首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
This study was designed to elucidate high-K(+)induced response of circular and longitudinal smooth muscle from human gastric corpus using isometric contraction. Contraction from circular and longitudinal muscle stripes of gastric corpus greater curvature and lesser curvature were compared. Circular smooth muscle from corpus greater curvature showed high K(+) (50 mM)-induced tonic contraction. On the contrary, however, longitudinal smooth muscle strips showed high K(+) (50 mM)-induced sustained relaxation. To find out the reason for the discrepancy we tested several relaxation mechanisms. Protein kinase blockers like KT5720, PKA inhibitor, and KT5823, PKG inhibitor, did not affect high K(+)-induced relaxation. K(+) channel blockers like tetraethylammonium (TEA), apamin (APA), glibenclamide (Glib) and barium (Ba(2+)) also had no effect. However, N(G)-nitro-L-arginine (L-NNA) and 1H-(1,2,4) oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC) and 4-AP (4-aminopyridine), voltage-dependent K(+) channel (K(V)) blocker, inhibited high K(+)-induced relaxation, hence reversing to tonic contraction. High K(+)-induced relaxation was observed in gastric corpus of human stomach, but only in the longitudinal muscles from greater curvature not lesser curvature. L-NNA, ODQ and K(V) channel blocker sensitive high K(+)-induced relaxation in longitudinal muscle of higher portion of corpus was also observed. These results suggest that longitudinal smooth muscle from greater curvature of gastric corpus produced high K(+)-induced relaxation which was activated by NO/sGC pathway and by K(V) channel dependent mechanism.  相似文献   

2.
This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, K+ channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, NG-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the H2 receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through H2 receptor and NO/sGC pathways.  相似文献   

3.
The properties of voltage dependent Ca2+ current (VDCC) were investigated in interstitial cells of Cajal (ICC) distributed in the myenteric layer (ICC-MY) of guinea-pig antrum. In tissue, ICC-MY showed c-Kit positive reactions and produced driving potentials with the amplitude and frequency of about 62 mV and 2 times min-1, respectively, in the presence of 1 µM nifedipine. Single ICC-MY isolated by enzyme treatment also showed c-Kit immunohistochemical reactivity. These cells were also identified by generation of spontaneous inward current under K+ -rich pipette solution. The voltage clamp experiments revealed the amplitude of - 329 pA inward current at irregular frequency. With Cs+-rich pipette solution at Vh=-80 mV, ICC-MY produced voltage-dependent inward currents (VDIC), and nifedipine (1 µM) blocked VDIC. Therefore, we successfully isolated c-Kit positive single ICC from guinea-pig stomach, and found that ICC-MY potently produced dihydropiridine sensitive L-type voltage-dependent Ca2+ currents (VDCCL).  相似文献   

4.
Losartan is a selective angiotensin II (Ang II) type 1 (AT1) receptor antagonist which inhibits vascular smooth muscle cells (VSMCs) contraction and proliferation. We hypothesized that losartan may prevent cell proliferation by activating AMP-activated protein kinase (AMPK) in VSMCs. VSMCs were treated with various concentrations of losartan. AMPK activation was measured by Western blot analysis and cell proliferation was measured by MTT assay and flowcytometry. Losartan dose- and time-dependently increased the phosphorylation of AMPK and its downstream target, acetyl-CoA carboxylase (ACC) in VSMCs. Losartan also significantly decreased the Ang II- or 15% FBS-induced VSMC proliferation by inhibiting the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. Compound C, a specific inhibitor of AMPK, or AMPK siRNA blocked the losartan-induced inhibition of cell proliferation and the G0/G1 cell cycle arrest. These data suggest that losartan-induced AMPK activation might attenuate Ang II-induced VSMC proliferation through the inhibition of cell cycle progression.  相似文献   

5.
The effects of arvanil (N-arachidonoyl-vanillyl-amine), a structural hybrid between capsaicin and anandamide, on ion currents in a mouse neuroblastoma and rat glioma hybrid cell line, NG108-15, were examined with the aid of the whole-cell voltage-clamp technique. Arvanil (0.2-50 microM) caused an inhibition of voltage-dependent L-type Ca(2+) current (I(Ca,L)) in a concentration-dependent manner. Arvanil produced no change in the overall shape of the current-voltage relationship of I(Ca,L). The IC(50) value of arvanil-induced inhibition of I(Ca,L) was 2 microM. Arvanil (5 microM) could shift the steady-state inactivation curve of I(Ca,L) to a more negative potential by approximately -15mV. No effect of arvanil (20 microM) on delayed rectifier K(+) current (I(K(DR))) was observed; however, capsaicin (20 microM), glyceryl nonivamide (20 microM) and capsinolol (20 microM) suppressed it significantly. Arvanil (20 microM) caused a slight reduction in the amplitude of erg (ether-à-go-go-related)-mediated K(+) current (I(K(erg))) without modifying the activation curve of this current, while capsaicin and glyceryl nonivamide were more effective in suppressing I(K(erg)). Under current-clamp configuration, arvanil decreased the firing frequency of action potentials. Arvanil-mediated inhibition of I(Ca,L) appeared to be independent of its binding to either vanilloid or cannabinoid receptors. The channel-blocking properties of arvanil may, at least in part, contribute to the underlying mechanisms by which it affects neuronal or neuroendocrine function.  相似文献   

6.
Mastoparan, a polypeptide known to activate heterotrimeric GTP-binding proteins, enhances the transport of Ca2+ and K+ across membranes. In the present study we investigated the influence of mastoparan on transepithelial resistance (TER) and on short circuit current (SCC) of the intestinal cell line T84. Mastoparan decreased the TER by 80% of baseline and induced a SCC of 8.34+/-1.38 microAcm(-2). The changes in paracellular conductance were estimated using the nystatin technique and showed that mastoparan increased the paracellular conductance 4-fold. Basolateral Cl(-)-free medium, or blockade of the basolateral Cl(-) uptake via the Na+/K+/2Cl(-) co-transporter with bumetanide, reduced SCC of T84 cells, but did not abolish the effect of mastoparan on the TER. Luminal addition of the Cl(-)-channel blocker DIDS or NPPB had no effect on the increase in SCC. In contrast, blocking the basolateral K(+)-channels by 2mM Ba2+ inhibited both the resistance decrease and elevation of the SCC, and further inhibited the mastoparan-induced increase in intracellular free Ca2. This indicates that mastoparan acts primarily via activating K+ channels with a secondary Cl(-) secretion and Ca2+ influx. Reduction of intracellular free Ca2+ did not alter the effect of mastoparan on TER. Stimulation with mastoparan led to a biphasic rearrangement of actin filaments and increased globular actin content in T84 cells. Depolymerization of actin filaments also correlated with inactivation of Rho-proteins, which are known regulators of the cytoskeleton. Mastoparan induced a 2-fold increase in GDI-complexed Rho.We conclude that mastoparan-induced changes in paracellular permeability are mediated via enhanced basolateral K+ conductance and Rho-protein inactivation. A secondary increase in intracellular Ca2+ or direct interaction of small GTPases with the cytoskeleton are likely mediators of the remodeling of the cytoskeleton with subsequent changes in paracellular permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号