microspheres, 40% of the dipyridamole was released from ReGel as an initial burst in the first 3 days followed by continuous release in the subsequent 2 weeks. The use of PLGA microspheres decreased the initial burst and extended dipyridamole release from 23 to 35 days with increasing MW of PLGA. The highest MW PLGA showed a lag time of 17 days before consistent drug release occurred. Mixing microspheres and ReGel with two different MW PLGA achieved a continuous release for 35 days with little initial burst. In vivo release of dipyridamole from microspheres/ReGel exhibited a comparable release pattern to that seen in vitro. This injectable platform is a promising technique for sustained perivascular delivery of antiproliferative drugs.  相似文献   

10.
Tissue engineering scaffolds with a micro- or nanoporous structure and able to deliver special drugs have already been confirmed to be effective in bone repair. In this paper, we first evaluated the biomineralization properties and drug release properties of a novel mesoporous silica–hydroxyapatite composite material (HMS–HA) which was used as drug vehicle and filler for polymer matrices. Biomineralization can offer a credible prediction of bioactivity for the synthetic bone regeneration materials. We found HMS–HA exhibited good apatite deposition properties after being soaked in simulated body fluid (SBF) for 7 days. Drug delivery from HMS–HA particle was in line with Fick’s law, and the release process lasted 12 h after an initial burst release with 60% drug release. A novel tissue engineering scaffold with the function of controlled drug delivery was developed, which was based on HMS–HA particles, poly(lactide-co-glycolide) (PLGA) and microspheres sintering techniques. Mechanical testing on compression, degradation behavior, pH-compensation effect and drug delivery behavior of PLGA/HMS–HA microspheres sintered scaffolds were analyzed. Cell toxicity and cell proliferation on the scaffolds was also evaluated. The results indicated that the PLGA/HMS–HA scaffolds could effectively compensate the increased pH values caused by the acidic degradation product of PLGA. The compressive strength and modulus of PLGA/HMS–HA scaffolds were remarkably high compared to pure PLGA scaffold. Drug delivery testing of the PLGA/HMS–HA scaffolds indicated that PLGA slowed gentamycin sulfate (GS) release from HMS–HA particles, and the release lasted for nearly one month. Adding HMS–HA to PLGA scaffolds improved cytocompatibility. The scaffolds demonstrated low cytotoxicity, and supported mesenchymal stem cells growth more effectively than pure PLGA scaffolds. To summarize, the data supports the development of PLGA/HMS–HA scaffolds as potential degradable and drug delivery materials for bone replacement.  相似文献   

11.
Jiang HH  Kim TH  Lee S  Chen X  Youn YS  Lee KC 《Biomaterials》2011,32(33):8529-8537
Although PEGylated TNF-related apoptosis-inducing ligand (PEG-TRAIL) has good tumor cell specificity and stability, its therapeutic potential is restricted by the development of tumor cell resistance. The purpose of this study was to develop an effective combination therapy with sustained biological activity based on microspheres. Doxorubicin (DOX), PEG-TRAIL, and DOX plus PEG-TRAIL (dual agent) were microencapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres using a double-emulsion solvent extraction method. Prepared dual agent microspheres showed the encapsulation efficiency 69.4 ± 2.3 for DOX and 87.7 ± 2.9% for PEG-TRAIL. Potential anti-tumor efficacy of this system was investigated in vitro and in vivo in a human colon cancer (HCT116) and in a human prostate cancer (PC-3). DOX and PEG-TRAIL release from dual agent microspheres were biologically active and significantly inhibited the TRAIL-sensitive HCT116 and resistant PC-3 cells in vitro. Dual agent microspheres simultaneous delivery of DOX and PEG-TRAIL was superior to all other DOX or PEG-TRAIL microspheres in vivo. A single local injection of PLGA microspheres loaded with low amounts of DOX, PEG-TRAIL, or dual agent resulted in 14.8, 30.2, and 63.6% reductions in HCT116 tumor volume and 20.4, 14.2, and 67.7% reductions in PC-3 tumor volume at 35 days. Our findings show that dual agent microspheres offer a promising means of delivering DOX and PEG-TRAIL to tumor sites.  相似文献   

