首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proliferation marker Ki-67 labels cell nuclei in the G(1), S, M, and G(2) phases of the cell cycle. We used Ki-67 immunohistochemistry to quantify proliferating glial cells in brain tissue sections from twenty-four patients, comprised of multiple sclerosis, normal brains, and other neurological disease controls. Glial proliferation was greatly increased in MS lesions when compared with control brain white matter. Both actively demyelinating/early remyelinating plaques and chronic inactive plaques of long standing often displayed large numbers of glial cells in the proliferative cycle. The bulk of these proliferating cells were of oligodendroglial lineage in the MS plaques. Ki-67 positive macrophage/microglial lineage cells were largely restricted to acute lesions. The finding of increased numbers of proliferating oligodendroglia in most MS plaques, regardless of disease duration or activity state, indicates that the MS brain is capable of recruiting unexpectedly large numbers of new oligodendrocytes over long periods of time. The factors within the MS plaque microenvironment that provoke new oligodendrocyte generation and their subsequent loss still need to be identified.  相似文献   

2.
Complement activation is known to occur in white matter multiple sclerosis (MS) lesions. It is thought to mediate oligodendrocyte/myelin damage and to be a marker of pathologic heterogeneity among individuals. Less is known about complement deposition in the gray matter in MS. The aim of this study was to characterize the presence and distribution of complement activation products in cortical MS lesions. Immunohistochemical staining was performed on cryostat sections from the brains of 22 MS patients and 5 nonneurologic control patients obtained at autopsy. Deposition of the complement activation products C1q, C3d, and C5b-9 (membrane attack complex) was detected on and within macrophages/microglia and astrocytes and in blood vessel walls in white matter MS lesions. C3d and C4d were detected along myelin sheaths at the edge of the lesions. In the gray matter part of combined gray matter/white matter lesions complement activation was less frequent, but increased immunopositivity was detected for C3d on blood vessels, and for C3d and C4d on myelin at the border of lesions, when compared with control areas. In contrast, in the purely cortical lesions, the extent of complement deposition in general was low. In conclusion, the role of complement in MS pathogenesis seems lesion location-dependent.  相似文献   

3.
Granular deposits of C9 and the terminal complement complex, measuring 0.3-1.2 microns, have been demonstrated immunocytochemically in association with capillary endothelial cells, predominantly within plaques and adjacent white matter, in tissue obtained at autopsy from 5/7 patients with multiple sclerosis (MS) and one individual with subacute sclerosing panencephalitis but not from 7/7 controls. This finding suggests that the evolution of focal tissue damage in MS may involve complement activation associated with passage of humoral and cellular mediators of the immune system through the blood-brain barrier.  相似文献   

4.
Senile plaques and cerebrovascular amyloidosis (CA) are two of the major neuropathological lesions in brains of patients with dementia of the Alzheimer type. We studied the expression of a number of amyloid β (Aβ)-associated proteins in CA, which have previously been identified in senile plaques and which were suggested to play an important role in the pathogenesis of these lesions. Our findings show that involvement of inflammatory components in CA is restricted to activation of the complement system, resulting in deposition of the complement factors C1q, C3c, C4d and the membrane attack complex C5b-9 as well as of the complement inhibitor clusterin. Furthermore, we observed expression of apolipoprotein E, amyloid P component and heparan sulfate proteoglycans in CA, whereas expression of lactoferrin was almost absent. Other inflammatory proteins, known to be present in senile plaques, such as α1-antichymotrypsin, α2-macroglobulin and intercellular adhesion molecule-1, were absent or detectable only in small amounts. These data suggest that an incomplete inflammatory response occurs in CA as compared to senile plaques. This was confirmed by the finding that the number of cells of the monocyte/macrophage lineage around CA was not increased compared to unaffected vessels. Based on their expression patterns, complement factors, apolipoprotein E and heparan sulfate proteoglycans may be produced early in the process of CA formation and may play an important role in the formation of Aβ fibrils in CA. The absence of a number of Aβ-associated proteins in CA in comparison to senile plaques is in support of a different pathogenesis for these two lesions. Received: 3 February 1998 / Revised, accepted: 2 June 1998  相似文献   

