首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
The premotor pathways subserving saccades and smooth-pursuit eye movements are usually thought to be different. Indeed, saccade and smooth-pursuit eye movements have different dynamics and functions. In particular, a group of midline cells in the pons called omnipause neurons (OPNs) are considered to be part of the saccadic system only. It has been established that OPNs keep premotor neurons for saccades under constant inhibition during fixation periods. Saccades occur only when the activity of OPNs has completely stopped or paused. Accordingly, electrical stimulation in the region of OPNs inhibits premotor neurons and interrupts saccades. The premotor relay for smooth pursuit is thought to be organized differently and omnipause neurons are not supposed to be involved in smooth-pursuit eye movements. To investigate this supposition, OPNs were recorded during saccades and during smooth pursuit in the monkey (Macaca mulatta). Unexpectedly, we found that neuronal activity of OPNs decreased during smooth pursuit. The resulting activity reduction reached statistical significance in approximately 50% of OPNs recorded during pursuit of a target moving at 40 degrees /s. On average, activity was reduced by 34% but never completely stopped or paused. The onset of activity reduction coincided with the onset of smooth pursuit. The duration of activity reduction was correlated with pursuit duration and its intensity was correlated with eye velocity. Activity reduction was observed even in the absence of catch-up saccades that frequently occur during pursuit. Electrical microstimulation in the OPNs' area induced a strong deceleration of the eye during smooth pursuit. These results suggest that OPNs form an inhibitory mechanism that could control the time course of smooth pursuit. This inhibitory mechanism is part of the fixation system and is probably needed to avoid reflexive eye movements toward targets that are not purposefully selected. This study shows that saccades and smooth pursuit, although they are different kinds of eye movements, are controlled by the same inhibitory system.  相似文献   

2.
The study of the saccadic system has focused mainly on neurons active before the beginning of saccades, in order to determine their contribution in movement planning and execution. However, most oculomotor structures contain also neurons whose activity starts only after the onset of saccades, the maximum of their activity sometimes occurring near saccade end. Their characteristics are still largely unknown. We investigated pretectal neurons with saccade-related activity in the alert cat during eye movements towards a moving target. They emitted a high-frequency burst of action potentials after the onset of saccades, irrespective of their direction, and will be referred to as "pretectal saccade-related neurons". The delay between saccade onset and cell activity varied from 17 to 66 ms on average. We found that burst parameters were correlated with the parameters of saccades; the peak eye velocity was correlated with the peak of the spike density function, the saccade amplitude with the number of spikes in the burst, and burst duration increased with saccade duration. The activity of six pretectal saccade-related neurons was studied during smooth pursuit at different velocities. A correlation was found between smooth pursuit velocity and mean firing rate. A minority of these neurons (2/6) were also visually responsive. Their visual activity was proportional to the difference between eye and target velocity during smooth pursuit (retinal slip). These results indicate that the activity of pretectal saccade-related neurons is correlated with the characteristics of eye movements. This finding is in agreement with the known anatomical projections from premotor regions of the saccadic system to the pretectum.  相似文献   

3.
During visual tracking of a moving stimulus, primates orient their visual axis by combining two very different types of eye movements, smooth pursuit and saccades. The purpose of this paper was to investigate quantitatively the catch-up saccades occurring during sustained pursuit. We used a ramp-step-ramp paradigm to evoke catch-up saccades during sustained pursuit. In general, catch-up saccades followed the unexpected steps in position and velocity of the target. We observed catch-up saccades in the same direction as the smooth eye movement (forward saccades) as well as in the opposite direction (reverse saccades). We made a comparison of the main sequences of forward saccades, reverse saccades, and control saccades made to stationary targets. They were all three significantly different from each other and were fully compatible with the hypothesis that the smooth pursuit component is added to the saccadic component during catch-up saccades. A multiple linear regression analysis was performed on the saccadic component to find the parameters determining the amplitude of catch-up saccades. We found that both position error and retinal slip are taken into account in catch-up saccade programming to predict the future trajectory of the moving target. We also demonstrated that the saccadic system needs a minimum period of approximately 90 ms for taking into account changes in target trajectory. Finally, we reported a saturation (above 15 degrees /s) in the contribution of retinal slip to the amplitude of catch-up saccades.  相似文献   

