首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cystic fibrosis (CF) is characterized by a defect in cAMP-regulated chloride channels in epithelial cells. The CF gene product CF transmembrane conductance regulator (CFTR) is expressed in the apical membrane of pancreatic duct cells, and mutant CFTR accounts for the pathology in the CF pancreas. PANC 1, a pancreatic duct cell line, has not been considered a good model for studying CFTR and pancreatic chloride transport because CFTR mRNA and protein are undetectable using standard methods. Using electronic cell sizing and cell volume reduction under isotonic conditions, PANC 1 cells were found to possess both cAMP and calcium-activated chloride conductances. Using CFTR antisense oligodeoxynucleotides, the cAMP-activated conductance could be specifically inhibited in a concentration- and time-dependent manner. These findings demonstrate that PANC 1 cells express CFTR and a CFTR-independent calcium-activated chloride channel. With electronic cell sizing and CFTR antisense oligodeoxynucleotides, PANC 1 cells can provide an ideal system for the study of pancreatic duct cell physiology and pathophysiology with respect to the role of CFTR in the pancreas. These findings also suggest that antisense oligodeoxynucleotides may provide a more sensitive yet highly specific means of detecting low levels of expression of CFTR than currently available.  相似文献   

2.
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by chronic lung and sinus disease, impaired mucociliary clearance (leading to recurrent pulmonary infection), pancreatic insufficiency, elevated sweat chloride levels and male infertility. Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel in the plasma membrane of epithelial cells lining the lung, pancreas, liver, intestines, sweat duct, and the epididymis. Genetic mutations in CFTR affect its synthesis, processing, and transport to the plasma membrane and/or impede its function as a chloride channel and conductance regulator. Research is proceeding on multiple fronts including inhalational agents, anti-inflammatory treatments, and pancreatic replacement therapies. Furthermore, improved understanding of the molecular mechanisms that lead to CFTR dysfunction has stimulated the design of therapeutic strategies aimed at restoration of CFTR function, or "protein repair therapy". Recent clinical trials have shown these interventions have the ability to restore some level of CFTR function in vivo. This review will provide an overview of recent clinical trials that investigate new therapeutic approaches in CF designed to treat chronic respiratory infection, reduce inflammation, and improve pancreatic enzyme supplementation as well as trials addressing the greatest therapeutic challenge--restoring the function of the CFTR protein.  相似文献   

3.
Cystic fibrosis is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). To further our understanding of CFTR's function and regulation, we used confocal immunofluorescence microscopy to localize CFTR in cells stained with monoclonal antibodies against different regions of the protein: the R (regulatory) domain (M13-1), the COOH terminus (M1-4), and a predicted extracellular domain (M6-4). All three antibodies immunoprecipitated a 155-170-kD polypeptide from cells expressing CFTR. Each antibody stained HeLa and 3T3 cells expressing recombinant CFTR, but not cells lacking endogenous CFTR: HeLa, NIH-3T3, and endothelial cells. For localization studies, we used epithelial cell lines that express endogenous CFTR and have a cAMP-activated apical Cl- permeability: T84, CaCo2, and HT29 clone 19A. Our results demonstrate that CFTR is an apical membrane protein in these epithelial cells because (a) staining for CFTR resembled staining for several apical membrane markers, but differed from staining for basolateral membrane proteins; (b) thin sections of cell monolayers show staining at the apical membrane; and (c) M6-4, an extracellular domain antibody, stained the apical surface of nonpermeabilized cells. Our results do not exclude the possibility that CFTR is also located beneath the apical membrane. Increasing intracellular cAMP levels did not change the apical membrane staining pattern for CFTR. Moreover, insertion of channels by vesicle fusion with the apical membrane was not required for cAMP-mediated increases in apical membrane Cl- conductance. These results indicate that CFTR is located in the apical plasma membrane of Cl(-)-secreting epithelia, a result consistent with the conclusion that Cl TR is an apical membrane chloride channel.  相似文献   