5.
High-dose intravenous immunoglobulin (IVIg) treatment has become a promising immune therapy that can modulate the immune system at several levels, including the complement cascade. In relation to inflammatory demyelinating disease, there is some clinical evidence for the suppression of disease activity by IVIg, while a role in promoting remyelination after experimental myelin damage has been described. Antibody and complement deposition have been implicated in the immune attack in some cases of multiple sclerosis (MS), and to investigate the mechanisms of action of IVIg, we studied the effect of IVIg using the model of complement-mediated cell injury on oligodendroglia in vitro. There was no effect on direct complement lysis of the oligodendroglial cell line CG4, but antibody-dependent complement damage was inhibited in a dose-dependent manner by IVIg. These results were confirmed with primary cultures of oligodendrocyte precursor cells (OPC) and oligodendrocytes. The addition of excess C1, C3, and C4 did not influence the inhibitory effect of IVIg, implying that binding of these complement components does not play a role, in contrast to other experimental models of complement damage. F(ab')2 immunoglobulin fragments were at least partially responsible for the effect. We conclude that IVIg may be protective in antibody-mediated complement injury of oligodendrocytes and their progenitors, and that this effect is likely to be mediated via antibody binding, rather than interference with complement activation. Inhibition of inflammatory mechanisms, as opposed to a direct effect on remyelinating cells, may underlie the role of IVIg in promoting myelin repair in experimental models.  相似文献   

6.
Twenty-three plaques obtained at early autopsy from 2 patients with secondary-progressive multiple sclerosis were examined immunohistochemically for microglia/macrophages, and for immunoglobulins and components of activated complement. Most of the lesions examined in both cases exhibited evidence of low-grade active demyelination of an unusual type (frustrated phagocytosis) in periplaque white matter. This included linear groups of microglia engaging short segments of disrupted myelin that were associated with deposits of C3d, an opsonin formed during complement activation. Similar microglia/C3d/myelin profiles were not observed in newly forming lesions in cases of acute multiple sclerosis or other central white matter diseases. As C3d coupling is known to increase the immunogenicity of potential antigens enormously, present findings point to disrupted myelin close to plaques as a possible source of the putative multiple sclerosis antigen. Ongoing myelin destruction found in a high proportion of old, established plaques was surprising. It suggests that slowly expanding lesions (progressive plaques), in which ongoing myelin breakdown occurs in the absence of florid perivascular cell cuffing or other histological signs of acute inflammation, contribute to disease progression in cases of secondary-progressive multiple sclerosis.  相似文献   

7.
Hosokawa M  Klegeris A  Maguire J  McGeer PL 《Glia》2003,42(4):417-423
Neurons, astrocytes, microglia, and endothelial cells are capable of synthesizing most, if not all, of the complement proteins. Little is known, however, about the capacity of oligodendroglial cells to generate complement components. This study evaluated expression of complement mRNAs and their protein products by human oligodendrocytes. Cells were isolated and cultured from white matter of seven adult cases that had undergone surgical temporal lobe resection for epilepsy. Oligodendroglial cultures were characterized by the expression of such cell type-specific mRNAs as myelin proteolipid protein (PLP), oligodendrocyte-specific protein (OSP), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and were further characterized by immunostaining for such differentiation markers as myelin basic protein (MBP), PLP, CNPase, and O4. RT-PCR analysis showed that the oligodendroglial cells expressed detectable levels of complement mRNAs for the C1q B-chain, C1r, C1s, C2, C3, C4, C5, C6, C7, C8 gamma subunit, and C9. Immunostaining was positive for C1q, C1s, C2, C3, C4, C5, C6, C7, C8, and C9. Double immunostaining for the oligodendrocyte marker O4 and the complement protein C3 demonstrated that all O4-positive cells were also positive for C3, indicating constitutive C3 expression. These results indicate that oligodendroglial cells may be a source of complement proteins in human brain and thus could contribute to the pathogenesis of several neurodegenerative and inflammatory diseases of the CNS, such as Alzheimer's disease, multiple sclerosis, and progressive supranuclear palsy, where complement-activated oligodendrocytes are abundant.  相似文献   

