首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
Jeong C  Shin T 《Acta histochemica》2012,114(1):18-23
In order to investigate the expression of protein kinase C (PKC) beta I in the retinas of pigs during postnatal development, we analyzed retinas sampled from 3-day-old and 6-month-old pigs by Western blotting and immunohistochemistry. Western blot analysis detected the expression of PKC beta I in the retinas of 3-day-old piglets and it was increased significantly in the retinas of 6-month-old adult pigs. Immunohistochemical staining showed PKC beta I in the retinas of both groups. Immunohistochemistry of 3-day-old retinas revealed weak PKC beta I reactivity in the ganglion cell layer, inner plexiform layer, inner nuclear cell layer, outer plexiform layer and rod and cone cell layer. In the 6-month-old pig retina, the cellular localization of PKC beta I immunostaining was similar to that of the 3-day-old retina, where PKC beta I was localized in some glial fibrillary acidic protein-positive cells, glutamine synthetase-positive cells, parvalbumin-positive cells, and PKC alpha-positive cells in the retina. This is the first study to show the expression and cellular localization of PKC beta I in the retina of pigs with development, and these results suggest that PKC beta I, in accordance with PKC alpha, plays important roles in signal transduction pathways in the pig retina with development.  相似文献   

2.
The cellular localization and protein expression level of protein kinase C (PKC)-alpha was examined in pig retina at different ages. Western blot analysis detected PKC-alpha in the retinas of 3-day-old piglets and indicated significantly increased expression in 6-month-old young adult and 2-year-old adult pigs. Immunohistochemistry of 3-day-old retinas revealed intense PKC-alpha reactivity in the inner plexiform and inner nuclear cell layers, weak reactivity in the ganglion cell layer, and few positive cells in the outer nuclear cell layer. The cellular localization of PKC-alpha in the adult retina was similar, with staining more intense than that in neonates. PKC-alpha was co-localized in some glial fibrillary acidic protein-positive cells and glutamine synthetase-positive cells in the retina. This study demonstrates that the protein level of retinal PKC-alpha is increased with maturation and suggests that PKC-alpha plays a role in signal transduction pathways for postnatal development in porcine retina.  相似文献   

3.
Purinergic signaling is represented in both the peripheral and central nervous system (CNS), and in particular in the retina, which may be regarded as a part of the CNS. While purigenic signaling is relatively well studied in mammalian retinas, little is known about it in retinas of lower vertebrates. The aim of present study was to investigate, using immunocytochemistry, the distribution of purinoreceptors P2X in retinas of frog and turtle, which are appropriate models of the brain neuron-to-glia interactions. The results showed widespread expression of all seven ionotropic purinoreceptors (P2X1–P2X7) in both frog and turtle retinas. They were predominantly expressed in Müller cells, the principal glial cells in the retina. All structures typical of Müller cells: the outer and the inner limiting membranes, the cells bodies in the inner nuclear layer, the radial processes in the inner plexiform layer (IPL), and the so called endfeet (frog) or the orthogonal arrays of particles (turtle) in the ganglion cells layer were immunostained. Colocalizations between P2X1–P2X7 and the glial cell marker Vimentin proved that the immunostaining was in the Müller cells. In addition to the glial staining, neuronal staining was also seen as fine puncta in the inner plexiform layer and by small dots and patches in the outer plexiform layer. Some cell bodies of horizontal, amacrine and ganglion cells were also stained. The results obtained imply that the purinergic P2X receptors may significantly contribute to the neuron-to-glia signaling in retinas of the lower vertebrates.  相似文献   