4.
The cystic fibrosis transmembrane conductance regulator (CFTR) is the product of the gene mutated in patients with cystic fibrosis (CF). CFTR is a cAMP-regulated chloride channel localized primarily at the apical or luminal surfaces of epithelial cells lining the airway, gut, exocrine glands, etc., where it is responsible for transepithelial salt and water transport. CFTR chloride channel belongs to the superfamily of the ATP-binding cassette (ABC) transporters, which bind ATP and use the energy to drive the transport of a wide variety of substrates across extra- and intracellular membranes. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might regulate the activities of other ion channels, receptors, or transporters, in addition to its role as a chloride conductor. The molecular assembly of CFTR with these interacting proteins is of great interest and importance because several human diseases are attributed to altered regulation of CFTR, among which cystic fibrosis is the most serious one. Most interactions primarily occur between the opposing terminal tails (N- or C-) of CFTR and its binding partners, either directly or mediated through various PDZ domain-containing proteins. These dynamic interactions impact the channel function as well as the localization and processing of CFTR protein within cells. This review focuses on the recent developments in defining the assembly of CFTR-containing complexes in the plasma membrane and its interacting proteins.  相似文献   

5.
Cystic fibrosis (CF) is one of the most common lethal autosomal recessive genetic diseases in the Caucasian population, with a frequency of about 1 in 3000 livebirths. CF is due to a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, a cyclic adenosine 5'-monophosphate (cAMP)-regulated chloride channel localized in the apical membrane of epithelial cells. CFTR is a multifunctional protein which, in addition to be a Cl-channel, is also a regulator of multiple ion channels and other proteins. In particular CFTR has been reported to play a role in the outflow of adenosine 5'-triphosphate (ATP) from cells, but this remains controversial. Extracellular nucleotides are signaling molecules that regulate ion transport and mucociliary clearance by acting on P2 nucleotide receptors, in particular the P2Y(2) receptor. Nucleotides activating the P2Y(2) receptor represent thus one pharmacotherapeutic strategy to treat CF disease, via improvement of mucus hydration and mucociliary clearance in airways. Phase II clinical trials have recently shown that aerosolized denufosol (INS37217, Inspire(R)) improves pulmonary function in CF patients: denufosol was granted orphan drug status and phase III trials are planned. Here, we review what is known about the relationship between extracellular nucleotides and CFTR, the role of extracellular nucleotides in epithelial pathophysiology and their putative role as therapeutic agents.  相似文献   

6.
Cystic fibrosis (CF) is an autosomal genetic disease associated with impaired epithelial ion transport. Mutations in the CF gene alter the primary sequence of the CF transmembrane conductance regulator (CFTR). Several therapeutic modalities have been proposed for CF patients, including the phytoestrogen genistein. Experiments were completed in cellular and subcellular systems to evaluate the impact of naturally occurring and synthetic estrogens on epithelial ion transport, and specifically on the CF protein CFTR. 17beta-Estradiol, a naturally occurring estrogen, caused a rapid and reversible inhibition of forskolin-stimulated chloride secretion across T84 epithelial cell monolayers with a K(i) of 8 microM. In addition, 17alpha-estradiol, a stereoisomer that fails to bind and activate nuclear estrogen receptors was equipotent with 17beta-estradiol, arguing against a genomic-mediated mechanism of action. Synthetic estrogens, including diethylstilbesterol and the antiestrogen tamoxifen likewise inhibited forskolin-stimulated ion transport. Aldosterone, dexamethasone, and cholesterol were without effect at the highest concentrations tested (>/=1 mM). Studies indicated that diethylstilbesterol and other synthetic estrogens that inhibited anion secretion in intact monolayers likewise inhibited CFTR chloride channel activity with similar concentration dependencies in excised membrane patches. Experiments with radioactive photoactivatable estrogen derivatives demonstrated that these compounds bind directly to CFTR expressed in insect cells. Taken together, the data suggest that estrogens can interact directly with CFTR to alter anion transport.  相似文献   