8.
In a previous study, we found immunoreactivity for complement factors C3, C3d, and C4d, as well as endogenous IgG in the hypoglossal nucleus following hypoglossal nerve transection, suggesting that activation of the complement cascade had taken place in the vicinity of the axotomized motorneurons. In the present study, we found increased immunoreactivity for complement factor C1 and C1q in reactive microglia, indicating an increased potential for initiation of the classical pathway by binding of IgG to C1q. Furthermore, we found immunoreactivity for C9, which contributes to the formation of C5b-9, the final lytic product of the complement cascade close to the axotomized neurons and perineuronal glia. In addition, immunoreactivity and mRNA labeling of sulfated glycoprotein (SGP-2), putative complement inhibitor, was increased in a subpopulation of the axotomized motorneurons. SGP-2 immunoreactivity was also increased in astroglial cells ipsilateral to the nerve injury. The results lend further support to the hypothesis that the complement cascade is activated in the vicinity of axotomized neurons, which in turn may be protected by complement inhibitors. The balance between activation of complement and complement inhibitors might have an impact on the degenerative components of the axon reaction and, in particular, the events leading to nerve cell death.  相似文献   

9.
Cortical tubers and subependymal giant cell tumors (SGCT) are two major cerebral lesions associated with tuberous sclerosis complex (TSC). In the present study, we investigated immunocytochemically the inflammatory cell components and the induction of two major pro-inflammatory pathways (the interleukin (IL)-1beta and complement pathways) in tubers and SGCT resected from TSC patients. All lesions were characterized by the prominent presence of microglial cells expressing class II-antigens (HLA-DR) and, to a lesser extent, the presence of CD68-positive macrophages. We also observed perivascular and parenchymal T lymphocytes (CD3(+)) with a predominance of CD8(+) T-cytotoxic/suppressor lymphoid cells. Activated microglia and reactive astrocytes expressed IL-1beta and its signaling receptor IL-1RI, as well as components of the complement cascade, such as C1q, C3c and C3d. Albumin extravasation, with uptake in astrocytes, was observed in both tubers and SGCT, suggesting that alterations in blood brain barrier permeability are associated with inflammation in TSC-associated lesions. Our findings demonstrate a persistent and complex activation of inflammatory pathways in cortical tubers and SGCT.  相似文献   

10.
Multiple sclerosis (MS) is an idiopathic chronic inflammatory demyelinating disease of the central nervous system with variable extent of remyelination. Remyelination originates from oligodendrocyte (OG) precursor cells, which migrate and differentiate into mature OG. Tubulin polymerization promoting protein (TPPP/p25) is located in mature OG and aggregates in oligodendroglial cytoplasmic inclusions in multiple system atrophy. We developed a novel monoclonal anti‐TPPP/p25 antibody to quantify OG in different subtypes and disease stages of MS, and possible degenerative changes in OG. We evaluated autopsy material from 25 MS cases, including acute, primary progressive, secondary progressive, relapsing remitting MS, and five controls. Demyelinated lesions revealed loss of TPPP/p25‐positive OG within the plaques. In remyelination, TPPP/p25 was first expressed in OG cytoplasms and later became positive in myelin sheaths. We observed increased numbers of TPPP/p25 immunoreactive OG in the normal appearing white matter (NAWM) in MS patients. In MS cases, the cytoplasmic area of TPPP/p25 immunoreactivity in the OG was higher in the periplaque area when compared with NAWM and the plaque, and TPPP/p25 immunoreactive OG cytoplasmic area inversely correlated with the disease duration. There was a lack of phospho‐TDP‐43, phospho‐tau, α‐synuclein, and ubiquitin immunoreactivity in OG with enlarged cytoplasm. Our data suggest impaired differentiation, migration, and activation capacity of OG in later disease stages of MS. Upregulation of TPPP/p25 in the periplaque white matter OG without evidence for inclusion body formation might reflect an activation state. Distinct and increased expression of TPPP/p25 in MS renders it a potential prognostic and diagnostic marker of MS. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
R L Doty  C Li  L J Mannon  D M Yousem 《Neurology》1999,53(4):880-882
Scores on the University of Pennsylvania Smell Identification Test (UPSIT), as well as the numbers of MRI-determined plaques within the inferior frontal and temporal lobes, were obtained on three or four separate occasions in each of five MS patients over an 18- to 20-month period. A close association was observed, longitudinally, between the remission and exacerbation of plaque numbers and UPSIT scores, with more plaques reflecting lower UPSIT scores. These observations further support the hypothesis that olfactory loss in MS is associated with fluctuations in plaque numbers in central olfactory brain regions.  相似文献   