4.
Catecholamine regulated protein 40 (CRP40) has been shown to be expressed in the central nervous system (CNS) of several mammalian species where it may function in a similar manner to members of the heat shock protein (HSP) family. Immunohistochemical and immunoblotting techniques were utilized to investigate whether CRP40 is expressed in normal rat retinas. In addition, changes in CRP40 expression were studied following optic nerve transection. The immunohistochemical results showed that CRP40 is expressed in the normal rat retina. The protein was found to be highly expressed in the ganglion cell layer (GCL), the inner nuclear layer (INL) and the outer plexiform layer (OPL). In addition, a low level of CRP40 was found in the inner plexiform layer (IPL), and in the inner segment layer (ISL). No expression was found in the outer nuclear layer (ONL) of normal rat retina. The immunoblotting results show that CRP40 expression decreased in a time-dependent fashion after the optic nerve transection. This decrease indicates that the expression of CRP40 is dependent on the neuron's normal physiological state and that it plays an important function in physiological and pathological conditions in the retina.  相似文献   

5.
Lee J  Kim H  Lee JM  Shin T 《Neuroscience letters》2006,406(3):227-231
The expression of heat shock protein 27 (HSP27) was examined in the retinas of pigs. Western blot analysis detected the expression of HSP27 in the retinas of 1-day-old piglets and showed that it was enhanced in the retinas of 6-month-old adult pigs. Immunohistochemically, HSP27 immunostaining was seen mainly in ganglion cell bodies in the ganglion cell layer, and in some processes of astrocytes in the innermost nerve fiber layer. In 1-day-old piglets, HSP27 was detected weakly in the inner plexiform, inner nuclear cell, outer plexiform, and rod and cone layers. The HSP27 immunoreactivity across the retinal layers was enhanced in the retinas of 6-month-old pigs compared with newborn piglets. The HSP27 immunoreactivity in the radial processes of Müller cells was particularly prominent in adult pig retinas. In summary, this finding suggests that HSP27 plays an important role in signal transduction of glial cells and neuronal cells in the retina.  相似文献   

6.
Summary The morphology of -aminobutyric acid (GABA)-containing horizontal cells was examined in mature and developing chick retinas by GABA immunocytochemistry. In the outer plexiform layer of the mature retina, GABA-immunoreactive components were located in three different sublayers. In the inner (vitreal) layer most positively-stained fibres were laterally oriented processes from horizontal cells. Thick processes were found in the middle layer, and the relatively thin fibres in the outer (scleral) layer showed a concave curvature, suggesting their termination on photoreceptor terminals. By electron microscopy it was found that the principal cone pedicles were usually indented by immunoreactive lateral neurites of horizontal cells but that rod spherules faced only occasionally immunoreactive fibres. Accessory cones and single cones were also not usually indented by immunoreactive fibres. These observations may indicate that horizontal cells regulate the excitation of cone photoreceptors by several different inhibitory mechanisms. During retinal development, horizontal cells begin to extend lateral fibres by the ninth embryonic day, and some GABAergic horizontal cells also possess inwardly extending fibres until embryonic day 11. Between embryonic days 13 and 15, some immunoreactive cells were found among the bipolar cells, suggesting that they were still migrating to their final position. On embryonic day 17, the staining pattern was very similar to that of the mature retina. These results suggest that GABA immunohistochemistry may be an excellent tool for studying horizontal cell differentiation.  相似文献   

7.
In the developing chick retina, heat shock protein 108 (HSP108), which exhibits transferrin binding activity, has been demonstrated at the mRNA level, while transferrin shows two expression peaks. Here, we investigated the expression profile of HSP108 in the developing chick retina at the protein level. The localization of HSP108 in embryonic days 15 (E15), E18, and postnatal day 2 (P2) chick retina was examined immunohistochemically using monoclonal antibody 9G10 specific for chick HSP108, while the expression levels of HSP108 in developing chick retina from E12 to P2 and adult were measured by Western blot analysis. HSP108 was expressed in the ganglion cell layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, inner segments of photoreceptors and retinal pigment epithelium. Two peaks of HSP108 expression were found at around E13 and E18, respectively. Since the two HSP108 peaks appeared to be correlated with the transferrin expression peaks during retinal development, HSP108 may be associated with iron metabolism during the development of the retina.  相似文献   