12.
The purpose of this research effort was to evaluate in vivo a newly developed dexamethasone/PLGA microsphere system designed to suppress the inflammatory tissue response to an implanted device, in this case a biosensor. The microspheres were prepared using an oil/water (O/W) emulsion technique. The microsphere system was composed of drug-loaded microspheres (including newly formulated and predegraded microspheres) and free dexamethasone. The combination of the drug and drug-loaded microspheres provided burst release of dexamethasone followed by continuous release from days 2-14. Continuous release to at least 30 days was achieved by mixing predegraded and newly formulated microspheres. The ability of our mixed microsphere system to control tissue reactions to an implant then was tested in vivo using cotton thread sutures to induce inflammation subcutaneously in Sprague-Dawley rats. Two different in vivo studies were performed, the first to find the dosage level of dexamethasone that effectively would suppress the acute inflammatory reaction and the second to show how effective the dexamethasone delivered by PLGA microspheres was in suppressing chronic inflammatory response to an implant. The first in vivo study showed that 0.1 to 0.8 mg of dexamethasone at the site minimized the acute inflammatory reaction. The second in vivo study showed that our mixed microsphere system suppressed the inflammatory response to an implanted suture for at least 1 month. This study has proven the viability of microsphere delivery of an anti-inflammatory to control the inflammatory reaction at an implant site.  相似文献   

13.
A controlled release delivery system for paclitaxel was developed using poly(L-lactic acid) to provide local delivery to the peritoneal cavity. Microspheres were made in 1-40 and 30-120 microm size ranges. In an in vitro release study, 30-120 microm microspheres loaded with 10, 20 and 30% paclitaxel exhibited a burst phase of release for 3 days followed by an apparently zero-order phase of release. At all loadings, 20-25% of the original load of paclitaxel was released after 30 days. The effect of microsphere size on retention in the peritoneal cavity was assessed. Control 1-40 microm microspheres were injected intraperitoneally in rats. The rats received either insufflation of the peritoneal cavity using 11 mmHg CO2 or no further treatment. After sacrifice, microspheres with diameters less than 24 microm were observed in the lymphatic system after being cleared from the peritoneal cavity through fenestrations in the diaphragm. Insufflation of the peritoneal cavity had no effect on the size of microspheres that were cleared. Efficacy studies were carried out using 30-120 microm microspheres that were of sufficient size to be retained in the peritoneal cavity. In a model of a tumor cell spill after a cecotomy repair, 100 mg of 30-120 microm microspheres containing 30% paclitaxel were effective in preventing growth of tumors in the peritoneal cavity at both 2 and 6 weeks post-surgery. No gross or histologically evident tumor growth was observed on any peritoneal surfaces or in the surgical wound site. Rats receiving control microspheres all showed tumor cell implantation and growth after 2 weeks.  相似文献   

14.
Lee ES  Park KH  Kang D  Park IS  Min HY  Lee DH  Kim S  Kim JH  Na K 《Biomaterials》2007,28(17):2754-2762
Chondroitin sulfate (CsA) is an acidic mucopolysaccharide, which is able to form ionic complexes with positively charged proteins. In this study, a protein-CsA complex was constructed to nano-sized particles. Zeta potential measurements revealed that a CsA-to-protein fraction of greater than 0.1 results in a neutralization of the positive charge on lysozyme (Lys). Based on this preliminary study, we have prepared poly(lactide-co-glycolide) (PLGA) microspheres harboring Lys/CsA complexes via the multi-emulsion method. Protein stability in the PLGA microspheres was preserved during both microsphere preparation and protein release. The profiles of Lys release from the PLGA microspheres evidenced nearly zero-order kinetics, depending on the quantity of CsA. An in vivo fluorescent image of experimental mouse tissue showed that the PLGA microspheres with the Lys/CsA complex had released the entirety of their Lys without no residual amount after 23 days, but microspheres without the complex harbored a great deal of residual Lys, which is attributable to its degradation by acidic PLGA degradates. The tissue reaction evidenced by the PLGA microspheres stabilized with CsA showed minimal foreign body reaction and little configuration of immune cells including neutrophils and macrophages, but the reactions of the PLGA microspheres without CsA were characterized by a relatively elevated inflammation. These results show that CsA is a viable candidate for long-acting micro-particular protein delivery.  相似文献   