12.
T-cell-mediated immunity has dominated studies of multiple sclerosis (MS) pathogenesis, mainly due to detection of activated T-cells in MS lesions, and analogies with the animal model experimental allergic encephalomyelitis. The prevailing aetiological hypothesis is that MS is a multifactorial disorder, affecting individuals predisposed by a combination of susceptibility genes and environmental factors. Plaque formation is attributed to immune mechanisms, triggered by an autoimmune attack directed against antigens in the myelin membrane. This article reviews the roles of components of the immune response in MS including B-cells, the complement cascade, antibodies and genes. Evidence suggests that B-cell clonal expansion in cerebrospinal fluid and plaques of MS patients indicate an ongoing, antigen-driven response in the central nervous system. That MS is an autoimmune disease remains inconclusive, but the assumption is that humoral immunity plays a role in lesion formation and perpetuation, or is involved in tissue-repair mechanisms. The paradigm of MS as a T-cell disease must be revisited, as B-cells are involved during the initial and later disease stages, and evidence is mounting for a 'degenerative process', in addition to (and possibly even preceding) inflammation.  相似文献   

13.
Impaired remyelination in multiple sclerosis (MS) might be due to the failure of oligodendrocyte precursor cells (OPC) to differentiate into myelinating oligodendrocytes. Animal experimental data have shown that p57kip2 inhibits oligodendroglial differentiation, indicating that this factor could contribute to remyelination failure. This study investigates oligodendroglial p57kip2 expression and its association with remyelination in MS lesions. To analyze the potential association of p57kip2 expression with human oligodendroglial maturation, double immunofluorescence staining was performed on brain tissue from 30 MS patients and 20 controls. Anti‐p57kip2 antibody was combined with either anti‐Nogo‐A to label mature oligodendrocytes or anti‐Olig2 antibodies to identify immature OPCs. We evaluated MS lesions with or without remyelination, the periplaque white matter (PPWM) as well as control white matter (WM). p57kip2‐expressing cells were assessed and correlated with the extent of remyelination. Most Nogo‐A‐positive oligodendrocytes (range, 87–98%) and all Olig2strong‐positive OPCs expressed p57kip2 in MS lesions, in the PPWM and in control WM. p57kip2 expression in oligodendrocytes and OPCs were similar in MS lesions with remyelination compared to MS lesions lacking remyelination. Interestingly, all oligodendroglial lineage cells showed nuclear p57kip2 expression only, with mature oligodendrocytes expressing p57kip2 at low or intermediate levels and OPCs featuring strong expression levels, indicating that this factor may be dynamically expressed during maturation processes. Therefore, p57kip2 appears to be widely expressed in the human oligodendroglial lineage, and potential beneficial effects on remyelination in the MS brain are not based on subcellular p57kip2 localization shifts, as suggested by previous animal experiments. GLIA 2013;61:1250–1260  相似文献   

14.
Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course, neuroradiological appearance of the lesions, involvement of susceptibility gene loci, and response to therapy. These features are supported by experimental evidence, which demonstrates that fundamentally different processes, such as autoimmunity or virus infection, may induce MS-like inflammatory demyelinating plaques and suggest that MS may be a disease with heterogeneous pathogenetic mechanisms. From a large pathology sample of MS, collected in three international centers, we selected 51 biopsies and 32 autopsies that contained actively demyelinating lesions defined by stringent criteria. The pathology of the lesions was analyzed using a broad spectrum of immunological and neurobiological markers. Four fundamentally different patterns of demyelination were found, defined on the basis of myelin protein loss, the geography and extension of plaques, the patterns of oligodendrocyte destruction, and the immunopathological evidence of complement activation. Two patterns (I and II) showed close similarities to T-cell-mediated or T-cell plus antibody-mediated autoimmune encephalomyelitis, respectively. The other patterns (III and IV) were highly suggestive of a primary oligodendrocyte dystrophy, reminiscent of virus- or toxin-induced demyelination rather than autoimmunity. At a given time point of the disease--as reflected in autopsy cases--the patterns of demyelination were heterogeneous between patients, but were homogenous within multiple active lesions from the same patient. This pathogenetic heterogeneity of plaques from different MS patients may have fundamental implications for the diagnosis and therapy of this disease.  相似文献   