7.
Polarization of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, to the apical plasma membrane of epithelial cells is critical for vectorial transport of chloride in a variety of epithelia, including the airway, pancreas, intestine, and kidney. However, the motifs that localize CFTR to the apical membrane are unknown. We report that the last 3 amino acids in the COOH-terminus of CFTR (T-R-L) comprise a PDZ-interacting domain that is required for the polarization of CFTR to the apical plasma membrane in human airway and kidney epithelial cells. In addition, the CFTR mutant, S1455X, which lacks the 26 COOH-terminal amino acids, including the PDZ-interacting domain, is mispolarized to the lateral membrane. We also demonstrate that CFTR binds to ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50), an apical membrane PDZ domain-containing protein. We propose that COOH-terminal deletions of CFTR, which represent about 10% of CFTR mutations, result in defective vectorial chloride transport, partly by altering the polarized distribution of CFTR in epithelial cells. Moreover, our data demonstrate that PDZ-interacting domains and PDZ domain-containing proteins play a key role in the apical polarization of ion channels in epithelial cells.  相似文献   

8.
Cystic fibrosis (CF) is an inheritable disorder characterized by defective epithelial chloride transport and progressive lung disease, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The subject of this study was an 8-year old Japanese boy, who developed typical CF symptoms including meconium ileus, pancreatic insufficiency, an elevated sweat chloride concentration and pulmonary disease. Analysis of the CFTR gene of this patient revealed compound heterozygous mutations in exon 11 (1742 delAC) and intron 9 (1525-18 GtoA) of the CFTR gene.  相似文献   

9.
We are studying the introduction and expression of the normal cystic fibrosis transmembrane conductance regulator (CFTR) cDNA into cultured human airway epithelial cells as a model for gene therapy of cystic fibrosis. In this paper, we show that the chloride transport defect at the apical membrane is corrected in vitro in differentiated ion-transporting CF airway epithelial cells that exhibit polarized properties similar to those found in vivo. Using a retroviral vector containing a copy of the normal CFTR cDNA, we infected cultures of proliferating, cystic fibrosis CFT1 cells and found that correction was maintained following differentiation into a polarized epithelial sheet. At least partial correction of the Cl- transport defect was preserved in CFT1 cells for periods of up to 6 months without selection for maintenance of the retroviral provirus. These results suggest that it may be feasible to target proliferating cells in the lung using retroviral vectors for treatment of CF lung disease.  相似文献   

10.
Sendai virus (SeV) vector has been shown to efficiently transduce airway epithelial cells. As a precursor to the potential use of this vector for cystic fibrosis (CF) gene therapy, the correct maturation of the SeV vector-derived CF transmembrane conductance regulator (CFTR) protein was examined using biochemical and functional analyses. We constructed a recombinant SeV vector, based on the fusion (F) gene-deleted non-transmissible SeV vector, carrying the GFP-CFTR gene in which the N terminus of CFTR was fused to green fluorescence protein (GFP). This vector was recovered and propagated to high titers in the packaging cell line. Western blotting using an anti-GFP antibody detected both the fully glycosylated (mature) and the core-glycosylated (immature) proteins, indicating that SeV vector-derived GFP-CFTR was similar to endogenous CFTR. We also confirmed the functional channel activity of GFP-CFTR in an iodide efflux assay. The efficient expression of GFP-CFTR, and its apical surface localization, were observed in both MDCK cells in vitro, and in the nasal epithelium of mice in vivo. We concluded that recombinant SeV vector, a cytoplasmically maintained RNA vector, is able to direct production of a correctly localized, mature form of CFTR, suggesting the value of this vector for studies of CF gene therapy.  相似文献   