4.
Visual tracking of moving targets requires the combination of smooth pursuit eye movements with catch-up saccades. In primates, catch-up saccades usually take place only during pursuit initiation because pursuit gain is close to unity. This contrasts with the lower and more variable gain of smooth pursuit in cats, where smooth eye movements are intermingled with catch-up saccades during steady-state pursuit. In this paper, we studied in detail the role of retinal slip in the prediction of target motion during smooth and saccadic pursuit in the cat. We found that the typical pattern of pursuit in the cat was a combination of smooth eye movements with saccades. During smooth pursuit initiation, there was a correlation between peak eye acceleration and target velocity. During pursuit maintenance, eye velocity oscillated at approximately 3 Hz around a steady-state value. The average gain of smooth pursuit was approximately 0.5. Trained cats were able to continue pursuing in the absence of a visible target, suggesting a role of the prediction of future target motion in this species. The analysis of catch-up saccades showed that the smooth-pursuit motor command is added to the saccadic command during catch-up saccades and that both position error and retinal slip are taken into account in their programming. The influence of retinal slip on catch-up saccades showed that prediction about future target motion is used in the programming of catch-up saccades. Altogether, these results suggest that pursuit systems in primates and cats are qualitatively similar, with a lower average gain in the cat and that prediction affects both saccades and smooth eye movements during pursuit.  相似文献   

5.
Reduction of retinal speed and alignment of the line of sight are believed to be the respective primary functions of smooth pursuit and saccadic eye movements. As the eye muscles strength can change in the short-term, continuous adjustments of motor signals are required to achieve constant accuracy. While adaptation of saccade amplitude to systematic position errors has been extensively studied, we know less about the adaptive response to position errors during smooth pursuit initiation, when target motion has to be taken into account to program saccades, and when position errors at the saccade endpoint could also be corrected by increasing pursuit velocity. To study short-term adaptation (250 adaptation trials) of tracking eye movements, we introduced a position error during the first catch-up saccade made during the initiation of smooth pursuit—in a ramp-step-ramp paradigm. The target position was either shifted in the direction of the horizontally moving target (forward step), against it (backward step) or orthogonally to it (vertical step). Results indicate adaptation of catch-up saccade amplitude to back and forward steps. With vertical steps, saccades became oblique, by an inflexion of the early or late saccade trajectory. With a similar time course, post-saccadic pursuit velocity was increased in the step direction, adding further evidence that under some conditions pursuit and saccades can act synergistically to reduce position errors.  相似文献   

6.
To redirect our gaze in three-dimensional space we frequently combine saccades and vergence. These eye movements, known as disconjugate saccades, are characterized by eyes rotating by different amounts, with markedly different dynamics, and occur whenever gaze is shifted between near and far objects. How the brain ensures the precise control of binocular positioning remains controversial. It has been proposed that the traditionally assumed "conjugate" saccadic premotor pathway does not encode conjugate commands but rather encodes monocular commands for the right or left eye during saccades. Here, we directly test this proposal by recording from the premotor neurons of the horizontal saccade generator during a dissociation task that required a vergence but no horizontal conjugate saccadic command. Specifically, saccadic burst neurons (SBNs) in the paramedian pontine reticular formation were recorded while rhesus monkeys made vertical saccades made between near and far targets. During this task, we first show that peak vergence velocities were enhanced to saccade-like speeds (e.g., >150 vs. <100 degrees/s during saccade-free movements for comparable changes in vergence angle). We then quantified the discharge dynamics of SBNs during these movements and found that the majority of the neurons preferentially encode the velocity of the ipsilateral eye. Notably, a given neuron typically encoded the movement of the same eye during horizontal saccades that were made in depth. Taken together, our findings demonstrate that the brain stem saccadic burst generator encodes integrated conjugate and vergence commands, thus providing strong evidence for the proposal that the classic saccadic premotor pathway controls gaze in three-dimensional space.  相似文献   