15.
Low density lipoprotein (LDL), the major carrier of plasma cholesterol, may enter the parenchyma of early multiple sclerosis (MS) lesions as a result of blood-brain barrier damage. We have used antibodies against LDL and epitopes found in LDL oxidized by two peroxidative end-products, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), to immunocytochemically stain MS plaques at different stages of pathology. Native LDL, epitopes of MDA-LDL, peptides of myelin basic protein and neutral lipid oil red O (ORO) staining were found to be co-localized within foamy macrophages in early and actively demyelinating MS plaques. Thus cho lesterol esters, which are seen as Maltese crosses under polarized light in a proportion of foamy macrophages, appear to be derived from both LDL and myelin. ORO-negative astrocytes were strongly stained with the antibodies against 4-HNE-LDL and MDA-LDL, suggesting uptake of oxidatively modified protein products alone. Our findings suggest that a large proportion of the plasma LDL which enters the parenchyma of MS plaques is oxidatively modified in the lesion. Lipid peroxidation and oxidized LDL uptake by activated microglia and infiltrating macrophages in the early stages of MS plaque development may play important roles in demyelination.  相似文献   

16.
To determine possible sources of complement proteins in brain, we investigated by in situ hybridization expression of the mRNAs of C1q, C2, C3, C4, C5, C6, C7, C8 and C9 in postmortem Alzheimer disease (AD) and control brain tissue. We found detectable hybridization for all these components in the temporal cortex and hippocampus, with significantly higher levels being found in AD tissue. Hybridization signals were strongest over pyramidal neurons. Low or absent hybridization was seen in the visual cortex or cerebellum. These results suggest that the activated complement components found in association with AD lesions may be, in part, derived from neurons.  相似文献   

17.
BACKGROUND: The aim of this study was to evaluate the potential impact of vascular endothelial growth factor (VEGF) on carotid plaque destabilization in association with matrix metalloproteinase 9 (MMP-9) production. METHODS: Expression of VEGF and MMP-9 were determined immunohistochemically in 53 human endarterectomized atherosclerotic carotid plaques. The relationship to carotid plaque characteristics, clinical data and histological morphology was investigated. RESULTS: VEGF and MMP-9 had parallel overexpression in the inflammatory cells, especially in the neovascularized plaque lesions and around the cholesterol crystals. Strong expression of VEGF was evident in symptomatic patients (p < 0.057), in high-degree stenosis (p = 0.005), and in patients with ischemic infarct in brain scan (p = 0.021). No relation was proved between molecule expression and plaque ultrasonic characteristics. CONCLUSIONS: An intense expression of VEGF and MMP-9 in carotid plaques is related to plaque instability, high degree of stenosis and presence of symptomatic carotid occlusive disease.  相似文献   

18.
The relationship between plaque pathology and disease duration was examined in 15 patients with multiple sclerosis who died early in the course of their illness. Myelin-stained sections revealed that most plaques examined in patients who died during the first month of their illness showed evidence of ongoing myelin destruction accompanied by a loss of oligodendrocytes. Plaques containing large numbers of oligodendrocytes were not observed in these patients, but were relatively common in patients who died more than 1 month after clinical onset. Remyelination affecting more than 10% of the plaque area was observed in 3 of 82 plaques in 5 patients who died within 10 weeks of clinical onset, in 38 of 105 plaques in 5 patients who died 3 to 10 months after clinical onset, and in 19 of 92 plaques in 5 patients who died 18 months or longer after clinical onset. The study provides new evidence that both oligodendrocytes and myelin are destroyed in new lesions, that this activity ceases completely in many lesions within a few weeks, and that remyelination frequently ensues following repopulation of the plaque by oligodendrocytes. The findings suggest that new lesions normally remyelinate unless interrupted by recurrent activity and that remyelinated shadow plaques are the outcome of a single previous episode of focal demyelination.  相似文献   

19.
We measured CSF and plasma concentrations of C9, IgG, and albumin in 91 patients with demyelination and 73 controls with other neurologic diseases. The C9 index was reduced and IgG index increased in patients with multiple sclerosis and those with isolated demyelinating lesions, irrespective of disease activity; abnormalities were less marked in patients with isolated lesions than in those with MS. Humoral mechanisms may not be responsible for initiating demyelination, but activation of the complement system could amplify tissue damage and account for some symptomatic recovery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号