11.
Expression of the cystic fibrosis gene in adult human lung.   总被引:8,自引:3,他引:8       下载免费PDF全文
Critical to an understanding of the pulmonary disease in cystic fibrosis (CF) and the development of effective gene therapies is a definition of the distribution and regulation of CF gene expression in adult human lung. Previous studies have detected the product of the CF gene, the CF transmembrane conductance regulator (CFTR), in submucosal glands of human bronchi. In this report, we have characterized the distribution of CFTR RNA and protein in the distal airway and alveoli of human lungs. Samples from eight human lungs were analyzed for CFTR expression by in situ hybridization and immunocytochemistry. CFTR was detected in a subpopulation of epithelial cells at every level of the distal lung, including proximal, terminal, and respiratory bronchioles, and the alveoli. However, there was substantial variation in the level of CFTR expression between samples. In bronchioles, CFTR protein localized to the apical plasma membrane and was found primarily in a subpopulation of nonciliated cells. CFTR was expressed in the same distribution as the Clara cell marker CC10 in proximal bronchioles, however, expression was discordant in the more distal bronchioles and alveoli where CC10 was not detected. These studies suggest that epithelial cells of the distal lung may play a primary role in the pathogenesis of CF as well as expand the spectrum of target cells that should be considered in the development of gene therapies.  相似文献   

12.
13.
Warwick G  Elston C 《The Practitioner》2011,255(1742):29-32, 3
Cystic fibrosis (CF) is the most common fatal inherited disease in Caucasian people. Inheritance follows an autosomal recessive pattern. Recent data indicate that there are more than 9,000 patients with CF in the UK. At a cellular level there is an abnormal CF transmembrane conductance regulator (CFTR), a protein essential for chloride and sodium homoeostasis, caused by a mutation in the CF gene. The consequence of this abnormal protein is thick, viscous secretions in the lungs and GI tract, which lead to recurrent lung infections and pancreatic insufficiency with intestinal malabsorption. Most patients present in early childhood with classic CF. They show one or more of the typical CF phenotypic characteristics (chronic pulmonary disease, GI symptoms and malabsorption, nutritional abnormalities and sinus disease). A minority of patients have atypical CF. They tend to present at an older age, often in adulthood, are mainly pancreatic sufficient, have milder disease and a better prognosis. When CF is suspected the diagnosis can be confirmed by measuring sweat chloride concentration and by looking for CFTR mutations. Immunoreactive trypsinogen is measured in blood taken from a heel prick in all neonates, and is a marker of pancreatic injury consistent with (but not specific for) CF.  相似文献   

14.
Cystic fibrosis (CF) pigs spontaneously develop sinus and lung disease resembling human CF. The CF pig presents a unique opportunity to use gene transfer to test hypotheses to further understand the pathogenesis of CF sinus disease. In this study, we investigated the ion transport defect in the CF sinus and found that CF porcine sinus epithelia lack cyclic AMP (cAMP)-stimulated anion transport. We asked whether we could restore CF transmembrane conductance regulator gene (CFTR) current in the porcine CF sinus epithelia by gene transfer. We quantified CFTR transduction using an adenovirus expressing CFTR and green fluorescent protein (GFP). We found that as little as 7% of transduced cells restored 6% of CFTR current with 17–28% of transduced cells increasing CFTR current to 50% of non-CF levels. We also found that we could overcorrect cAMP-mediated current in non-CF epithelia. Our findings indicate that CF porcine sinus epithelia lack anion transport, and a relatively small number of cells expressing CFTR are required to rescue the ion transport phenotype. These studies support the use of the CF pig as a preclinical model for future gene therapy trials in CF sinusitis.  相似文献   