7.
Blinks are known to affect eye movements, e.g., saccades, slow and fast vergence, and saccade-vergence interaction, in two ways: by superimposition of blink-associated eye movements and changes of the central premotor activity in the brainstem. The goal of this study was to determine, for the first time, the effects of trigeminal evoked blinks on ongoing smooth pursuit eye movements which could be related to visual sensory or premotor neuronal changes. This was compared to the effect of a target disappearing for 100–300 ms duration during ongoing smooth pursuit (blank paradigm) in order to control for the visual sensory effects of a blink. Eye and blink movements were recorded in eight healthy subjects with the scleral search coil technique. Blink-associated eye movements during the first 50% of the blink duration were non-linearly superimposed on the smooth pursuit eye movements. Immediately after the blink-associated eye movements, the pursuit velocity slowly decreased by an average of 3.2±2.1°/s. This decrease was not dependent on the stimulus direction. The pursuit velocity decrease caused by blinks which occluded the pupil more than 50% could be explained mostly by blanking the visual target. However, small blinks that did not occlude the pupil (<10% of lid closure) also decreased smooth pursuit velocity. Thus, this blink effect on pursuit velocity cannot be explained by blink-associated eye movements or by the blink having blanked the visual input. We propose that part of this effect might either be caused by incomplete visual suppression during blinks and/or a change in the activity of omnipause neurons.  相似文献   

8.
A vast knowledge exists about saccadic reaction times (RT) and their bi- or multimodal distributions with very fast (express) and regular RT. Recently, there has been some evidence that the smooth pursuit system may show a similar RT behavior. Since moving targets usually evoke a combined pursuit/saccade response, we asked which processes influence the initiation of pursuit and saccadic eye movements. Furthermore, we investigated whether and how the pursuit and saccadic system interact during the initiation of eye movements to moving targets. We measured the RT of the initial smooth pursuit (iSP) response and of the first corrective saccade and compared the RT behavior of both. Furthermore we compared the behavior of the corrective saccades to moving targets to that of saccades to stationary targets, known from the literature. The stimulus consisted of a target that moved suddenly at constant velocity (ramp). In addition, prior to the movement, a temporal gap, a position step or a combination of both could occur (gap-ramp, step-ramp, gap-step-ramp, respectively). Differently from most previous studies, we chose step and ramp with the same direction to provoke competition between the pursuit and saccade system. For the first time we investigated pursuit initiation in "express-saccade makers" (ES makers), a subject group known to produce an abnormally high percentage of short-latency saccades in saccade tasks. We compared their results with subject groups who were either naive or trained with respect to saccade tasks. The iSP started at approximately 100 ms, which corresponds to express saccade latencies. These short iSP-RT occurred reflex-like and almost independent of the experimental task. A bimodal frequency distribution of RT with a second peak of longer iSP-RT occurred exclusively in the ramp paradigm. The RT of the first corrective saccades in a pursuit task were comparable with that in a saccade task and depended on the stimulus. The ability of ES makers to produce a high number of express saccades was transferred to corrective saccades in the pursuit task, but not to pursuit initiation. In summary, short-latency pursuit responses differ from express saccades with respect to their independence of experiment and subject group. Therefore, a simple analogy to express saccades cannot be drawn, although some mechanisms seem to act similarly on both the pursuit and the saccade system (such as disengagement of attention with the gap effect). Furthermore, we found evidence that the initial pursuit response and the first corrective saccade are processed independently of each other. The first corrective saccades to moving targets behave like saccades to stationary targets. Normal pursuit but abnormal saccade RT of ES makers can be explained by recent theories of superior colliculus (SC) function in terms of retinal error handling.  相似文献   