8.
In this study, we demonstrate that explanted neonatal rat retina can be maintained in culture for periods up to 3 weeks. The cultured retinas displayed a distinct layering that was almost identical to litter-matched retinas of the same age, but the majority of the ganglion cells did not survive and photoreceptor outer segments did not develop properly. Distinct synaptophysin immunoreactivity was expressed in both the inner and outer plexiform layers of cultured retina and the pattern mimicked that one observed in vivo. After 2-3 weeks in vitro, the inner retina expressed immunoreactivities to various components of the cholinergic and nitrergic transmitter systems, including nitric oxide activated cyclic GMP immunoreactivity. The investigated cell populations displayed similar distribution patterns as in situ, but morphological differences appeared in vitro. Such differences were mainly observed as irregularities in the arborization patterns in the inner part of the inner plexiform layer. We suggest that these discrepancies may arise as a result of reduced ganglion cell survival. Our observations demonstrate that some neurotransmitter systems develop in vitro and their neural circuitry appears similar to the in vivo situation. The presence of synapses, receptor proteins and transmitter substances implies that neural communication can occur in cultured retinas.  相似文献   

9.
Whole retinas of 2–14-day-old rats were cultured in a roller device for 2–14 days. Floating retinas of 7–14-day-old rats formed hole spheroid structures (spheroids) with the wall completely retaining the linear structure and layer-by-layer cellular and fibrous architecture, including the outer nuclear, outer plexiform, inner nuclear, inner plexiform layers, layers of ganglion cells and nerve fibers. The retina obtained at earlier terms of development often formed folds, with pyknotic nuclei of dead neurons in their deep compartments. In organ cultures of the retina isolated from rats at early postnatal periods, rosettes were formed in sites of local injury to the outer nuclear layer and pigmented epithelium. Roller organ cultures can be used for in vitro studies of the development and experimental diseases of the retina. __________ Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 142, No. 10, pp. 471–474, October, 2006  相似文献   

10.
Brain‐derived neurotrophic factor (BDNF) signaling through TrkB regulates different aspects of neuronal development, including survival, axonal and dendritic growth, and synapse formation. Despite recent advances in our understanding of the functional significance of BDNF and TrkB in the retina, the cell types in the retina that express BDNF and TrkB, and the variations in their levels of expression during development, remain poorly defined. The goal of the present study is to determine the age‐dependent changes in the levels of expression and localization of BDNF and TrkB in the zebrafish retina. Zebrafish retinas from 10 days post‐fertilization (dpf) to 180 dpf were used to perform PCR, Western blot and immunohistochemistry. Both BDNF and TrkB mRNAs, and BDNF and full‐length TrkB proteins were detected at all ages sampled. The localization of these proteins in the retina was very similar at all time points studied. BDNF immunoreactivity was found in the outer nuclear layer, the outer plexiform layer and the inner plexiform layer, whereas TrkB immunoreactivity was observed in the inner plexiform layer and, to a lesser extent, in the ganglion cell layer. These results demonstrate that the pattern of expression of BDNF and TrkB in the retina of zebrafish remains unchanged during postembryonic development and adult life. Because TrkB expression in retina did not change with age, cells expressing TrkB may potentially be able to respond during the entire lifespan of zebrafish to BDNF either exogenously administered or endogenously produced, acting through paracrine mechanisms.  相似文献   

11.
目的:探讨溶酶体酶在高血压视网膜网变发生过程中的作用。方法:应用光镜定量酶组织化学方法对WKY大鼠和自发性高血压大鼠视网膜原酸性磷酸的分布和活性变化进行定量观察。结果:视网膜各层酸性磷酸酶活性岂强到弱依次是(F检验,P〈0.05);(1)色素上皮层;(2)视杆维层内节和外网层(两层间活性无显著性差异);(3)内网层;(4)节细胞层和神经纤维层,(5)外核层和内核层(两层间活性无显著性差异)杆锥层外  相似文献   