15.
Microspheres based on methacrylated dextran (dex-MA), dextran derivatized with lactate-hydroxyethyl methacrylate (dex-lactate-HEMA) or derivatized with HEMA (dex-HEMA) were prepared. The microspheres were injected subcutaneously in rats and the effect of the particle size and network characteristics [initial water content and degree of methacrylate substitution (DS)] on the tissue reaction was investigated for 6 weeks. As a control, poly(lactic-co-glycolic)acid (PLGA) microspheres with varying sizes (unsized, smaller than 10 microm, smaller and larger than 20 microm) were injected as well. A mild tissue reaction to the PLGA microspheres was observed, characterized by infiltration of macrophages (M?s) and some granulocytes. Six weeks postinjection, the PLGA microspheres were still present. However, their size was decreased indicating degradation and many spheres had been phagocytosed. The tissue reaction was hardly affected by size differences, except for particles smaller than 10 microm, which induced an extensive tissue reaction. The initial tissue reaction to nondegradable dex-MA microspheres was stronger than towards the PLGA microspheres, but at day 10 the tissue reactions were comparable for both groups. Six weeks postinjection, the dex-MA microspheres were completely phagocytosed, and no signs of degradation were observed. The size and initial water content of dex-MA microspheres hardly affected the tissue response, although less granulocytes were observed for microspheres with higher DS. Slowly degrading dextran microspheres composed of dex-(lactate(1)-)HEMA induced a tissue reaction comparable to the PLGA microspheres. However, degradation of the dex-(lactate(1,3)-)HEMA microspheres was associated with an increased number of M?'s and giant cells, both phagocytosing the microspheres and their degradation products. Similar to PLGA, no adverse reactions were observed for the nondegradable dex-MA and degradable dextran microspheres. This study shows that both nondegradable and degradable dextran-based microspheres are well tolerated after subcutaneous injection in rats, which make them interesting candidates as controlled drug delivery systems.  相似文献   

16.
To develop a new protein delivery system for superoxide dismutase (SOD), biodegradable materials like poly(DL-lactide-co-glycolide) (PLGA), alginate, and chitosan were used for preparing PLGA microspheres and alginate-chitosan microspheres, which were used for encapsulating protein. Alginate-chitosan microspheres showed much higher entrapment efficiency (91.08% +/- 1.28%) than that of PLGA microspheres (36.42% +/- 1.81%). In vitro release study showed that SOD presented a sustained release character in the preparation of these biodegradable materials. After 15 days, 43.72% +/- 0.43% of protein was released from alginate-chitosan microspheres, while there was 62.96% +/- 3.95% of protein release from PLGA microspheres. However, alginate-chitosan demonstrated that it was a better material to control the burst release of protein from microspheres. Furthermore, SOD activity in microspheres was evaluated, and the results showed that microspheres protected the activity of protein to some extent. Finally, PLGA-alginate-chitosan complex microspheres were constructed and the release character in vitro demonstrated that this preparation could not only prolong the release of drug but also decrease the burst release.  相似文献   

17.
Strategies for cancer protein vaccination largely aim to activate the cellular arm of the immune system against cancer cells. This approach, however, is limited since protein vaccines mostly activate the system’s humoral arm instead. One way to overcome this problem is to enhance the cross-presentation of such proteins by antigen-presenting cells, which may consequently lead to intense cellular response. Here we examined the ability of listeriolysin O (LLO) incorporated into poly-lactic-co-glycolic acid (PLGA) microspheres to modify the cytosolic delivery of low molecular weight peptides and enhance their cross-presentation. PLGA microspheres were produced in a size suitable for uptake by phagocytic cells. The peptide encapsulation and release kinetics were improved by adding NaCl to the preparation. PLGA microspheres loaded with the antigenic peptide and incorporated with LLO were readily up-taken by phagocytic cells, which exhibited an increase in the expression of peptide-MHC-CI complexes on the cell surface. Furthermore, this system enhanced the activation of a specific T hybridoma cell line, thus simulating cytotoxic T cells. These results establish, for the first time, a proof of concept for the use of PLGA microspheres incorporated with a pore-forming agent and the antigen peptide of choice as a unique cancer protein vaccination delivery platform.  相似文献   