9.
Blinks are known to change the kinematic properties of horizontal saccades, probably by influencing the saccadic premotor circuit. The neuronal basis of this effect could be explained by changes in the activity of omnipause neurons in the nucleus raphe interpositus or in the saccade-related burst neurons of the superior colliculus. Omnipause neurons cease discharge during both saccades and vergence movements. Because eyelid blinks can influence both sets of neurons, we hypothesized that blinks would influence the kinematic parameters of saccades in all directions, vergence, and saccade-vergence interactions. To test this hypothesis, we investigated binocular eye and lid movements in five normal healthy subjects with the magnetic search coil technique. The subjects performed conjugate horizontal and vertical saccades from gaze straight ahead to targets at 20 degrees up, down, right, or left while either attempting not to blink or voluntarily blinking. While following the same blink instruction, subjects made horizontal vergence eye movements of 7 degrees and combined saccade-vergence movements with a version amplitude of 20 degrees. The movements were performed back and forth from two targets simultaneously presented nearby (38 cm) and more distant (145 cm). Small vertical saccades accompanied most vergence movements. These results show that blinks change the kinematics (saccade duration, peak velocity, peak acceleration, peak deceleration) of not only horizontal but also of vertical saccades, of horizontal vergence eye movements, and of combined saccade-vergence eye movements. Peak velocity, acceleration, and deceleration of eye movements were decreased on the average by 30%, and their duration increased by 43% on the average when they were accompanied by blinks. The blink effect was time dependent with respect to saccade and vergence onset: the greatest effect occurred 100 ms prior to saccade onset, whereas there was no effect when the blink started after saccade onset. The effects of blinks on saccades and vergence, which are tightly coupled to latency, support the hypothesis that blinks cause profound spatiotemporal perturbations of the eye movements by interfering with the normal saccade/vergence premotor circuits. However, the measured effect may to a certain degree but not exclusively be explained by mechanical interference.  相似文献   

10.
When objects move in our environment, the orientation of the visual axis in space requires the coordination of two types of eye movements: saccades and smooth pursuit. The principal input to the saccadic system is position error, whereas it is velocity error for the smooth pursuit system. Recently, it has been shown that catch-up saccades to moving targets are triggered and programmed by using velocity error in addition to position error. Here, we show that, when a visual target is flashed during ongoing smooth pursuit, it evokes a smooth eye movement toward the flash. The velocity of this evoked smooth movement is proportional to the position error of the flash; it is neither influenced by the velocity of the ongoing smooth pursuit eye movement nor by the occurrence of a saccade, but the effect is absent if the flash is ignored by the subject. Furthermore, the response started around 85 ms after the flash presentation and decayed with an average time constant of 276 ms. Thus this is the first direct evidence of a position input to the smooth pursuit system. This study shows further evidence for a coupling between saccadic and smooth pursuit systems. It also suggests that there is an interaction between position and velocity error signals in the control of more complex movements.  相似文献   

11.
The synaptic organization of the saccade-related neuronal circuit between the superior colliculus (SC) and the brainstem saccade generator was examined in an awake monkey using a saccadic, midflight electrical-stimulation method. When microstimulation (50–100 A, single pulse) was applied to the SC during a saccade, a small, conjugate contraversive eye movement was evoked with latencies much shorter than those obtained by conventional stimulation. Our results may be explained by the tonic inhibition of premotor burst neurons (BNs) by omnipause neurons that ceases during saccades to allow BNs to burst. Thus, during saccades, signals originating from the SC can be transmitted to motoneurons and seen in the saccade trajectory. Based on this hypothesis, we estimated the number of synapses intervening between the SC and motoneurons by applying midflight stimulation to the SC, the BN area, and the abducens nucleus. Eye position signals were electronically differentiated to produce eye velocity to aid in detecting small changes. The mean latencies of the stimulus-evoked eye movements were: 7.9±1.0 ms (SD; ipsilateral eye) and 7.8±0.9 ms (SD; contralateral eye) for SC stimulation; 4.8±0.5 ms (SD; ipsilateral eye) and 5.1±0.7 ms (SD; contralateral eye) for BN stimulation; and 3.6±0.4 ms (SD; ipsilateral eye) and 5.2±0.8 ms (SD; contralateral eye) for abducens nucleus stimulation. The time difference between SC- and BN-evoked eye movements (about 3 ms) was consistent with a disynaptic connection from the SC to the premotor BNs.  相似文献   