12.
扬子鳄眼球的胚胎发生   总被引:4,自引:1,他引:4  
华田苗  王朝林 《解剖学报》1994,25(1):107-110,T021
在24例扬子鳄胚胎中,观察了眼球的发生及其组织分化过程。孵化后第2d,视泡已从前脑突出形成,第6d形成双层视杯和晶状体泡。晶状体纤维先由晶状体泡后壁上皮生成,然后由赤道部的泡壁上皮生成。虹膜、角膜内皮和基质均由视杯周围的间充质迁入形成。视网膜的色素上皮层最先分化。神经上皮在第16d出现节细胞的内迁。第18d可辨认节细胞层和神经纤维层。第24d可辨认内网层。第30d开始出现外核层与内核层的分化。第3  相似文献   

13.
Intermediate filament expression of various cell types in the adult canine normal and gliotic retina was determined by an immunoperoxidase method of using monoclonal antibodies on aldehyde-fixed tissues. In the normal retina, vimentin was present in astrocytes in the nerve fibre layer, horizontal cell processes, and Müller cell fibres from the internal limiting membrane to the outer nuclear layer. Neurofilamentous axons were noted in the nerve fibre, inner plexiform layer, and outer plexiform layer, although the degree of staining intensity varied among the three molecular weight neurofilament antisera used. Glial fibrillary acidic protein (GFAP) staining was confined to the nerve fibre and ganglion cell layer; this was interpreted as representing fibrous astrocytes. Astrocyte density varied according to retinal topography with an increased number around retinal blood vessels and in the peripapillary retina. Quantitative, but not qualitative differences in staining for vimentin and the neurofilaments were noted in degenerative, gliotic retinas. In common with several other mammalian species previously studied, the canine Müller cells accumulate or express GFAP under pathological conditions involving a gliotic response.  相似文献   

14.
Synaptic connections of the interplexiform cell in the retina of the cat   总被引:3,自引:0,他引:3  
Summary Electron microscopy of Golgi-impregnated material and of well fixed, ultrathin serial sections has revealed the synaptic connections of interplexiform cells in cat retina. In the inner plexiform layer these cells are postsynaptic to amacrine cells and probably presynaptic to both bipolars and amacrines. In the outer plexiform layer they are presynaptic to rod and cone bipolar cells and also pre- and postsynaptic to other interplexiform cell dendrites. The interplexiform cell in cat retina appears to be concerned with feeding back information from the inner plexiform layer to the dendrites of bipolar cells in the outer plexiform layer.  相似文献   

15.
P2X3 purinoceptors are involved in fast, excitatory neurotransmission in the nervous system, and are expressed predominantly within sensory neurons. In this study, we examined the cellular and synaptic localization of the P2X3 receptor subunit in the retina of the rat using immunofluorescence immunohistochemistry and pre-embedding immunoelectron microscopy. In addition, we investigated the activity of ecto-ATPases in the inner retina using an enzyme cytochemical method. The P2X3 receptor subunit was expressed in the soma of a subset of GABA immunoreactive amacrine cells, some of which also expressed protein kinase C-alpha. In addition, punctate immunoreactivity was observed within both the inner and outer plexiform layers of the retina. Double labeling studies showed that P2X3 receptor puncta were associated with both rod and cone bipolar cell axon terminals in the inner plexiform layer. Ultrastructural studies indicated that P2X3 receptor subunits were expressed on putative A17 amacrine cells at sites of reciprocal synaptic input to the rod bipolar cell axon terminal. Moreover, we observed P2X3 immunolabeling on amacrine cell processes that were associated with cone bipolar cell axon terminals and other conventional synapses. In the outer retina, P2X3 immunoreactivity was observed on specialized junctions made by putative interplexiform cells. Ecto-ATPase activity was localized to the inner plexiform layer on the extracellular side of all plasma membranes, but was not apparent in the ganglion cell layer or the inner nuclear layer, suggesting that ATP dephosphorylation occurs exclusively in synaptic regions of the inner retina. These data provide further evidence that purines participate in retinal transmission, particularly within the rod pathway.  相似文献   