18.
The current study, inspired by the immunosuppressive property of rapamycin (Rapa) and the benefit of microspheres both as drug delivery system and cell carriers, was designed to develop an efficient Rapa delivery system with tunable controllability to facilitate its local administration. A capillary-based two-phase microfluidic device was designed to prepare monodisperse poly(lactide-co-glycolide) (PLGA) microspheres to load Rapa (PLGA-Rapa-M). The physical and chemical properties of PLGA-Rapa-M were characterized, and the Rapa loading capacity and release profile were explored. Chondrocytes were chosen as a cell model to evaluate the adhesion and proliferation on these microspheres. Controllability over the microsphere properties was illustrated. The PLGA-Rapa-M is averagely 63.91?μm in size with a narrow size distribution and a CV of 2.44%. The encapsulation efficiency of Rapa within microspheres via the current microfluidics was around 98%, and Rapa loading could be easily varied with a maximum value of ~20%. The PLGA-Rapa-M has a sustained Rapa release duration of ~3?months. These microspheres could not only successfully be used for Rapa sustained release but also as cell carriers for cell therapy since they can support the attachment/proliferation of chondrocytes. Hence, improved therapeutic index could be expected by using the current developed Rapa-release system.  相似文献   

19.
Unlike controlled release systems that deliver a single drug, dual or multidrug delivery systems with distinct release profiles are more likely to promote timely and effective tissue regeneration as they provide both temporally and concentration-dependent release of different molecules to mimic natural biological events. In this study, an injectable and biodegradable delivery system was developed to sequentially release an antiresorptive drug (clodronate) followed by an osteogenic agent (simvastatin) to treat bone disease. The injectable delivery system comprised simvastatin-loaded gelatin microspheres suspended in a viscous solution of carboxymethylcellulose (CMC) containing clodronate. Several factors (CMC concentration, glutaraldehyde concentration, simvastatin loading, and gelatin microsphere processing conditions) were investigated for their effects on drug release. Clodronate release was not affected by CMC concentration, with complete delivery within 12 hr, and simvastatin release could be modulated by cross-linking of the gelatin microspheres, loading, and washing conditions. Burst release of simvastatin was reduced from 70% to 6% in conjunction with sustained release for up to 3 weeks. The combined system showed early release of the antiresorptive clodronate sequentially followed by sustained delivery of the osteogenic simvastatin. This robust and flexible two-phase delivery system may prove useful for applications in which multiple drug delivery is desired.  相似文献   

20.
《Acta biomaterialia》2014,10(6):2643-2652
Polymeric nanoparticles (NPs) are promising carriers of biological agents to the lung due to advantages including biocompatibility, ease of surface modification, localized action and reduced systemic toxicity. However, there have been no studies extensively characterizing and comparing the behavior of polymeric NPs for pulmonary protein/DNA delivery both in vitro and in vitro. We screened six polymeric NPs: gelatin, chitosan, alginate, poly(lactic-co-glycolic) acid (PLGA), PLGA–chitosan and PLGA–poly(ethylene glycol) (PEG), for inhalational protein/DNA delivery. All NPs except PLGA–PEG and alginate were <300 nm in size with a bi-phasic core compound release profile. Gelatin, PLGA NPs and PLGA–PEG NPs remained stable in deionized water, serum, saline and simulated lung fluid (Gamble’s solution) over 5 days. PLGA-based NPs and natural polymer NPs exhibited the highest cytocompatibility and dose-dependent in vitro uptake, respectively, by human alveolar type-1 epithelial cells. Based on these profiles, gelatin and PLGA NPs were used to encapsulate plasmid DNA encoding yellow fluorescent protein (YFP) or rhodamine-conjugated erythropoietin (EPO) for inhalational delivery to rats. Following a single inhalation, widespread pulmonary EPO distribution persisted for up to 10 days while increasing YFP expression was observed for at least 7 days for both NPs. The overall results support both PLGA and gelatin NPs as promising carriers for pulmonary protein/DNA delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号