12.
The activity of vertical burst neurons (BNs) was recorded in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF-BNs) and in the interstitial nucleus of Cajal (NIC-BNs) in head-restrained cats while performing saccades or smooth pursuit. BNs emitted a high-frequency burst of action potentials before and during vertical saccades. On average, these bursts led saccade onset by 14 +/- 4 ms (mean +/- SD, n = 23), and this value was in the range of latencies ( approximately 5-15 ms) of medium-lead burst neurons (MLBNs). All NIC-BNs (n = 15) had a downward preferred direction, whereas riMLF-BNs showed either a downward (n = 3) or an upward (n = 5) preferred direction. We found significant correlations between saccade and burst parameters in all BNs: vertical amplitude was correlated with the number of spikes, maximum vertical velocity with maximum of the spike density, and saccade duration with burst duration. A correlation was also found between instantaneous vertical velocity and neuronal activity during saccades. During fixation, all riMLF-BNs and approximately 50% of NIC-BNs (7/15) were silent. Among NIC-BNs active during fixation (8/15), only two cells had an activity correlated with the eye position in the orbit. During smooth pursuit, most riMLF-BNs were silent (7/8), but all NIC-BNs showed an activity that was significantly correlated with the eye velocity. This activity was unaltered during temporary disappearance of the visual target, demonstrating that it was not visual in origin. For a given neuron, its ON-direction during smooth pursuit and saccades remained identical. The activity of NIC-BNs during both saccades and smooth pursuit can be described by a nonlinear exponential function using the velocity of the eye as independent variable. We suggest that riMLF-BNs, which were not active during smooth pursuit, are vertical MLBNs responsible for the generation of vertical saccades. Because NIC-BNs discharged during both saccades and pursuit, they cannot be regarded as MLBNs as usually defined. NIC-BNs could, however, be the site of convergence of both the saccadic and smooth pursuit signals at the premotoneuronal level. Alternatively, NIC-BNs could participate in the integration of eye velocity to eye position signals and represent input neurons to a common integrator.  相似文献   

13.
The overall goals of the studies presented here were to compare (1) the accuracies of saccades to moving targets with either a novel or a known target motion, and (2) the relationships between the measures of target motion and saccadic amplitude during pursuit initiation and maintenance. Since resampling of position error just prior to saccade initiation can confound the interpretation of results, the target ramp was masked during the planning and execution of the saccade. The results suggest that saccades to moving targets were significantly more accurate if the target motion was known from the early part of the trial (e.g., during pursuit maintenance) than in the case of novel target motion (e.g., during pursuit initiation); both these types of saccades were more accuate than those when target motion information was not available. Using target velocity in space as a rough estimate of the magnitude of the extra-retinal signal during pursuit maintenance, the saccadic amplitude was significantly associated with the extra-retinal target motion information after accounting for the position error. In most subjects, this association was stronger than the one between retinal slip velocity and saccadic amplitude during pursuit initiation. The results were similar even when the smooth eye motion prior to the saccade was controlled. These results suggest that different sources of target motion information (retinal image velocity vs internal representation of previous target motion in space) are used in planning saccades during different stages of pursuit. The association between retinal slip velocity and saccadic amplitude is weak during initiation, thus explaining poor saccadic accuracy during this stage of pursuit.  相似文献   