16.
Summary We have used immunoreactions against serotonin and protein kinase C to visualize two distinct classes of bipolar cell in the all-rod retina of the skate,Raja erinacea. To enhance the immunoreaction in serotonin-accumulating bipolar cells, prior to fixation, some retinas were incubated in Ringer's solution containing serotonin and pargyline. We found the somata of serotonin-accumulating bipolar cells to be located slightly distal to the midline of the inner nuclear layer. With increasing eccentricity from the visual streak, the size of the perikarya increases, concomitant with a decline in density of their distribution. Dendrites emanate from stout primary stalks and branch out before reaching the outer plexiform layer. Axons are bistratified within the inner plexiform layer with ramifications at the border of strata 1 and 2 and in stratum 4. The overall morphology of serotonin-accumulating bipolar cells is similar to that of serotonin-accumulating OFF bipolar cells of other non-mammalian vertebrates. Protein kinase C immunoreactive cells display the typical appearance of rod bipolar cells. Somata of protein kinase C immunoreactive bipolar cells are spindle-shaped and located distal to the serotonin-accumulating bipolar cells. Dendrites of these bipolars do not ramify before reaching the outer plexiform layer. Thin axons of protein kinase C immunoreactive bipolar cells end in large, club-shaped terminals in stratum 5 of the inner plexiform layer, bearing a striking similarity to axon terminals of mammalian ON rod bipolar cells. Our findings suggest that the all-rod retina of the skate contains at least two distinct vertical pathways including an OFF bipolar cell pathway in addition to a classical rod ON bipolar pathway.  相似文献   

17.
Development of NADPH-diaphorase cells in the rat's retina   总被引:4,自引:0,他引:4  
This study has examined the development of cells in the rat retina which contain nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase. NADPH-diaphorase cells were first detected at postnatal day (P) 3, in somata located in the inner part of the cytoblast layer (CBL). At this age, NADPH-diaphorase reactivity was also seen in weakly labelled fibers in the presumptive outer plexiform layer (OPL). By P5, the somata of most labelled cells were in the inner part of the inner nuclear layer (INL), and by P11, their processes had spread extensively within the inner plexiform layer (IPL). By P25, there was a striking change in the pattern of NADPH-diaphorase reactivity. First, cells had lost reactivity from their large and extensive dendrites and second, there was a distinct reduction in the diameters of labelled somata. Thus, NADPH-diaphorase reactivity was most prominent during the period of synaptogenesis in the IPL. Labelled cells at P3 numbered 120 and were largely found at the superior margin of the retina. By P11, their total number had increased to the adult value of about 3400 and their density was highest in peripheral retina. With further development, the differential expansion of the retina appeared to lower the peripheral densities, resulting in an approximately uniform distribution by adulthood.  相似文献   

18.
陈少强 《解剖学杂志》1998,21(2):162-166
目的:应用光镜定量酶组织化学方法对正常京都种大鼠(WKY)和自发性高血压大鼠(SHR)视网膜组织的Ca^2+-酸性磷酸酶的分布和活性进行定量观察,结果:Ca^2+酸性磷酸酶在WKY视网膜组织的活性由强到弱依次为(F检验,P〈0.05);(1)杆锥细胞内节和外核层;(2)节细胞层;(3)内核层;(4)内网层和外网层;(5)杆锥细胞外节阴性,在SHR视网膜组织中,各层Cas^2+酸性磷酸酶活性下降,以  相似文献   