15.
The cystic fibrosis (CF) gene encodes a cAMP-gated Cl- channel (cystic fibrosis transmembrane conductance regulator [CFTR]) that mediates fluid transport across the luminal surfaces of a variety of epithelial cells. We have previously shown that gap junctional communication and Cl- secretion were concurrently regulated by cAMP in cells expressing CFTR. To determine whether intercellular communication and CFTR-dependent secretion are related, we have compared gap junctional coupling in a human pancreatic cell line harboring the DeltaF508 mutation in CFTR and in the same cell line in which the defect was corrected by transfection with wild-type CFTR. Both cell lines expressed connexin45 (Cx45), as evidenced by RT-PCR, immunocytochemistry, and dual patch-clamp recording. Exposure to agents that elevate intracellular cAMP or specifically activate protein kinase A evoked Cl- currents and markedly increased junctional conductance of CFTR-expressing pairs, but not in the parental cells. The latter effect, which was caused by an increase in single-channel activity but not in unitary conductance of Cx45 channels, was not prevented by exposing CFTR-expressing cells to a Cl- channel blocker. We conclude that expression of functional CFTR restored the cAMP-dependent regulation of junctional conductance in CF cells. Direct intercellular communication coordinates multicellular activity in tissues that are major targets of CF manifestations. Consequently, defective regulation of gap junction channels may contribute to the altered functions of tissues affected in CF.  相似文献   

16.
BackgroundTo assess gene therapy treatment for cystic fibrosis (CF) in clinical trials it is essential to develop robust assays that can accurately detect transgene expression in human airway epithelial cells. Our aim was to develop a reproducible immunocytochemical assay for human CFTR protein which can measure both endogenous CFTR levels and augmented CFTR expression after gene delivery.MethodsWe characterised an antibody (G449) which satisfied the criteria for use in clinical trials. We optimised our immunocytochemistry method and identified G449 dilutions at which endogenous CFTR levels were negligible in CF samples, thus enhancing detection of transgenic CFTR protein. After developing a transfection technique for brushed human nasal epithelial cells, we transfected non-CF and CF cells with a clinically relevant CpG-free plasmid encoding human CFTR.ResultsThe optimised immunocytochemistry method gave improved discrimination between CF and non-CF samples. Transfection of a CFTR expression vector into primary nasal epithelial cells resulted in detectable RNA and protein expression. CFTR protein was present in 0.05–10% of non-CF cells and 0.02–0.8% of CF cells.ConclusionWe have developed a sensitive, clinically relevant immunocytochemical assay for CFTR protein and have used it to detect transgene-expressed CFTR in transfected human primary airway epithelial cells.  相似文献   

17.
目的通过检测Slc26a6敲除型和野生型小鼠离体胰腺导管CFTR和Slc26a3表达的差异,进一步探讨胰腺导管上皮细胞腔面膜上CFTR和Slc26s的相关性。方法从野生型和Slc26a6敲除小鼠提取胰腺组织并剥离出离体胰腺导管,提取RNA,逆转录生成cDNA,进行相对定量Real-Time PCR实验,以-βactin作为内参基因,野生型小鼠肾脏目的基因含量作为对照组,目的基因的相对定量按公式得出:目的基因=2-(△△Ct)。结果野生型小鼠Slc26a3的相对表达量为7.84±0.22,Slc26a6敲除小鼠Slc26a3的相对表达量为7.37±0.36,二者差异无显著性(P〉0.05)。野生型小鼠CFTR的相对表达量为0.08±0.003,Slc26a6敲除小鼠CFTR的相对表达量为0.05±0.003,二者差异无显著性(P〉0.05)。结论 Slc26a6敲除对胰腺导管上皮细胞Slc26a3和CFTR的表达水平无显著影响,故腔面膜上Slc26a6对CFTR的增强作用可能并不是通过增加其表达水平实现的;另外,Slc26a3可能参与了小鼠胰腺导管上皮细胞HCO3-的分泌,但与Slc26a6在功能上的相关性有待进一步研究。  相似文献   