14.
Pontine omnipause neurons (OPNs) are inhibitory neurons projecting to saccade-related premotor burst neurons. OPNs exhibit sustained discharge during fixations and cease firing before and during saccades. The pause in OPN discharge releases the burst neurons from tonic inhibition, resulting in generation of saccadic eye movements. OPNs are thought to receive two major inhibitory inputs during saccades: an early component that determines the pause onset and a late component that controls the pause duration. Although there is evidence that numerous glycinergic and GABAergic terminals contact OPNs, their physiological roles remain unclear. To reveal functions of glycinergic and GABAergic inputs, we investigated effects of iontophoretic application of strychnine, a glycine receptor antagonist, and bicuculline, a GABAA receptor antagonist, on discharge patterns of OPNs in alert cats. Application of strychnine reduced the ratio of pause duration to saccade duration. Analysis of the timing of pause relative to saccades showed that pause onset was delayed and pause end was advanced. These effects were observed for saccades in all directions. Application of bicuculline, in contrast, had no effect on the OPN pause duration or timing. Both strychnine and bicuculline increased tonic firing rate during intersaccadic intervals. These results suggest that glycinergic, but not GABAergic, afferents convey inhibitory signals that determine the onset as well as duration of pause in OPN activity during saccades.  相似文献   

15.
Saccade-related burst neurons were recorded in the caudal part of the fastigial nucleus (fastigial oculomotor region) during spontaneous eye movements and fast phases of optokinetic and vestibular nystagmus in light and darkness from three macaque monkeys. All neurons (n=47) were spontaneously active and exhibited a burst of activity with each saccade and fast phase of nystagmus. Most neurons (n=31) only exhibited a burst of activity, whereas those remaining also exhibited a pause in firing rate before or after the burst. Burst parameters varied considerably for similar saccades. For horizontal saccades all neurons, except for three, had a preferred direction with an earlier onset of burst activity to the contralateral side. For contralateral saccades the burst started on average 17.5 ms before saccade onset, whereas the average lead-time for ipsilateral saccades was only 6.5 ms. Three neurons were classified as isotropic with similar latencies and peak burst activity in all directions. None of the neurons had a preferred direction with an earlier onset of burst activity to the ipsilateral side. Burst duration increased with saccade amplitude, whereas peak burst activity was not correlated with amplitude. There was no relationship between peak burst activity and peak eye velocity. In the dark, neurons generally continued to burst with each saccade and fast phase of nystagmus. Burst for saccades in the dark was compared with burst for saccades of similar amplitude and direction in the light. Saccades in the dark had a longer duration and peak burst activity was reduced on average to 62% (range 36–105%). In three neurons a burst in the dark was no longer clearly distinguishable above the ongoing spontaneous activity. These data suggest that the saccade-related burst neurons in the FOR modify saccadic profiles by directly influencing acceleration and deceleration, respectively, of individual eye movements. This could be achieved by an input to the inhibitory and excitatory burst neurons of the saccadic burst generator in the brainstem. From neuroanatomical studies it is known that FOR neurons project directly to the brainstem regions containing the immediate premotor structures for saccade generation.  相似文献   