19.
The study was designed to determine whether dopaminergic neurotransmission in the retina can operate via volume transmission. In double immunolabelling experiments, a mismatch as well as a match was demonstrated in the rat retina between tyrosine hydroxylase (TH) and dopamine (DA) immunoreactive (ir) terminals and cell bodies and dopamine D2 receptor-like ir cell bodies and processes. The match regions were located in the inner nuclear and plexiform layers (D2 ir cell bodies plus processes). The mismatch regions were located in the ganglion cell layer, the outer plexiform layer, and the outer segment of the photoreceptor layer, where very few TH ir terminals can be found in relation to the D2 like ir processes. In similar experiments analyzing D1 receptor like ir processes versus TH ir nerve terminals, mainly a mismatch in their distribution could be demonstrated, with the D1 like ir processes present in the outer plexiform layer and the outer segment where a mismatch in D2 like receptors also exists. The demonstration of a mismatch between the localization of the TH terminal plexus and the dopamine D2 and D1 receptor subtypes in the outer plexiform layer, the outer segment and the ganglion cell layer (only D2 immunoreactivity (IR)) suggests that dopamine, mainly from the inner plexiform layer, may reach the D2 and D1 mismatch receptors via diffusion in the extracellular space. After injecting dopamine into the corpus vitreum, dopamine diffuses through the retina, and strong catecholamine (CA) fluorescence appears in the entire inner plexiform layer and the entire outer plexiform layer, representing the match and mismatch DA receptor areas, respectively. The DA is probably bound to D1 and D2 receptors in both plexiform layers, since the DA receptor antagonist chlorpromazine fully blocks the appearance of the DA fluorescence, while only a partial blockade is found after haloperidol treatment which mainly blocks D2 receptors. These results indicate that the amacrine and/or interplexiform DA cells, with sparse branches in the outer plexiform layer, can operate via volume transmission in the rat retina to influence the outer plexiform layer and the outer segment, as well as other layers of the rat retina such as the ganglion cell layer.  相似文献   

20.
Summary Foetal retina was removed from donor rats at 15 days of gestation and transplanted to the occipital cortex of neonatal host rats. The purpose of this procedure was to examine the development of retinal neurons and photoreceptors, and document synaptic patterns during maturation of the transplanted retina in an environment lacking a normal target for optic axons. Host animals were sacrificed at 5, 10, 15, 20 and 30 days and samples of cortex containing the transplant were subjected to a light and electron microscopic analysis. During early stages of development, (5 days) the retina assumes a radial orientation with the scleral (outer) surface located centrally and the vitreal (inner) surface occupying the periphery. Numerous mitotic figures are found at the centre of the transplant and columns of primitive neuroblasts appear to radiate out from this zone. By 10 to 15 days after transplantation the retinal tissue contains numerous small rosettes each of which displays a histotypic organization with recognizable layers of sensory cells and their centrally-projecting processes, an outer limiting membrane, made up of a network of zonulae adherentes, and a rudimentary outer and inner plexiform layer which delineate the cells of the inner nuclear layer. Ultrastructural analysis of such rosettes confirmed the presence of typical bipolar, amacrine, horizontal and ganglion cells, but revealed that while the plexiform layers were occupied by numerous processes from these neurons, few if any, of these exhibited synaptic vesicles.By 20 to 30 days following transplantation sensory cells have completely differentiated, giving rise to prominent inner and outer segments which display typical cilia, centrioles and basal bodies, together with numerous stacked lamellae of photoreceptors which were contorted, presumably due to growth in an abnormal site. It should be further emphasized that these structures developed in the absence of pigment cells. Synaptic development ensues during this period to form characteristic dyads within the outer and inner plexiform layers. Additionally, clusters of amacrine to amacrine contacts occurred in the inner plexiform layer and were found to be increased relative to other types of junctions. In general, synaptogenesis takes place in the outer and inner plexiform layers and all categories of retinal synapses are established, but the process was found to be significantly delayed in comparison to normal retina at the same stage of development.Quantitative analysis revealed a reduced number of presumptive ganglion cells in proportion to the other categories of neurons. Optic fibres remained small and failed to myelinate. It is suggested that lack of an appropriate target for optic axons induced this alteration and may be indirectly related to the delay in the onset of synaptic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号