18.
Successful gene therapy will require that the therapeutic gene be expressed at a sufficient level in the correct cell type(s). To improve the specificity of gene transfer for cystic fibrosis (CF) and other airway diseases, we have begun to develop cell-type specific promoters to target the expression of transgenes to specific airway cell types. Using a FOXJ1 promoter construct previously shown to direct transgene expression specifically to ciliated cells, we have generated transgenic mice expressing human cystic fibrosis transmembrane conductance regulator (CFTR) in the murine tracheal and nasal epithelia. RNA analysis demonstrated levels of CFTR expression is greater than or equal to the level of endogenous mouse CFTR. Immunoprecipitation and western blotting demonstrated the production of human CFTR protein, and immunochemistry confirmed that CFTR was expressed in the apical region of ciliated cells. The transgenic animals were bred to CFTR null mice (Cftr(tm1Unc)) to determine if expression of CFTR from the FOXJ1 promoter is capable of correcting the airway defects in Cl(-) secretion and Na(+) absorption that accompany CF. Isolated trachea from neonatal CF mice expressing the FOXJ1/CFTR transgene demonstrated a correction of forskolin-stimulated Cl(-) secretion. However, expression of human CFTR in ciliated cells of the nasal epithelia failed to significantly change the nasal bioelectrics of the CF mice.  相似文献   

19.
The most common cause of cystic fibrosis (CF) is deletion of phenylalanine 508 (DeltaF508) in the CF transmembrane conductance regulator (CFTR) chloride channel. The DeltaF508 mutation produces defects in folding, stability, and channel gating. To identify small-molecule correctors of defective cellular processing, we assayed iodide flux in DeltaF508-CFTR-transfected epithelial cells using a fluorescent halide indicator. Screening of 150,000 chemically diverse compounds and more than 1,500 analogs of active compounds yielded several classes of DeltaF508-CFTR correctors (aminoarylthiazoles, quinazolinylaminopyrimidinones, and bisaminomethylbithiazoles) with micromolar potency that produced greater apical membrane chloride current than did low-temperature rescue. Correction was seen within 3-6 hours and persisted for more than 12 hours after washout. Functional correction was correlated with plasma membrane expression of complex-glycosylated DeltaF508-CFTR protein. Biochemical studies suggested a mechanism of action involving improved DeltaF508-CFTR folding at the ER and stability at the cell surface. The bisaminomethylbithiazoles corrected DeltaF508-CFTR in DeltaF508/DeltaF508 human bronchial epithelia but did not correct a different temperature-sensitive CFTR mutant (P574H-CFTR) or a dopamine receptor mutant. Small-molecule correctors may be useful in the treatment of CF caused by the DeltaF508 mutation.  相似文献   

20.
Genotype-phenotype relationships in cystic fibrosis   总被引:5,自引:0,他引:5  
The genotype-phenotype relationship in CF is complex despite its being a monogenic disorder. Factors that contribute to variability among individuals with the same genotype are an area of intense study. Nevertheless, certain conclusions can be derived from these studies. First, mutations in both CFTR alleles cause the CF phenotype. Homozygosity for delta F508 or compound heterozygosity for delta F508 and another severe mutation (e.g., G551D, W1282X) cause classic CF: obstructive pulmonary disease, exocrine pancreatic deficiency, male infertility, and elevated sweat chloride concentrations. Clinical variability is observed among patients with the classic form of CF, especially with regards to the severity of lung disease. Although understanding of the role of other genes and environment in the development of lung disease is incomplete, evidence that other factors are important raises the possibility that therapeutic intervention may be possible at several levels. Second, genotype correlates more closely with certain features of the CF phenotype than others. Mutations that allow partial function of CFTR are often associated with pancreatic sufficiency, occasionally identified with normal sweat gland function, and sporadically correlated with mild lung disease. Partially functioning mutants rarely prevent maldevelopment of the male reproductive tract; an exception is 3849 + 10 Kb C-->T. These observations suggest that certain tissues require different levels of CFTR function to avoid the pathologic manifestations typical of CF. The genetic cause of several disorders that clinically overlap CF can be attributed, in part, to mutations in CFTR. Finally, molecular analysis of disease-associated mutations identified through genotype-phenotype studies provides a mechanistic framework for genotype-based therapeutic approaches and pharmaceutical interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号