16.
Saccadic eye movements are thought to be influenced by blinking through premotor interactions, but it is still unclear how. The present paper describes the properties of blink-associated eye movements and quantifies the effect of reflex blinks on the latencies, metrics, and kinematics of saccades in the monkey. In particular, it is examined to what extent the saccadic system accounts for blink-related perturbations of the saccade trajectory. Trigeminal reflex blinks were elicited near the onset of visually evoked saccades by means of air puffs directed on the eye. Reflex blinks were also evoked during a straight-ahead fixation task. Eye and eyelid movements were measured with the magnetic-induction technique. The data show that saccade latencies were reduced substantially when reflex blinks were evoked prior to the impending visual saccades as if these saccades were triggered by the blink. The evoked blinks also caused profound spatial-temporal perturbations of the saccades. Deflections of the saccade trajectory, usually upward, extended up to approximately 15 degrees. Saccade peak velocities were reduced, and a two- to threefold increase in saccade duration was typically observed. In general, these perturbations were largely compensated in saccade mid-flight, despite the absence of visual feedback, yielding near-normal endpoint accuracies. Further analysis revealed that blink-perturbed saccades could not be described as a linear superposition of a pure blink-associated eye movement and an unperturbed saccade. When evoked during straight-ahead fixation, blinks were accompanied by initially upward and slightly abducting eye rotations of approximately 2-15 degrees. Back and forth wiggles of the eye were frequently seen; but in many cases the return movement was incomplete. Rather than drifting back to its starting position, the eye then maintained its eccentric orbital position until a downward corrective saccade toward the fixation spot followed. Blink-associated eye movements were quite rapid, albeit slower than saccades, and the velocity-amplitude-duration characteristics of the initial excursions as well as the return movements were approximately linear. These data strongly support the idea that blinks interfere with the saccade premotor circuit, presumably upstream from the neural eye-position integrator. They also indicated that a neural mechanism, rather than passive elastic restoring forces within the oculomotor plant, underlies the compensatory behavior. The tight latency coupling between saccades and blinks is consistent with an inhibition of omnipause neurons by the blink system, suggesting that the observed changes in saccade kinematics arise elsewhere in the saccadic premotor system.  相似文献   

17.
The human saccadic system is potentially unstable and may oscillate if the burst neurons, which generate saccades, are not inhibited by omnipause neurons. A previous study showed that combined saccade vergence movements can evoke oscillations in normal subjects. We set out to determine: 1) whether similar oscillations can be recorded during other paradigms associated with inhibition of omnipause neurons; 2) whether lesions of the fastigial nuclei disrupt such oscillations; and 3) whether such oscillations can be reproduced using a model based on the coupling of excitatory and inhibitory burst neurons. We recorded saccadic oscillations during vergence movements, combined saccade-vergence movements, vertical saccades, pure vergence and blinks in three normal subjects, and in a patient with saccadic hypermetria due to a surgical lesion affecting both fastigial nuclei. During combined saccade-vergence, normal subjects and the cerebellar patient developed small-amplitude (0.1–0.5°), high-frequency (27–35 Hz), conjugate horizontal saccadic oscillations. Oscillations of a similar amplitude and frequency occurred during blinks, pure vergence and vertical saccades. One normal subject could generate saccadic oscillations voluntarily (~0.7° amplitude, 25 Hz) during sustained convergence. Previous models proposed that high-frequency eye oscillations produced by the saccadic system (saccadic oscillations), occur because of a delay in a negative feedback loop around high-gain, excitatory burst neurons in the brainstem. The feedback included the cerebellar fastigial nuclei. We propose another model that accounts for saccadic oscillations based on 1) coupling of excitatory and inhibitory burst neurons in the brainstem and 2) the hypothesis that burst neurons show post-inhibitory rebound discharge. When omnipause neurons are inhibited (as during saccades, saccade-vergence movements and blinks), this new model simulates oscillations with amplitudes and frequencies comparable to those in normal human subjects. The finding of saccadic oscillations in the cerebellar patient is compatible with the new model but not with the recent models including the fastigial nuclei in the classic negative-feedback loop model. Our model proposes a novel mechanism for generating oscillations in the oculomotor system and perhaps in other motor systems too.  相似文献   

18.
When tracking moving visual stimuli, primates orient their visual axis by combining two kinds of eye movements, smooth pursuit and saccades, that have very different dynamics. Yet, the mechanisms that govern the decision to switch from one type of eye movement to the other are still poorly understood, even though they could bring a significant contribution to the understanding of how the CNS combines different kinds of control strategies to achieve a common motor and sensory goal. In this study, we investigated the oculomotor responses to a large range of different combinations of position error and velocity error during visual tracking of moving stimuli in humans. We found that the oculomotor system uses a prediction of the time at which the eye trajectory will cross the target, defined as the "eye crossing time" (T(XE)). The eye crossing time, which depends on both position error and velocity error, is the criterion used to switch between smooth and saccadic pursuit, i.e., to trigger catch-up saccades. On average, for T(XE) between 40 and 180 ms, no saccade is triggered and target tracking remains purely smooth. Conversely, when T(XE) becomes smaller than 40 ms or larger than 180 ms, a saccade is triggered after a short latency (around 125 ms).  相似文献   

19.
The role of the supplementary eye fields (SEF) during smooth pursuit was investigated with electrical microstimulation. We found that stimulation in the SEF increased the acceleration and velocity of the eyes in the direction of target motion during smooth pursuit initiation but not during sustained pursuit. The increase in eye velocity during initiation will be referred to as pursuit facilitation and was observed at sites where saccades could not be evoked with the same stimulation parameters. On average, electrical stimulation increased eye velocity by approximately 20%. At most sites, the threshold for a significant facilitation was 50 microA with a stimulation frequency of 300 Hz. Facilitation of pursuit initiation depended on the timing of stimulation trains. The effect was most pronounced if the stimulation was delivered before smooth pursuit initiation. On average, eye velocity in stimulation trials increased linearly as a function of eye velocity in control trials, and this function had a slope greater than one, suggesting a multiplicative influence of the stimulation. Stimulation during a fixation task did not evoke smooth eye movements. The latency of catch-up saccades was increased during facilitation, but their accuracy was not affected. Saccades toward stationary targets were not affected by the stimulation. The results are further evidence that the SEF plays a role in smooth pursuit in addition to its known role in saccade planning and suggest that this role may be to control the gain of smooth pursuit during initiation. The covariance between pursuit facilitation and the timing of the catch-up saccade as a result of stimulation suggests that these different eye movements systems are coordinated to achieve a common goal.  相似文献   

20.
Blinks executed during eye movements affect kinetic eye movement parameters, e.g., peak velocity of saccades is decreased, their duration is increased, but their amplitude is not altered. This effect is mainly explained by the decreased activity of premotor neurons in the brainstem: omni-pause neurons (OPN) in the nucleus raphe interpositus. Previous studies examined the immediate effect of blinks directly on eye movements but not their effect when they are elicited several hundred milliseconds before the eye movements. In order to address this question we tested blinks elicited before the target onset of saccades and pursuit and compared the results to the gap effect: if a fixation light is extinguished for several hundred milliseconds, the reaction time (latency) for subsequent saccades or smooth pursuit eye movements is decreased. Monocular eye and lid movements were recorded in nine healthy subjects using the scleral search-coil system. Laser stimuli were front-projected onto a tangent screen in front of the subjects. Horizontal step-ramp smooth pursuit of 20 deg/s was elicited in one session, or 5 deg horizontal visually guided saccades in another experimental session. In one-third of the trials (smooth pursuit or saccades) the fixation light was extinguished for 200 ms before stimulus onset (gap condition), and in another third of the trials reflexive blinks were elicited by a short airpuff before the stimulus onset (blink condition). The last third of the trials served as controls (control condition). Stimulus direction and the three conditions were randomized for saccades and smooth pursuit separately. The latency of the step-ramp smooth pursuit in the blink condition was found to be decreased by 10 ms, which was less than in the gap condition (38 ms). However, the initial acceleration and steady-state velocity of smooth pursuit did not differ in the three conditions. In contrast, the latency of the saccades in the gap condition was decreased by 39 ms, but not in the blink condition. Saccade amplitude, peak velocity, and duration were not different in the three conditions. There was also no difference in blink amplitude and duration of pupil occlusion in the blink condition, neither in saccades nor in smooth pursuit. The latency reduction of smooth pursuit, but not of saccades, may neither be explained by the brief pupil occlusion nor by visual suppression, warning signals, or the startle response. Whether the effects are caused by the influence of blinks on OPNs or other premotor structures remains to be tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号